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SECOND ORDER EFFICIENCY IN THE SEQUENTIAL
DESIGN OF EXPERIMENTS!

By ROBERT KEENER
The University of Michigan

In the sequential design of experiments an experimenter performs
experiments sequentially to make an eventual inference about the true state
of nature. A Bayesian formulation of this problem is considered. The
parameter space is assumed finite and there are a finite number of repeatable
experiments. Sufficient conditions are given for a procedure to be second
order efficient as the sampling costs approach zero, The asymptotic analysis
of a related Markov control problem is also presented.

.

1. Introduction. In the sequential design of experiments, an experimenter
performs experiments sequentially to make an inference about the state of nature.
Various authors have suggested procedures, i.e. rules dictating the experimenter’s
actions at each stage. Of particular note is procedure 6* proposed by Chernoff
(1959). In his paper, Chernoff proves that 6 is asymptotically optimal in a large
sample limit. To investigate its performance for moderate sample sizes, numerical
simulations were performed by Blot and Meeter (1973), and Meeter, Pirie and
Blot (1970). In these simulations, 6“4 is compared with three other procedures,
6BH 8B and 6™, proposed by Box and Hill (1967), Blot and Meeter (1973), and
Chernoff (1972). These three procedures have no compelling theoretical
justification and in general are not asymptotically optimal. However, for the
problems simulated they often outperformed 44. In one case, the average sample
size for 64 was 176, and the average sample size for 27 was 115, and it certainly
appears that asymptotic optimality is not a definitive performance criterion
unless the sample sizes are a fair amount larger. As the simulations performed
were necessarily limited in scope, there is little reason to advocate use of §2¥, 5%
or 6™ on arbitrary problems.

The goal of this paper is to refine Chernoff’s asymptotic analysis of this
problem. A Bayesian formulation is used with a general loss structure. The
parameter space is assumed finite and there are a finite number of repeatable
experiments. All costs of sampling are scaled by a constant «, and the asymptotic
limit considered is as @ — 0 which corresponds with large samples.

Theorem 2.1 gives an approximation for the (optimal) Bayes risk which has
error o(av—Ina) as a — 0 uniformly over prior probabilities. A procedure is
called second order efficient if its risk differs from the Bayes risk by an amount
o(av—Ina) as a — 0 uniformly over prior probabilities. The same theorem gives
sufficient conditions for a procedure to be second order efficient. Chernoff’s
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procedure is usually not second order efficient, and the difference between its
risk and the Bayes risk is O(av—Ina). Savings in expected sample size from
using a second order efficient procedure will be the same magnitude as the square
root of the expected sample size. It seems likely that these savings may be quite
substantial in problems with moderate sample sizes. In a sequel to this paper, we
plan to introduce several procedures suggested by this analysis, and compare
those procedures against 64, 62, 68H, and 6™ using simulation. In a narrower class
of problems, Lalley and Lorden have recent unpublished results describing
procedures with risk O(a) greater than the Bayes risk.

The bulk of this paper deals with the asymptotic analysis of a Markov control
problem intimately related to the sequential design of experiments. The problem
concerns driving a discrete time vector valued process {S,} from an initial position
So = s to the first quadrant. There is a finite set {P, --- P} of allowed
distributions for steps, and a cost ¢; is incurred each time distribution P; is used.
The asymptotic limit studied is as the distance from s to the first quadrant
approaches infinity. This control problem will be studied in Section 4 and in
Section 3 a related nonstochastic optimization problem will be analyzed. In
Section 2 the notation for sequential design will be introduced and the main
theorem stated. Proofs are given in Section 5.

2. Sequential design: main theorem and notation. The formulation
given here is similar to that of other authors although a slightly more general
loss structure is used and second moment conditions are imposed.

. 0 represents the state of nature and assumes values in a finite set O =
{60, ---, 0,}. The experimenter chooses experiments from a finite set ¥ =
{e; - - - er}. When the experimenter performs an experiment, he observes a random
variable. Conditional on 6 and the choice of experiment, this random variable is
independent of the past and has a known density f(- , 6, ). The distributions
corresponding to these densities are assumed mutually absolutely continuous.
The prior probabilities will be denoted

79 = 790) = P(0 = 6)),
and the posterior probabilities are
#’(n)=P@O=06;|Y, - Y., E1 --- E,)
where E; is the ith experiment performed and Y; is the ith observation. Let

[ 7 0(n)/x O (n) ]

SY =1In| 7#n)/="V(n)]|.

WU)(n)/W(j"'l)(n)

| ,,r(j)(n)/,,r(p)(n)J
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By Bayes theorem,
y(sr(zj-)rl - Si{)|0 = 0]', En+1 = e,-)
[ TIn(f(Y, 6, e)/f(Y, 6o, €))

In((Y, 0, e)/f(Y, -1, ) _ _
In(£(Y, 6;, e)/f(Y, 0,41, €)) 0= 0 Envi = e

| In((Y, 6;, e)/f(Y, 0p, €))
= PP

The mean and covariance of P’ will be u and 1 ¢’ respectively. The components
of u! are the Kullback-Leibler information numbers for distinguishing 6, from
other states of nature using e; when 6; is correct. The cost for performing e; when
0 = 6, will be a ¢”. The limit in our asymptotic expansions will be « — 0 which
corresponds with large samples. The set of actions the exprimenter can take after
sampling is assumed finite and the loss for any action is nonnegative. Another
assumption made is that for each 6;, there is a unique action which gives 0
loss if 6 = 6;. The loss using this action when § = §; will be denoted # . Let cyax
= max{c?} and 4un = min{#?: /¥ > 0}.

COMMENT. Although this structure for the terminal actions is reasonably
general, there are interesting situations not covered. One example might be with
3 states of nature and 2 actions with the losses for the actions given by the table,

loss|0 1 2
a; 001
a |[010

For this loss structure, the asymptotic shape of the stopping region does not
allow use of the results for the Markov control problem.

Another assumption made is that c}” >0 and u}j )'> 0 for every i, j.
The functions tf—j '(s) are defined to minimize
‘ Ky P9 (s)
under the constraints
tV(s)=0 for 1<i<k,
and
s+ Xk ultP(s) = 0.

Finding these functions for fixed s is a problem in linear programming and for
varying s the techniques of parametric linear programming can be applied (see
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Vajda, 1961). The last assumption made is that the functions tl@"’( .) are unique.
Section 3 contains further discussion of these functions and Theorem 3.1 gives
sufficient conditions for uniqueness.

Let
R (s) = By ct(s), 3Us) = Tha ¢ ()3

and
RU(s) = f RY (s + 0)N(0, $9(s)){dx}.

A procedure % will be a rule which tells the experimenter which experiment to
perform, when to stop, and which action to take (& must satisfy measureability
conditions insuring that decisions are based on the past only). R(r, a, 2) will
be the risk for procedure & given the prior distribution and «, and RV (x, a, &)
will be the risk given 6 = 6;.

The primary concern will be with procedures where the sample size is given
by
(2.1) N=inffn =20: S =2 AY —Ina 1,0 < < p},
and the terminal action is the action best for §; if S5 = A — Ina 1. For

convenience all components of the A9 vectors will be either 0 or —o, so that
SY = AY — Ina 1 is equivalent to
() 1 )
Ts2= Vi st 20>0.
™ o

Let
a? ={6: #/” >0} and a¥ = {i: /¥ > 0}.
Suppose S = AY — Ina 1. Then P(6 € a?) < pa. Conditioning on S, if 2
satisfies (2.1) the risk due to the terminal action is less than pZ .xa for any prior

and any a.
For a vector x let x~ be defined by x; = max{0, — x;} and let

(2.2) 7(x) = sup;x; .

Let
R(m, o) = inf ,R(7, a, ¥) and

R(ﬂ', a) =« 25):1 ,,r(i)R(i)(S(()i) + lna 1 — A(i)).

THEOREM 2.1.
R(x, a) = R(x, @) + o(avV—Ina)
uniformly in = as a — 0. If hy and h, are functions satisfying

. hy (T )
2.3 lim, . =
23) m 7ln 7 *
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and

. hs(a)
2.4 lim,_. =0,
24) 0 e

and if & is a procedure that stops according to (2.1) and satisfies
P(SY = hy(a), t2(SY + Ina 1 — AY)
(2 < m(r(SY + Ina 1 — AD), Epyy =€) = 0
forO0<j=p,1=i,<k,n=0,a>0,then
R(r, a, #) = R(x, a) + o(av=Ina)

uniformly in = as a — 0.

Roughly speaking, ¢t (S + Ina 1 — A?) is the number of times e; should be
performed if 6 = 9 and if the likelihood ratios evolve as dictated by the Kullback
Leibler information numbers. Condition (2.5) says that if t(’) is small and 69 is
very likely, the next experiment should not be e;. Procedures which satisfy this
condition are easy to find. Two simple examples are the procedures which select
at each stage the experiment e; which maximizes ¥,x;(n) t9(SP +1Ina 1 —AY)
or t(J)(S @) 4 Ina 1 — A) where J is the index of the most probable state of

nature.

3. Nonstochastic control. Asymptotics for the Markov control problem
studied later will be related to the nonstochastic problem of minimizing the cost
for “driving” a continuous time vector valued process {S;} from its initial posi-
tion Sy, = s into the 1st quadrant, {x € R”: x = 0}. There is a finite sequence
(1, - -+, me) of allowed velocities for the process, and for i = 1, ..., k we are
allowed to choose a time t; that the process spends traveling at velocity u;. The
cost per unit time for traveling at velocity w; is ¢;, so that the total cost for a
given choice of ¢;, - - - , tp is Y&, tic;.

This control problem is easily solved by linear programming techniques. Define
t:(s) as the optimal length of time spent at velocity u; when S, = s. Then for fixed
s, t1(s), - - -, tx(s) are constants which minimize

Y citi(s)
under the constraints
ti(s) =0, i=1---k,
s+ YE ti(s)w = 0.
To insure that this minimization problem has a solution, it is assumed that
(3.1) >0, i=1---k,
and

(3.2) w>0, i=1-.-.k
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The function R4(s) will be the minimum cost,
(3.3) Ry(s) = Yiciti(s).

The sequence of vectors (ui/cy, - - - , u/cx) will be called regular if the minimi-
zation problem above uniquely determines t;(s)Vs, Vi. Theorem 3.1 gives suffi-
cient conditions for regularity.

Considering the dual linear programming problem, define A(s) for s € R as a
vector which minimizes

As) - s
under the constraints
(3.4) =) - <g¢, 1=1-..--k.
(3.5) As) = 0.

From the duality theorem of linear programming,
Ry(s) = A(s) - s.
LEMMA 3.1. If (3.1) and (3.2) hold, then

(1) Ry is convex, piecewise linear, and homogeneous of degree 1.
(ii) At points where Ry is differentiable,

(3.6) A(s) = VR4(s).

(i11) A(-) can be chosen to be a homogeneous function of degree 0.

(iv) If (uy/cy, - - - , wp/cr) is regular then t;(-) is a homogeneous function of degree
1.

PROOF. The proof of this lemma is elementary and will be omitted.

Checking the regularity of (ui/ci, ---, ux/ck) is a hard task which must be
accomplished to apply several later theorems. The next result gives sufficient
conditions for regularity. Verification of these conditions involves computing
¥=1(%1) (%) determinants. This will only be practical if k or p are small, so further
results would be useful. The number of determinants evaluated can sometimes
be reduced by throwing away all vectors y; strictly less than a convex combination
of other p’s. In assessing the restrictiveness of assumptions of regularity, it is
worth noting that the conditions fail on a set with Lebesgue measure zero in R".
The result is stated, with¢; = c; = . .- = 1.

THEOREM 3.1. (u; - -- ) is regular provided forany 1 <j<p A (k — 1), for
any (j + 1) X p matrix A whose columns are u.'s for distinct i’s, and for any j X p
matrix B whose rows are distinct rows of the identity matrix,

det[B(A — A)(A — A)’ B'] #0

where each column of A is the average of the columns of A.
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PROOF. Language used in this proof is explained in most texts on linear
programming such as Vajda (1961). Suppose uniqueness fails when s = s,. Then
the simplex method will find a basic feasible solution t1 .- t, minimizing
Sk t;, but some adjacent basic feasible solution ¢, --- ¢, will also attain the
minimum. If j is the number of ¢ which are basic variables then p — j of the
corresponding slack (or additional) variables are basic and j components of s, +
Y& | tiu; are zero. Suppose when 3 becomes ¢ a t variable is 1ntroduced to the
basic variable list. Then Y%, (¢; — {;)u; is a contrast (since Y4, &; = Y&, &) of
(j + 1) u’s and has j zero components. If B is the matrix whose rows correspond
with these zero components and A the matrix whose columns are the (j + 1) u’s,
then B(A — A) has rank at most j — 1 and det[B(A — A)(A — A)’B’] = 0. If
instead a slack variable is introduced to the basic variable list when t becomes
t, Dk, (£ — t;)u is a contrast of j u’s with j — 1 zero components and again one
determinant vanishes.

4. Stochastic control. This section considers control of a discrete time
vector valued stochastic process {S,}r-o from its initial position S, = s into the
1st quadrant. Define steps for the process as

Z,'=Si—S,:_1, l=1

There is a finite set {P; --- P.} of allowed distributions for the steps, and for
each n, one may choose a distribution for the next step using the history of the
process till time n.

To be more specific, define independent random vectors

Z@,j), i=1...k, j=1, ...
with marginal distributions
LZG, ) =P, i=1---k j=1,...
The control of the process is through a stochastic process {v,ln-1 €

{1, - - -, k}”. The sequence {S,} given by this control is defined by

S.=s+ 3 I ZG, j)
where

N;(n) =#k<n:v,=1i}.

The only restriction imposed on our control process is that for each n, v, is
measurable with respect to #,_1=6(S1, - - -, Sn-1) X F, where %, is independent
of all the Z(, j).

With these definitions, », is the index of the distribution used for step Z, and
N;(n) is the number of times P; is used in the first n steps.

Define the stopping time

= inf{i: S; = 0}
and let N;= N;(N) fori=1 ... k.
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Our objective in this problem is to choose a control process {v,} to minimize
E 3, aN,

i.e. there is a cost c; for each step with distribution P;.
We assume that for each i, P; has a finite covariance ¥; and mean

/*ti>0)

and ¢; > 0.

We will define a procedure & as a function which associates with each
(starting position) s, a control process Z(s) satisfying the measurability condi-
tion above. All the random variables used, except the Z(i, j) will be thought of
as functions of s and &, but the dependence on s and & will be suppressed for
notational convenience. With this convention, define the risk for a procedure as
R(s, #) =E Y%, ciN..

The greatest lower bound for these risk functions will be defined as

R(s) = inf LR(s, #).

Although we give no proof, it seems likely that an optimal procedure &, exists
which attains this lower bound, i.e. R(s) = R(s, %). In some problems it may
be possible to find &, using backwards induction.

As backwards induction is impractical in many situations our goal will be to
find approximations for R(s) and procedures which are almost optimal. The
asymptotic limit we use is as 7(s) — o (see equation (2.2)). For notational
convenience we will replace statements like f(s) = O(g(7(s))) uniformly in s as
7(s) — oo; with f(s) = O(g(r)) as 7 — . Theorem 4.1 shows that R, is a lower
bound for R(s) and Theorem 4.2 shows that to first order this bound can be
attained as 7 — . In Theorem 4.3 we show that a procedure is first order
efficient if and only if E | (N; — t;)/7 | = 0. The main result is Theorem 4.4 which
gives a second order approximation for R(s) and gives conditions sufficient for a
procedure to be second order efficient.

The following lemma is needed in later arguments.

LEMMA 4.1. Define
M=#n=0:S,%s+ 1}.
There exists a constant A such that for any control and for any s,

EM < A.

PRrROOF. We will assume that S, is 1-dimensional. The result in higher
dimensions is an easy consequence of the result in one dimension.
Fori=1... kandtE R, let

M; = inf{S}, ZG,j):n=1,2, ---} U {0},
Vix) = #in: B, 26, j) < x},
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and
Ui(x) = EVi(x).

For any s and any control, the number of n such that S, <s+ 1 and », = 1 is at
most

Vil + | My| + -+ + | My)).

Consequently, M < ¥F, Vi(1 + 2f=1,j¢i | M;|).
Therefore

EM < 35, EUL + S5y | M)

for any control and any s. The right-hand side of this expression is finite because
U; grows linearly by Theorems 1 and 2 of Stone (1965) and E|M;| < « by
Theorem 11 of Kingman (1962).

COROLLARY 4.1. Suppose a € (—1, 0] and f is a bounded function. If f(s) =
O(7%) as 7 —  then
EYXY f(S) =0G"") as 17—,
and if f=0(r%,as 7 — ©
E XY f(S) =0('", as 71— .
Also
E#n: S, 2s+x1} =0(x)
uniformly in s as x — oo.
PROOF. The last expression follows immediately from Lemma 4.1. The other
two expressions follow from the upper bound
TSI = 1S+ #n = 1 7(Sa) > 7(5) = UsuPririo-1 | f(x) |
+ I #n = L 7(Sa) € (G = L, j1) suprweq-1i] f(3) |
since expectations of the set cardinalities are bounded above by 1 + A where A
is the constant in Lemma 4.1.

THEOREM 4.1. R(s) = Ry(s) Vs € R".

ProOOF. Using equation (2.4) we see that for any prodecure, {Y%, ¢:Ni(n) +
As) - S., Zile., is a submartingale. By Corollary 4.1, EN is finite and the
optional stopping theorem gives

As) - s < EX", N+ \s) - ESy < E Y%, :N..

The left- and right-hand sides of this inequality are Rq(s) and R(s, &) respec-
tively proving the theorem.
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THEOREM 4.2. R(s) = Ry(s) + O(¥7) as 7 — .

PrOOF. Let [x] be the greatest integer = x. Define a procedure & in the
following manner: Begin by taking [¢,(s)] + 1 steps with distribution P;. Next
take [ty(s)] + 1 steps with distribution P,, etc. After M = k + 21—1 [t:(s)] steps
have been taken, continue using steps with distribution P;. Conditioning on the
value of Sy and using Corollary 4.1 we get

RS, 2) = $5, ci([ti(s)] + 1) + cmaxBA(1 + 7(S)
= Zf:l citi(s) + Cmax(A + k) + cmaxA VT(S)ET(SM/ VT(S))

where cmax= maxfcy, - - -, cx}. As 7 — o, the covariance of S,/ v7(s) is uniformly
bounded. Since ES), = 0 this implies that E+(Sy/v7(s)) is uniformly bounded
at 7 — . Consequently

R(s, @) < Ry(s) + O(~7)

as 7 — oo, proving the theorem.
A procedure & will be called first order efficient if

R(s, 2) 1
Ry(s)
as 7 — o,
THEOREM 4.3. Suppose (ui/c, - -, u/c) is regular. Then & is first order
efficient if and only if
E‘Ni—ti(s) 50

for every i as 1 — oo,

ProoFr. Let {s,} be a sequence for which the conclusion fails. For the

sequence {s,}, the distributions of the vectors (Ny/7, ---, Ni/7) are uniformly
tlght by Corollary 4.1. Taking subsequences we can assume t;/7 — £y — sm/T—
§ and (Ny/7, --+, Np/7) > (Nl, .. Nk) By the SLLN for the Z(i, j),

Sh YN Z(G, j)/f - Y% Nu/r —0in probablllty Since
— s+ I, YN ZG, ) 20,

it follows that § + P Nip:=0as. Regularity of the set {u./c1, - - ur/ce} implies
E Yk, ¢;N; = Ry(3) w1th equality only if N; = {; a.s. Since @ is first order
efficient this proves convergence in probability. Taking a further subsequence,
we can assume

o[

— &
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where the §; are nonnegative, possibly infinite and at least one §; > 0. Then
lim inf (1/7) E 3%, ;N; > E Yk, N
and the theorem follows.
The second order approximation for R(s) is

R(s) = f Ra(s + x)N(0, (s)){dx}

where

1) = Tk, ti(s) 3.

THEOREM 4.4. If (u1/cy, - -+, up/ck) is regular then
R(s) = R(s) + o(~7)
as T — . Let h, be an arbitrary positive function and let h, be a function satisfying

hi(7)

lim, e = oo,
e T,

There is a constant A such that

(4.5) R(s, ?) < R(s) + Ahy(+(s)) + o(¥7)

as T — o, whenever & is a procedure such that
(46)  P(vp =1, ti(Sh-1) = h(7(Sa-1)), 7(s — Snm1) = ha(7(s))) = 0
foralseRP, n=1,1<i<k.

PrOOF. For any procedure,
Sy=s+ 2, 2% (ZG,J) = w) + Doy N = 0, ass.
Hence
R(s, #) = ERa(s + Ziy Bjly (ZG, J) = )

s k N ZG, J) = i

| = \/; ERd<:/—; + 2i=1 2;‘:1 —‘\/‘:——‘> .

The first step in the proof will be to show that when #is first order efficient
this last expression equals R(s) + o(¥/7) as 7 — . If not, there is a sequence {s,,}
with 7,, = 7(s,,) — o such that

limm_,wERd(j-;": + 3k Yi,,.> - Ff_—”‘) #0

where Y;,, = Ef’;’l Za,j)—w)/ «/;).Taking a subsequence, we can assume that

. t; Sm
lim,,— e ti(sm) =9,

Tm
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and using Theorem 4.3 this implies
N;

-—t?
Tm

lim,, o E = 0.

As in the proof of Anscombe’s Theorem one can show that for each i,

thfm]Z(l J) — _)0

V1

in probability. Consequently
L (B Yin) = N(O, T, 750,
Using Theorem 2 of Chow et al. (1979) the families {Y,,, m = 1} are uniformly

integrable implying that {$%, Yi., m = 1} is uniformly integrable. Since the
function R, satisfies the condition

| Ra(x) — Ra(y) | = A flx =y

for some constant A, the uniform integrability and convergence in law above
imply that

limm_.wERd<j~Tl_m + Yk, Yi,,,> - f Rd< }T: >N(O Sk 10 $)idx) = 0
which proves that R(s, #) = R(s) + o(+/7) as 7 — oo since

lim,,,_,wfRd<\/_+x>N(O 2 1t°$){d }_R\;i,:) - 0.

The proof will be completed by establishing inequality (4.5). The basic idea
behind the proof is to write R(s, #) — R(s) = E ¥, (¢, + R(S:) — R(Si-1)) and
use a Taylor series argument to show the terms in the sum are small. Unfortu-
nately R is not smooth enough to make this work so it will be replaced with a
smoother function R,. The next three lemmas deal with differentiating quantities
like R., and Lemmas 4.5 and 4.6 give asymptotic relations used to show the terms
in the sum above are small with R, replacing R.

LEMMA 4.2. Suppose f: R” — IR grows algebraically and that u and Q are
differentiable and that Q is positive definite. Then

A f f(x)N (u(s), Q(s)){dx}
= f [— Y2 tr(Q7'(s)(A:Q(s)))
+ Ye(x — u(s))'Q7%(s)(A:iQ(s))(x — u(s))

+ (x = pu(s))’ Q7 s)Aip(s)]f ()N (u(s), Q(s)){dx}.
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PROOF. The density for N(u(s), Q(s)) is
(1/@2m)P2 | Q(s) | *)exp{—Ya(x — u(s))'Q7H(s)(x — u(s))}.
Now
A Q(s) | = | Q(s) | tr(27(s) A 2(5)).

Using this, A; of the density equals the density times

—V2 tr(Q7(s)AiQ(s)) + Y2 (x — u(s))'Q7%(s)AiQ(s) (x — u(s))

+ (x — p(s))' Q7 (s)Aiu(s).

Since the difference quotients of the density are bounded in magnitude by an
algebraic function times a normal density, the dominated convergence theorem
allows an interchange of differentiation and integration, proving the lemma.

LEMMA 4.3. Suppose that f is continuous and grows algebraically, that Af

exists a.e., that difference quotients of f are bounded by an algebraic function, and
that ¥ is positive definite. Then

ff(x)il"‘(x — SN, Pidx) = f Af(x)N(s, $){dx}.
ProOOF. Using Lemma 4.2,
ff(x)}l“(x = $)N(s, ){dx}
= A f F@N (s, Pldz} = A f fx + $N(O, 3)ldz}

= f Af(x + $IN(O, B)idx} = f Af@IN(s, Didz),

where the interchange of integration and differentiation is permissible by the
dominated convergence theorem.

LEMMA 4.4 Suppose that f and Q satisfy all the conditions in Lemmas 4.2 and
4.3. Then

s [ N e
= f B (x — s)'Q7Us)(A:Qs))Af(x) + A,-f(x)]N(s, Q(s)){dx}.

Proor. Using Lemma 4.3,
ff(x)[Q‘I(S)(AiQ(s))(x = $)]AL7(s)(x — s)];N (s, Q(s)){dx}
= f {AFENDIQTH)(AR()) (x — 8)]; + f(x)[Q7(s)(AQ(S)]IN (s, Q(s)){dx}.
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Summing over 1 <j < p,
ff(x)(x = 5)"Q7%(s)(AQ(s))(x — s)N(s, Q(s)){dx}
= f {(x=38)" Q7 ()(AQ()) Af (x) + f()tr[Q7(s)(A:Q(s)) }N (5, 2(s)) {dx}.

The result now follows from Lemmas 4.2 and 4.3.
Let g(.) > 1 be a function satisfying
g(s) ~
and
Ng(s) =07, j=1,23

as 7 — . Define for ¢ > 0,
(4.7) $.(s) = eg(s)] + f £(s)N(s, g(s)D){dx)
and

R.(s) = f Ry(x)N (s, T.(s)){dx}.
¥.(-) and R.(-) are smoothed versions of f(-) and R(-). Let

—pAig(s) + (x — s)2A:g(s) N (x — s);
2g(s) 2g%(s) g(s)

Ai(s, x) =
Using Lemma 4.2,
AE.(s) = edig(s)] + f Ai(s, x)E(x)N (s, g(s)D{dx},
48)  AAE(s) = eAiAg(s)T + f (A (s, )A;(s, x) + : Ai(s, x))

- 3(x)N(s, g(s)D){dx},
and

AAAE.(S) = eAiAAL(s)]

f {A (s, x)A (s, x)A(s, x) + A,(s, x) A(s x)

9 A(s, x)J} $x)N(s, g(s)I){dx).

+ 9 [Ai(s, x)A;(s, x) +
(9sj

054
These equations also hold when fl( .) is a constant function. In this case, A ¥.(s)
=eAg(s)I, A AT (s) = eA;Ag(s)], and A; A A (s) = eAA; iAqg(s)1. Consequently
the three integrals in the equations above are identically zero if }J(x) is replaced
by }J(s) and the equations are correct if f{l(x) is replaced by (}J(x) }J(s)) Using
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this substitution, it is not hard to show that for any e,

AAE(s) = 0(1/7)
and

AiAAE(s) = O(1/7)

as 7 — o (these expansions are not necessarily uniform in ¢ as ﬁ) need not be
invertable). Using Lemma 4.3 and equation (4.8),

_ RY
Aizc(s) = eAig(s)I + f {(zg(i) + (;g2(~:)) )

(4.9) Ex) - $)Migls) + AE(x) }N(s, g(s)I){dx}

= eA;g(s)] + f AZ(x)N(s, g(s)D{dx} + O(1/v7)

as 7 — o0, Also

a a a

$.(s) = £(s) + eg(s)I + f Ex) — £(5))N(s, g(s)){dx}
= 3(s) + eg(s)I + O(V7)

as 7 — o, Using Lemma 4.4,

AR.(s) = f {% (x = s)' T7H()(AZ.(s))N(x) + Mx)}N(s, E.(s)){dx}.

One implication of this equation is that AR, is a bounded function. Let
Bi(s, x, ¢) = =% tr(£;7'(s)A;E.(s))
+ Ya(x — )" E72s)(A L)) (x — s) + (X (s)(x — 9));.

Then

AAR(s) = f {B,(s, x, )(% (x — $)E7 ()AL ()N (x) + Mx)>

(4.10) + ai (1 (x — s)'x:%smir(s))m)lN(s, %.(5))idx}
Sj ‘ 2 [

= f N () (71 (s)(x — 8));N(s, E.(s)){dx} + O(1/7)



SEQUENTIAL DESIGN OF EXPERIMENTS 525

as 7 — . Finally,

AA AR, (s)
] (9 1 r4—1
=J By(s, x, ¢) + Ts. Bi(s, x, ¢) é(x = 8)"ET7H(AZ())N(x) + Ni(x)

+ 2 (% (x — s)'XZI(S)Azxe(3)>Mx)J=

9s,

(4.11)

- N(s, X(s)){dx}
= 0(1/7)

as T — o,
From equation (4.7),

E.(s) — i(s) ~ ¢er(s)]

as 7 — oo, For 7 large enough,

Ris) = f f Rals + x + y)N(s, £(s){dxN(0, L.(s) — F(s))ldy}

= R(s) + f f [Ra(s + x + ¥) — Ra(s + x)IN(s, £(s)){dx}
N(0, .(s) — £(s)){dy}.

It follows that for some constant K,

(4.12) lim sup, .. &)~ R _ oz
Jr

for all e € (0, 1).

LEMMA 4.5. Let v be a fixed vector. Then
R(s + v) = [R(s) + v'AR(s) + % T2, Y2, viv,AAR(5)] = 0(1/V7)

as 7 — o,

PrOOF. This follows from Taylor’s Theorem given the asymptotic expression
for A;A;AR, given in equation (4.11).

LEMMA 4.6. Let Q be a distribution with mean zero and covariance Q. Then
N N 1 ~
f R.(s + x)Q{dx} = R.(s) + 3 Y2, ¥, QAAR(s) + o(1V7)

as T — o,
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PrROOF. Define
E.(s, x) = [R.(s + x) — R.(s) — x’AR.(s) — % Y, b1 %% 0AiR(s)]V7(s).

From (4.10),

0
(4.13) SUD; . x| =r(s)/2 — E.(s, x) \ = 0(1)

5.; 8xj

as 7 — . Hence for some constant K; = K, (¢),
IEc(s, x) I = I{lx2

whenever x| < 7(s)/2. Using the fact that R, has a bounded gradient, there
exist constants K, = K,(¢e) and K5 = K;(e), such that .

|Efs, ) | = V7 | x|l Ky + 2°K;
for all s, x. These last two inequalities imply that for some constant K, = K,(¢),
| E.(s, x) | < x2K, for all s, x. The function x? is integrable (@) and the lemma

now follows from Lemma 4.5 and dominated covergence.
Define the functions

d,(s) = inff|| x||: t,(s + x) = 0}.

From Lemma 4.5,

Ri(s — w) = Rs) - f E (x = 5) £ () (! AL )

(4.14) + w/Mx) — é (1! M) (wd X7 () (x — S))}

- N(s, T.(s){dx} + o(1/7)

as 7 — . On {x: t;(x) > O}, u/Mx) = —c; and p/ A$(x) = —%..
From equation (4.9),

ulAL(s) = e(uf Ag()I = L+ 0(% + f N(O, g(s)I){dx})
T I xlI>di(s)

d?
= o(u/ Dg(s)] — L + O<f *P <Xp <is>)>>

1 dz 1/2p—1 —d?
- et agont — .+ 0 =+ <L> exp< 2T(s>>>




SEQUENTIAL DESIGN OF EXPERIMENTS 527

as 7 — o, Using this and (4.14),
Re(s - p'r)

1/2
= R.(s) + ¢ + f (x = 8)'27(s) (2i — e(u! Ag(s)N(x)N (s, E.(s)){dx}

2 1/2p—1 2
ool 42 )
[E2
" O(‘Ll"(">d,(s) (1 + \/; )N(S, zr(s)){dx}>

1/2 ’
=R.(s) + o+ f (x = 8)' T () (Fi — eui Ag(s))IN(x) N(s, E.(s)){dx}

o)l

as 7 — oo for some positive constant K; = K;(¢). Using Lemma 4.6 and equation
(4.10), )

f R.(s + x — p;)P:{dx}
=R.(s) + % f (x — 8)' E7(s)EAX)N(s, .(s))fdx} + o(1/v7)

as 7 — 0. Combining this with the previous equation gives

R.(s) — ch(s + x)P;{dx}
(4.15)
=¢ - % (u; Ag(s)) f (x —s)" £7U(s)Nx)N(s, E.(s)){dx}

+o(1/v7) + O <exp(—K5 di(s)»

as 7 — . Since d,(s)/t;(s) is bounded below by a positive constant, the last term
in (4.15) can be replaced by O(exp(—Kg(t?(s)/7))) for some K = Kg(e) > 0. Also
there is a constant K; independent of ¢ such that

< Kive/r + 0(1/7)

{ ; (ki Dg(s)) f (x = 8)' T (S)NE)IN (s, Fel(s))dx}
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as 7 — o, Consequently

( R.(s) — ¢, — f R.(s + x)Pi{dx}
(4.16)

< KiVe/r + 0(1/V7) + 0<exp<—K6 t?is)))

uniformly as 7 — . To complete the proof of Theorem 4.4, note that for any e,
R(s, ?) = R(s) = R(s) — R(s) + E[R.(Sn) + I, (¢, + RAS) — R(S.-1))]
and hence
|R(s, ) — R(s) |
< |R.(s) = R(s)| + ER.(Sy)
+E XL |e, + R(S) = R.(Sicy) | T{t,(Sie1) = ha(7(Siz1))}

+ E XX | ¢, + R(S) — R.(Siy) | I{r(s = Siz1) < ha(7(s))}.

Now ER.(Sy) is bounded, and from (4.12) |ﬁ£(s) — R(s) | = KgyVer for some Kjg
independent of ¢. Since E(|c, + R.(S,) — R.(S;-1) || S;) is bounded, there is a
constant A independent of ¢ such that

E XK e, + R(S) = R(Siz1) | I{r(s, Sie1) < ho(7(s))} < Aha(7(s)) + O(1)

as 7 — o,

Using equations (4.6) and (4.16).
Ellc, + R.(S) = R.(Si-1) | I{t,,(Si—1) = hi(7(Si1))} | Sicq = x]
= o(1/V7(x)) + K;vVe/7(x)

uniformly in x as 7(x) — o. Using Corollary 4.1 there is a constant Ko,
independent of ¢ such that

E[XN, e, + R(S) — R(Siz) | I{t,(Si—1) = by (r(Siz1))}] < 0(N7) + Kover
as 7 — . Hence there is a constant K, independent of ¢ such that
|R(s, 2) — R(s)| < Ahu(7(s)) + o(N7) + KioVer

as 7 — o, Since this equation holds for any ¢, equation (4.5) holds and Theorem
4.4 is established.

5. Sequential design: proofs. To apply the results of Section 4, stopping
regions with the correct shape are needed. As the next lemma shows, only
procedures which stop according to (2.1) need be considered.

LEMMA 5.1. Let &2 be an arbitrary procedure. There exists a procedure P,
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satisfying (2.1) and a constant K; such that
(5.1) R(w, a, #) < R(w, a, Z) + Kiq,

for all = and all «.

The following technical lemma will be needed in the proof of this lemma.

LEMMA 5.2. Suppose 7(S§ + Ina 1 — A?) = x > 0, and K, > 0. Then for
some K independent of x, '

(5.2) P € a?) = ae*n?,
and
(5.3) aKoxr? = P(@ € a®) + Ky,

If in addition, 7(S$’ + Ina 1 — AY) =y >0 and S§ = 0, then
(5.4) aK,yr? < P(0 € a") + Ksa.

PrOOF. The conditions in the lemma give

(5.5) SUPregom™ = e,
and
(5.6) SUPpegim™ = arVe”.

(5.5) implies (5.2) and (5.2) implies (5.3) because
inf,-o(e* — Kx) > — oo,

Suppose a’ = a". Then (5.5) and (5.6) yield
en) = ex,lr(i)’

which implies (5.4) since inf,e” — K,y > —o. If instead o # a", then i € a".
Since S = 0, #'? = =™ for all n and (5.6) gives

(5.7) SO R—~2
Suppose y = In K, — 2 Ina. Then e* > K,y/a and (5.7) gives
aKoyr? < an® = P(0 € a¥).
If y<In K, — 2 Ina then
oKy =1 + Kz
where K; = sup.coK:(In K; — 2 Ina) — 1/a < o, and again (5.4) holds.
PrOOF OF LEMMA 5.1. Let N be the stopping time for & Let &, be the

procedure with stopping time N, defined by (2.1) which chooses the same
experiments as & until & stops and chooses e; thereafter if N; > N. Define a
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random variable I so that S{’ = 0, i.e. I is the index corresponding to the most
likely state of nature when & stops. I; will be the corresponding r.v. for #,.
Also let #x be the o-field representing the information when % stops.

R(w, a, 2) — R(w, a, P)
< lnaxP (0 € ') + acpaxE(N; — N)* — 40P (0 € o)
= Plinaxt + E(aCmaE (N1 — N)* | Fy) = 4unP (0 € 0| Fy)).
From Corollary 4.1,
E((N, — N)*| Fn, 0 = 6;) < Ki[r(SY + Ina 1 — A?) + 1].
Using Lemma (5.2),

“nx B((Ny = N)* | F) < 32 Ker (N)(r(S9 + Ina 1 — A9) + 1)

< a'P0 € aV | Fn) + K.
Hence
R(m, a, ) — R(w, o, P) < plinaxa + Ksa = K«

proving Lemma 5.1.

LEMMA 5.3. For any procedure, if (S’ + Ina 1 — A?) > 0,
Elexp(r(Sy + Ina 1 — AYNDI{7(SY + Ina 1 — A9) > 0}|6 = 6,]
= p exp(r(Sy’ + Ina 1 — AW)).

PrOOF. Given 6 = 0;, the sequences {exp(—[S""],)}n=1 are positive martingales
([SY]; is the jth component of S”). Hence

Elexp(=[SN1,) 10 = 6:] = exp(—[S'],)-
Therefore
E[exp(r(SY + Ina 1 — AYNI{r(SY + Ina 1 — AD) > 0} |6 = 6]
< Yjco, Elexp(—[SY)], — Ina) |6 = 6/]
< Yjeq exp(—[S¢']; — Ina)
< pexp(r(SY + Ina 1 — AD)).

PROOF OF THEOREM 5.1. Let us begin by showing
(5.8) R(w, ) = R(x, a) + o(av=In a)
uniformly in 7 as o — 0. If not, then there exist sequences { #,}, {an} and {7}
and an index J such that «,, — 0 and

P[RS + Inaml — AY) = R (wp, apm, Pn)] S o

Om

5.9) lim,_«
(59)  lim amV—Inao,
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Using Lemma 5.1 we can assume that each &2, satisfies (2.1). (5.9) clearly implies
Tm =185} +1n ayl — AY) — 0. Let { &2, } be a sequence of procedures which
have sample sizes given by

N,/ =infn = 0: 8 = —Ina 1 + A}

and such that &2,, and %2,," use the same experiments on trials before N,,. Using
Theorem 4.4,

R'wm, am, Pn') = amR‘J’(S};’,,{ + Ina,1 — AY) + a, V7, 0(1)

as m — ©. Now wi;l’)amexp(rm) =<1 (see 5.5) so 'rﬁ,‘,]’ \/:r_m/\/—lnam is bounded, and
since

R (Tmy Qmy Pn’) = R (T, @my D) + tmCmaxE[N7 — Nyl 0 = 0],
we can contradict (5.9) by showing that )
7w E[Np — Nul0 =0,

5.10 lim,, e 0.
( ) m v=In o,
Using Corollary (4.1}, (5.10) holds provided

(J)

lim e ﬁ E[T(S;\‘/]’l +1n a,l — AY)
(5.11)
I{7(Sn, + In a1 — AY) >0}|60=16,]=0.

Now on {r(Sy, + Ina,1 — A”) > 0}, 7(Sn,, + Inanl — A”) = =2 Ina,,. Using
the fact that e*/x is increasing for x > 1, we see that if o, < 1/ Ve,
7(Sy) + Ina,l — A”) = =2 Ina, exp(7(Sx, + In anl — AY))a?,

on {r(Sy, + In a,1 — A”) > 0}. Consequently an upper bound for the limit in
(5.11) 1s

2

lim sup_. === (—2a%lna,)E[exp(r(Sy + Ina,1 — A“))
p \/——ln—am [ p N,
- I{7(SY) + Ina,, 1 — AY) > 0} |6 = 6]

< lim supp—.2a%vV—Ina, p exp(=(S5. + In a,1 — A?)),

where Lemma 5.3 was used for the second line. This last expression equals
lim sup,—«Supicg, 20mv—Inan, pwf,'l) (0) =0.

This establishes (5.11) and proves (5.8).
To finish, it is sufficient to show that if & satisfies (2.5) then

R(r, o, @) < R(x, a) + o(av=Ina).
An immediate consequence of Theorem 4.4 is that for some constant A,
R(m, a, Z) = R(m, @) + ad T2, 70(ho(a) + 7(Sy)) + o(avV—Ina).

Theorem 2.1 now follows as sup,77(SY’) < c.
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