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RELATIVE DEFICIENCY OF KERNEL TYPE ESTIMATORS
OF QUANTILES

BY MICHAEL FALK

Universitat-Gesamthochschule Siegen

In this paper the asymptotic relative deficiency of the sample g-quantile
with respect to kernel type estimators of the g-quantile is evaluated. The
comparison is based on the mean square errors of the estimators. The result
suggests a purely analytic measure of performance within the class of kernels.
It is notable that a similar situation occurs when kernel estimators of a
distribution function are studied.

1. Introduction and main result. Let P be a probability measure on the
real line with distribution function F. The empirical estimator of the g-quantile,
say q(F'), is given by the sample g-quantile g, := q(F,) = Z, .., where r, =
min{j € {1, - .-, n}: j/n = q}, Z.., denotes the ith order statistic in a sample of n
independent random variables identically distributed according to P, and F, is
the accompanying empirical distribution function.

Sample quantiles have been extensively studied in the statistical literature;
references can be found in the books by David (1981) and Galambos (1978).

For obvious reasons one might hope that averaging over order statistics close
to the sample g-quantile leads to estimators of better performance. This idea was
carried out by Reiss (1980a) who proved that the asymptotic relative deficiency
of the sample g-quantile with respect to a linear combination of finitely many
order statistics quickly tends to infinity as the sample size increases.

Averaging over all order statistics leads to kernel type estimators

Gn(Fy) = J; FZI(x)aZIk<q — x) dx

n

for an appropriate kernel k£ and a bandwidth «, > 0 where hereafter G~ denotes
the generalized inverse of a distribution function G, i.e. G™}(p) := inf{t € R: G(¢t)
=pl,p € (0,1).

Estimators of this form are extensively studied in the literature of nonpara-
metric density estimation (see, for example, Scott et al., 1977, and Wertz, 1978).
The kernel estimator of the g-quantile is mentioned in Parzen (1979), page 113,
and Reiss (1980b), and a “discrete” version was also used in Reiss (1980b) for
testing the hypothesis q(F) < r against-the alternative q(F) > r + C,n"2.

In the present paper we investigate the mean square errors (MSE) of ¢, and
Gn, i.e. E((g, — q(F))?) and E((§, — q(F))?), respectively, and establish an
asymptotic representation of the relative deficiency i(n) — n of g, with respect
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to §,, where i(n) is defined by
i(n) := min{j € N: MSE(q;) = MSE(§,)}.

Our main result is the following.

THEOREM. Assume that lim, .t (1 — F(t) + F(—t)) = 0 for some § > 0 and
that F~'is (m + 1)-times differentiable in a neighborhood of ¢ € (0, 1), m = 2,
with bounded (m + 1)th derivative and (F~')’(q) > 0. Assume further that the
kernel k has finite support [—c, c] and fulfills [ k(x) dx =1, [ x'k(x) dx =0, i =
1, .-+, m. Then, if a,n'* —,c,, ® and a,n*™*V — . 0, MSE(q,) and MSE({,)
are finite if n is large and

in) — n

lim,,e“< ) =2 f xk(x)K(x) dx/(q(1 — q))

n

where K(x) := [*.k(y) dy.

Notice that this result remains true if the sample g-quantile is replaced by
Z, n,wherer, €{1, ---,n},n € N, fulfills | ¢ — r,/n| = O(n™%3).

The number (k) := 2 [ xk(x) K(x) dx can obviously be regarded as a measure
of the asymptotic performance within the class of kernels and its sign determines
whether one does better with the sample g-quantile, i.e. if (k) < 0, or with the
corresponding kernel estimator, i.e. if (k) > 0. In either case i(n) — n is of order
nay, if Y(k) does not vanish.

The functional ¢ occurs also as a measure of performance when kernel
estimators of a smooth distribution function are considered (see Reiss, 1981, and
Falk, 1983). A discrete analogue to y is given in Reiss (1980b), formula (3.7).

Denote by K, the class of kernels with support [—1, 1] which fulfill [ k(x) dx
=1, [xk(x)dx=0,i=1, ---, m, [ k%(x) dx < oo.

We know from Falk (1983), Theorem 2, where the functional ¢ is extensively
studied that, if p,, denotes the unique polynomial of degree not greater than m
in K,

0 < ¥(pn) ~ (xm)™".

Furthermore, we know that there is no kernel in K,, which maximizes y over
K., i.e. there is no optimal kernel in K,,. However, it was shown by Mammitzsch
(1983) that

Suprek, V(k) = <2{%§}> 2-Um/A e N,

where [x] denotes the integral part of x € N, and thus

Y(DPm)/suprek, Y (k) —ne,. 1.
This entails that

Jog + .
pete = 255 (= ) 252 (Vato, me,
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where [; denotes the Legendre-polynomial of degree j on [—1, 1], are nearly
optimal kernels within a certain class for constructing kernel estimators of a
distribution function as well as of quantiles.

2. Auxiliary results and proofs. When dealing with the mean square
error we are concerned with the problem of computing moments of g, and ¢,,. To
this end we establish the following two auxiliary results which are of interest in
their own. For further results on moments of order statistics we refer to Sections
3 and 4 in David (1981), Bickel (1967) and Hall (1978).

LEMMA 1. Assume that lim,_t*(1 — F(t) + F(—t)) = 0 for some 6 > 0. Assume
further that F " is twice differentiable in a neighborhood of q € (0, 1) with bounded
second derivative. If r,/n —,cw q, where 1 < r, < n, then the mean and variance
of Z, .. exist if n is large and

E((Zr,,:n - Q(F))Z)

2
= -1 _In __n —1yrg( _Tn Tn _ -3/
=(n+ 2) n+1<1 n+1)(F 1 <n+1>+0<<n q>>+0(n32).

LEMMA 2. Assume that lim,_.t*(1 — F(t) + F(— t)) = 0 for some 8 > 0 and
that F7' is (m + 1)-times differentiable in a neighborhood of q € (0, 1) with
continuous second derivative if m = 1 and with bounded (m + 1)th derivative if
m = 2. Assume further that the kernel k has finite support [—c, c] and fulfills
[Rk(x)dx=1, [ xk(x)dx=0,i=1, ---, m. Then MSE(q,) is finite if n is large
and

n MSE(§,) = (F“)’z(q){q(l -q) — 2a, f xk(x)K(x) dx}
+ 0(a?*?n) + O(n™Y*) + o(an).

PrOOF OF LEMMA 1. Denote by X.., the ith order statistic in a sample of n
independent and unifornzly on (0, 1) distributed random variables on some
probability space (2, &7 P). Then

E(Z?..) = E(F1(X,,:n))%) ‘
= E((F_l(Xr,,:n))le,,) + E((F_I(Xr,,:n))lef.) = In + IIn,

where M,, := {| X,,.. — r./(n + 1)| < ¢}, ¢ sufficiently small, and 1, denotes the
indicator function of an event A.
Holder’s inequality together with Lemma 1 in Wellner (1977) implies

II, < E(F(X,,.2)))*P(M,)"* = E((F7(X,,:n))*)/*0(exp(—n)).

Next we show that E((F '(X,,.,))*) is finite and uniformly bounded if n is large.
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Fubini’s Theorem implies
E(FXX,..)" = f P{X, ., = F(tY%} dt + f P{X, .. < F(=t"%)} dt
0 0

=: A, + B,.

We show that A,, n € N, is uniformly bounded if n is large. Similar arguments
yield that this is also .true for B,, n € N. From formula (2.1.6) in David (1981)
we know

— n! f‘” fl . .
A= D = o Jpay LT W) dx dt

For n > 0 there exists C, > 0 such that if ¢t = C, then 1 — F(¢t/*) < nt~¥*. Thus,

n! ©
A, =C + 7" f ¢~ g,
P = D = )Y} (o

Obviously it suffices to show that for appropriately chosen 5 the sequence
(n!/{(r, — DN(n — ru)')n" "=, n € N, tends to zero.
Stirling’s formula implies

n!/{(r. = D(n = )1} = O(n**(ro/n) (1 — r,/n)~""w),

Choose p >0and C; > 1suchthatq! —1—p>0, Cg_l_l_” = 4¢~". Then, for 7
= (1 — q)/(2C;) and n sufficiently large n < (1 — r,/n)/C; and thus

N"™(ra/n) (1 = ro/n)™" < (r,/n)Cy W
= {(ra/n)CE/ 7 < {(g/2)CY T < 27

This implies that A,, n € N, is uniformly bounded if n is large.

Finally we treat I,. Taylor’s formula together with Lemmata 1 and 2 in
Wellner (1977) implies if n is large

I, = E{F X (ra/(n + 1)) + (F™)'(ra/(n + D) (X0 — ra/(n + 1))

+ 27N (P (0)(Xrin — raf(n + D)3 1ar)
=F7Ur./(n + 1)) + (F7)%(ra/(n + D)) E(X,.n — ra/(n + 1))?)

+ F7 (ra/(n + D)E{(F)"(0)(X,,.n = ra/(n + 1))} -14,) + O(n™?).

An analogous expansion of E(Z,,.,) together with example 3.1.1 and formula
3.1.6 in David (1981) and elementary computations complete the proof.
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PrROOF OF LEMMA 2. The approximate variance of the kernel estimator is
given by

(- i) o

n

q/an 2
= E({f (F2'(g — anx) — F7H(q — anx))k(x) dx} )

(g-1)/a,

= E({J: (FTY(FM(q — anx)) — F7H(q — anx))k(x) dx} )

for o, small enough, where F, denotes the empirical distribution function accord-
ing to n independent, uniformly on (0, 1) distributed random variables on some
probability space (2, <7 P). In order to apply Taylor’s formula the above integral
is split into two terms

2
E({ f (FUF7Hq — anx)) — F7H(q — anx))k(x) dx} 1Mn>

+ E({f (FN(F7g = anx)) — F7Y(q — aax)) k() dx} lm) =: A, + B,

where M, := {SUp.e(—cq | F»'(¢ — anx) — ¢ + anx| < ¢} for ¢ being sufficiently
small.
B, is up to an additive constant bounded by

(1) E(max{(F_I(X[(q—p)n]:n))zy (F_I(X[(q-i-p)n]:n))Q} . 1M€.) = O(exp(_n))’

for p being sufficiently small, which is immediate from the progf of Lemma 1
and the inequality by Dvoretzky et al. (1956) since sup,eo1)| Fr'(p) — p| =

Sup:epo, | F.(t) -t [
Applying Taylor’s formula to A, we derive

@ A, = E({f E(x)(F7'(q = anx) = (¢ = anx))(F7)'(q — anx) dx}- )

+ O(E(supcepo,| Fa(t) — t]?)) + O(exp(—n)).

Furthermore,

n*2E (sup.epo | Fa(t) — t|®) = f Pi{sup.cpo | Fa(t) — t| = n™2t3} dt
0

=C f exp(—2t%%) dt < o,
0

where C denotes the constant occurring in the inequality by Dvoretzky et al.
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(1956). Thus, E(sup;cp,;| F.(t) — t|) = O(n"*2) and therefore

A, = E({f kx)(F1 (g — anx) — (@ — anx))(FY)' (g — anx) del )

+ O(n=%7?)

) = E({f k(x)(q = anx — Fa(g — 0, 2))(F")' (g — anx) dx

o TR ——

2
+ Fu(g — anx) = (@ — X)) (F ) (q — anx) dx} )
+ O(n~%?),

Since the second term above is the remainder term of the first Bahadur
quantile-approximation (Bahadur, 1966), Theorem 1 in Duttweiler (1973) implies

2
A, = E({f k(x)(g — a,x — F’,’,((I — @, %))(F)(q — apx) dx} ) + 0=/,

Furthermore,

E( {f k(x)(q — anx — F.(q — anx))(F7Y)'(q — anx) dx} )

! 2
=n"! fo {f k(x)(q = anX — Liog-a,a(¥)(F 1) (q — anx) dx} dy
4

2

) 1
=n f { f k(x)(q = anx = Lio,g-au(M)(F ™) (q) dx| dy

— —

+ o(nla,)
= n—l(F_l)'2(q){q(1 -q) — 2a, f xk(x)K(x) del + o(n'a,)

which follows from elementary computations.
Combining (1) — (4) we get

ey

n

= n_l(F_l)lz(q){q(l -q) — 2a f xk(x)K(x) dx}

+ o(nta,) + O(n=%4),

Since for sufficiently small «, the approximate bias equals [ k(x){F (g —
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a,x) — F7Y(q)} dx = O(a?") the assertion of Lemma 2 is immediate from
standard arguments.

We remark that it is possible to utilize a differentiation argument instead of
the Bahadur approximation in the preceding proof (see Chapter 8 in Serfling,
1980, for details). However, this would require restrictive conditions on k.

PROOF OF THE THEOREM. Letr, € {1, ---, n}, n € N, be such that | ¢ —
r./n| = 0(n"®). Obviously, i(n) = min{j € N: MSE(Z,,) = MSE(g,)} tends to
infinity as n increases. Therefore, from Lemmata 1 and 2 and the definition of

i(n)

MSE(g») = n™{(F™)"*(q)g(1 — q) + o(1)} = MSE(Z,,,..»))
i(n)™M(F)(q)q(1 — q) + 0(i(n)™*)}
which implies lim sup,e;,i(n)/n = 1 yielding

i(n) = (1 + O(n™9))(F™)"*(q)q(1 — q)/MSE(gy).

A similar argument yields
i(n) = (1 + 0(n™))(F)"*(q)q(1 — q)/MSE(G»).

The assertion now follows from Lemma 2 and elementary computations.
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