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A SIMPLE SOLUTION TO A NONPARAMETRIC MAXIMUM
LIKELIHOOD ESTIMATION PROBLEM

BY GILBERT G. WALTER AND JULIUS R. BLum!

University of Wisconsin-Milwaukee and University of California-Davis

Three approaches to a nonparametric maximum likelihood problem are
considered. One, based on the method of “sieves”, is shown to include the
other two. The sieve considered is a double exponential convolution sieve. A
closed form solution is given for certain values of the sieve parameter.

1. Introduction. Maximum likelihood estimation, while widely and suc-
cessfully used for parameter estimation, has had mixed success as a tool in the
estimation of density. Indeed the MLE of a density f(x), based on an iid sample
X1, Xgy + ++ Xp, 18

(1.1) f(x) = @1/n) T, 6(x — x)

which is itself not a density. This conclusion is usually based on a heuristic
argument since the likelihood is infinity for this f.

In order to get around these problems, a modification of MLE is often used.
One such modification is the introduction of a penalty functional in the definition
of likelihood. Another is the restriction of the allowable estimators to a subspace
of an appropriate space of densities. Both of these methods are described by
Tapia and Thompson (1978). Another approach, based on “sieves,” is described
by Grenander (1981) and Geman (1981).

In this work we shall consider one such sieve based on a two-sided exponential
distribution. We obtain a closed form expression for the MLE in this case which
we show to be consistent. This basic result allows us to consider two other
modifications of the MLE. One will restrict the space of allowable densities while
the other will enlarge the space to include expressions such as (1.1).

2. Three approaches to MLE. One of the difficulties with the use of MLE
of a nonparametric density is that the likelihood functional

(2.1) L(f) = I f(x:) = IIH&1 (s, £)

has no finite maximum as f is allowed to range over an appropriate space (usually
a Sobolev space H?). This may be rectified by changing the linear functional
0y, f) in some way. One such way is to approximate é by a delta sequence {é,},
then maximize the approximate functional

(2.2) Ly(f) = 11 (O, f)-
This will lead to the method of sieves.
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A sieve is defined by Geman (1981) as a sequence {S,} of sets of functions,
indexed by sample size, from which the estimator is taken. In this work we use
the “convolution sieve”

S, = {a(x):a(x) = J: %’—1 e MI* Y dF(y), F a pdf}

where \, — ® as n — o, The associated maximum likelihood problem:
“maximize [[%; a(x;) subject to « € S,”

is the one we are interested in. It should be noted that {(\,./2) exp(—X,|x — ¥ |)}
is a positive delta-sequence (see Walter and Blum, 1979). Hence for fixed F, the
corresponding element of S,, «, satisfies a,(x) — [Z. 6(x —y) dF (y) = F'(x) as
n — o at points of continuity of F'’(x).

A second method is to replace the functional (4., f) by an inner product in a
Hilbert space which contains both § and f and whose value is close to that of the
functional. Clearly the L? inner product or the inner product of the Sobolev
spaces H?, p > 0 won’t do since & does not belong to these spaces. However both
6 and f are elements of the Sobolev space H™* for s > 1. A description of such
spaces may be found in Rudin (1973). The inner product for f, g € H™* is given
by

(2.3) (f, 8)s = J:w f(E(x)(1 + 22~ dx

where f is the Fourier transform of f, f(x) = Vor ' (=, f(t)e ™ dt. This inner
product exists whenever f, § € L%(1 + x?)™ or equivalently whenever f, g € H™.
In particular since § = (27)7Y2, 6 € H™* as is every density f and indeed every
generalized derivative of a distribution function, for s > Y.

The inner product given by (2.3) may be used to approximate (f, g) by
introducing a scale parameter A\. By modifying (2.3) to

(2.3a) (f, 8)sn = J: fx)E(x)(1 + x*/A3)~* dx
we obtain an expression which is approximately scale invariant for large values
of \. Again if g € H” for some p > V4, then

<69g>s,)\—_)(6’g>, A——)OO.

In particular for s = 1, the inner proﬁuct assumes a tractable and simple form.
We shall concentrate on it in the sequel. The problem then is to maximize

(2.4) L(xl)(f) = H7=1 (5::,, f)l,,\

for those f € H™! which are the derivative of a distribution function. Fortunately
this has a simple characterization.

LEMMA 2.1.  L{(f) = 27" [ | exp(—|xi—¢|)f(¢) d¢.

PrOOF. The inner product (4., f); may be given by [ SOF)(t2 + 1) dt
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or

(0:, f)1 = f (2m)"V2e~f(t) (£2 + 1) dt

(2.5) =FFE+) ' =pFE+ 1)

=fre /2 = % f e " *f(¢) d¢

since the Fourier transform of (¢2 + 1)™'is e~ !*1/2.

Thus we see that this second method is a special case of the first corresponding
to the sieve for A\, = 1, and with the scale parameter A # 1, is exactly the same.

The third method is a standard maximum likelihood method which uses (2.1)
with f € H! but with the added condition that D?f belongs to a bounded set in
H

Since e™'*! satisfies the differential equation

(2.6) (1 = D¥)e ¥ = 25(x),
we may express the functional (5, f) as
(2.7 (6, f) = ((1 — DHe™'*1/2, fy = (e7*1/2, (1 — D¥f)

provided (1 — D?)f € H™'. This last expression is the value of an element of H*
(the dual space of H™!) on an element of H™'.
Hence (2.1) may be expressed as

—lx=x,|

(2.8) L(f) = 15 <5——

2 ’g>’ g=0-D),fEH

which, if g is restricted as f was in the second method, reduces to (2.4) with A =
1. Without this restriction on g, (2.8) would merely be the standard MLE problem
with no maximum in H'. Thus all three approaches lead to the problem of
maximizing

(2.9) Ly(f) = It f 2 et (9) d
forfEH',f=0and [f=1.
3. The solution to the maximization problem. The problem of maxi-

mizing (2.9) is a familiar one in a number of other settings. It arises in mixture
problems in which a random sample with density

h(x) = f h(x|0)f(8) d8

must be used to estimate f. The MLE may be estimated by the well-known E-M
algorithm due, in our context, to Hasselblad (1969).

THEOREM 3.1. The problem of maximizing L\(f) given by (2.9) for f € H,
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f=0,and F(0) = (27)7'2, has a unique solution given by

(3.1) f(6) = Tia pid(6 — x)

where {p;} satisfies, for \™! < m, the distance between nearest neighbors of {x},
(3.2) (1/n) iy e Ml /35, e M5, = 1;
andp;>0,i=1,---,n

REMARK 3.1. The element of the sieve S, that corresponds to f(8) is of
course

a(x) = (N/2) Xk, pie Ml

This was already shown to be consistent by Kiefer and Wolfowitz (1956) for h(x)
the true density of the X; as n — o, X fixed. However, we are interested in letting
A — o as well and in showing that a(x) — f(x) is some sense.

PrROOF. We first observe that f is a probability measure, since it is a non-
negative (Sc~hwartz) distribution normalized to total mass 1. Laird (1978) has
shown that f(6), the MLE, is self consistent, i.e. is of the form

1o, e M51f(6)
39 n & e M (g) do

We observe that e™*!’! satisfies the differential equation

(3.4) (D? — N®)e M1 = —2X5(0).

=f(9).

Hence if /(9) > 0 in an interval, say (a, b), then we may divide both sides of
(3.3) by () and then operate on both sides with D? to obtain, for 6 € (a, b)

1 2 d(xi—0) N e M=l
(3.5) D? - Z;’LI = =1 ( ) + — 2?=1
n n ha(x:)

ha(x;) n h(x:)
where hy(x;) = [ exp(—X\|x; — 0]) f (6) do. This is clearly a contradiction, since
for § # x;, the left side of (3.5) is positive. Hence f(#) cannot be nonzero
everywhere in an interval. The same argument (with a modification of the
definition of derivative) shows that f cannot be nonzero in a set which includes
a limit point. Hence f must be discrete.

Moreover, f has support in the convex hull C of x;, xp, ---, x,. If f placed
positive probability at a point 6, not in C, then

Li(f) = TI: W2) (X »e pje 15700 + pre MxiTl)

could be increased by moving 8, toward the set C while leaving the other §; and
pj, the same. This would make exp(—X | x; — 6| ) larger for each i, but Would not
affect the other terms nor p,. Hence f has the form

(3.6) f(0) = T pid(0 — 6)).

The problem may now be treated as a parametric problem with parameters

=0
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01, -+, 0m,p1, - -+, Pm—1 and (2.9) becomes
37 Li(f) = L6, p) = [ (M2) T pre™=7%.

Possible critical points of L, with respect to 6, are at 0, = x,, x,, - - -, x,, since the
derivative fails to exist at those points. The derivative may be zero at intermediate
points, but the second derivative (logarithmic) in any interval excluding x;, x,,
-+, X, is easily shown to be positive. Hence the only possible maxima are at the
points x;, X3, - - -, X, and f(8) must have the form

(3.8) f(0) = X1 p;d(6 — x)).
The p; in turn may be found by substituting (3.8) in (3.3) to obtain
(3.9) (1/n) Eimy €551 /(%) = p;.
This equation has a number of solutions, for example p; = 1,p; = .- =p, =

0. However the only solution associated with the MLE has all positive compo-
nents for A = m™'. To see this, we return to the log likelihood function, log L,
whose derivative with respect to p, has a local extremum at the points satisfying
(3.2) and hence (3.9). The second derivative with respect to p;, is always negative.
Hence a local solution is global and we need merely show that (3.2) has for such
A, a solution with all positive components. This and the last conclusion of the
theorem follows from

LEMMA 3.2. The solution to (3.2) is given by

(3.10) pi=@1/n)+ (1/n) Ae;, i=1,2,---,n

where

5.11) 1+ 1 B 1 }
: “T1-C|1-CCy 1= CiniC

and where
C; = eMX(i)—X(zﬂ)), i=1,.--,n—1;
X(l), X(z) e X(n), the order statistics,

C.=C=C,=0Chsy=0.

PROOF. Let Xy, - - -, X(n) be the order statistics; then we have

“MXn=X)l = MXH=Xirn) | QMXun=Xus2) .. MX(-n=X()

(3.12) e .
= C,‘ . Ci+1 Cj_l; l<]
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Equation (3.2) may be expressed as

1 1
(3.13) A [A—p] -0l

in terms of matrices and vectors where A is the matrix
A = [e M Xo~Xnl]

and p;, p, - - -, P» have the same order as the order statistics. Then

1 G C.C, ce C,Cy - Coy
314 4= |9 1 C, .- CyCs--- Coy
CCyvr Cost e e 1

The reciprocal of the vector in (3.13) denotes the vector of reciprocals. Since
each C; satisfies 0 < C; < 1 almost surely, the matrix A is invertible and (3.13)
may be solved for p

1

i -1
(3.15) p=A VEIER] [1]
1

Indeed, by means of elementary row operations, A~' may be shown to be

1 -C, 0
1-C* 1-¢C2
1-C* 1-C3 1-C%

(3.16) A=
—Cia 1 - CL,C? -C
0 0---0 0 0
1-C4, 1-CL)1-CHh 1-C?
1

0 0

| 1 - Ch]

Hence we find

1/(1 + Cy)
1 :
nA™t [:I =n | - Ci.C)/AQ + Ci))(1 + C))
1/(‘1 + Cn—l)
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which may be inverted and multiplied by A ! again to obtain
1
-1

p=4 mej
1

[ 1+cf 1 | 7]
1-Gl " 1-G6

1+

_1 | 1+Cy 1 1 |+ v 1|
B = 11T 1Te, lT=cats 1-Go) T1-Gli-CCn  1-CCu
1+C, | 1 |
- -1
_1 1 - Cn-l ll - Cn-2 n—1 I e
1+ Ae1
=1 144
n DY
1+ Ae,
COROLLARY 3.3. The solution to (3.2) satisfies
i) p>0,i=1,2,..-n, A=m™
(i) pi=pi(\) > (1/n) as A—> o as.
We first observe that for Am = 1, we have
(3.18) C; = e MXe=Xa) < g7 < 71,
Hence ¢; satisfies
o] = | LEC: | Ci(Ci-1Cin) |
' 1-C ](1 - CC-)(1 — CiCi+1)[
1+e™m 1 1+e! 1
1 < -2 m < —2\m
(3.19) € 1—e™ (1 - e—2>\m)2 € 1—e'(1- e ?)?
=3e "< 5
and therefore | Ae;| = | e;—e;-1| <1 and Ae; — 0 as A — . Thus both conclusions

hold and the proof of the theorem is complete.

REMARK 3.2. As a consequence of this corollary we see that our MLE
f(0) = Zi1 pid(0 — x:) = (1/n) T2 6(0 — x;) = f*(6) as A —> o

where f* is the (derivative of the) empiric distribution function. Similarly for
a(x), the element of the sieve S, we see that it is approximately given by the
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kernel estimator
B(x) = (M2) ¥ (1/n)e ==

for \ sufficiently large. In fact the difference can be shown to converge to zero
weakly as A m — . The kernel estimator in turn converges to the underlying
density.

THEOREM 3.4. Let X,, X5, - - -, X, be an iid. sample with density f(x) € H?,
p=0,thenforeache>0,s<p—1,5s<%:

ElB—-fl2<c N /n 4 ¢, A7}

where ¢, and ¢, are constants.
The proof is similar to others involving kernel estimators and will be omitted.

REMARK 3.3. The case of the L2 norm corresponds to s = 0. In this case the
hypothesis is satisfied for f € H', i.e. density in L? whose derivative is also in L*
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