RELATIVE DEFICIENCY OF KERNEL TYPE ESTIMATORS OF QUANTILES

By Michael Falk

Universität-Gesamthochschule Siegen

In this paper the asymptotic relative deficiency of the sample q-quantile with respect to kernel type estimators of the q-quantile is evaluated. The comparison is based on the mean square errors of the estimators. The result suggests a purely analytic measure of performance within the class of kernels. It is notable that a similar situation occurs when kernel estimators of a distribution function are studied.

1. Introduction and main result. Let P be a probability measure on the real line with distribution function F. The empirical estimator of the q-quantile, say q(F), is given by the sample q-quantile $q_n := q(F_n) = Z_{r_n:n}$, where $r_n = \min\{j \in \{1, \dots, n\}: j/n \ge q\}$, $Z_{i:n}$ denotes the ith order statistic in a sample of n independent random variables identically distributed according to P, and F_n is the accompanying empirical distribution function.

Sample quantiles have been extensively studied in the statistical literature; references can be found in the books by David (1981) and Galambos (1978).

For obvious reasons one might hope that averaging over order statistics close to the sample q-quantile leads to estimators of better performance. This idea was carried out by Reiss (1980a) who proved that the asymptotic relative deficiency of the sample q-quantile with respect to a linear combination of finitely many order statistics quickly tends to infinity as the sample size increases.

Averaging over all order statistics leads to kernel type estimators

$$\hat{q}_n(F_n) := \int_0^1 F_n^{-1}(x) \alpha_n^{-1} k \left(\frac{q-x}{\alpha_n}\right) dx$$

for an appropriate kernel k and a bandwidth $\alpha_n > 0$ where hereafter G^{-1} denotes the generalized inverse of a distribution function G, i.e. $G^{-1}(p) := \inf\{t \in \mathbb{R}: G(t) \geq p\}, p \in (0, 1)$.

Estimators of this form are extensively studied in the literature of nonparametric density estimation (see, for example, Scott et al., 1977, and Wertz, 1978). The kernel estimator of the q-quantile is mentioned in Parzen (1979), page 113, and Reiss (1980b), and a "discrete" version was also used in Reiss (1980b) for testing the hypothesis q(F) < r against the alternative $q(F) > r + C_n n^{-1/2}$.

In the present paper we investigate the mean square errors (MSE) of q_n and \hat{q}_n , i.e. $E((q_n-q(F))^2)$ and $E((\hat{q}_n-q(F))^2)$, respectively, and establish an asymptotic representation of the relative deficiency i(n)-n of q_n with respect

Received March 1983; revised August 1983.

AMS 1980 subject classifications. Primary 62G05; secondary 62G20, 62G30.

Key words and phrases. Sample q-quantile, kernel estimator, mean square error, deficiency, Bahadur approximation. 261

to \hat{q}_n , where i(n) is defined by

$$i(n) := \min\{j \in \mathbb{N} : MSE(q_j) \le MSE(\hat{q}_n)\}.$$

Our main result is the following.

THEOREM. Assume that $\lim_{t\to\infty}t^{\delta}(1-F(t)+F(-t))=0$ for some $\delta>0$ and that F^{-1} is (m+1)-times differentiable in a neighborhood of $q\in(0,1), m\geq 2$, with bounded (m+1)th derivative and $(F^{-1})'(q)>0$. Assume further that the kernel k has finite support [-c,c] and fulfills $\int\limits_{n\in\mathbb{N}}k(x)\,dx=1$, $\int\limits_{n\in\mathbb{N}}x^ik(x)\,dx=0$, $i=1,\cdots,m$. Then, if $\alpha_nn^{1/4}\to_{n\in\mathbb{N}}\infty$ and $\alpha_nn^{1/(2m+1)}\to_{n\in\mathbb{N}}0$, $\mathrm{MSE}(q_n)$ and $\mathrm{MSE}(\hat{q}_n)$ are finite if n is large and

$$\lim_{n\in\mathbb{N}} \left(\frac{i(n)-n}{n\alpha_n} \right) = 2 \int xk(x)K(x) dx/(q(1-q))$$

where $K(x) := \int_{-c}^{x} k(y) dy$.

Notice that this result remains true if the sample q-quantile is replaced by $Z_{r_n:n}$, where $r_n \in \{1, \dots, n\}$, $n \in \mathbb{N}$, fulfills $|q - r_n/n| = O(n^{-5/8})$.

The number $\psi(k) := 2 \int xk(x)K(x) dx$ can obviously be regarded as a measure of the asymptotic performance within the class of kernels and its sign determines whether one does better with the sample q-quantile, i.e. if $\psi(k) < 0$, or with the corresponding kernel estimator, i.e. if $\psi(k) > 0$. In either case i(n) - n is of order $n\alpha_n$ if $\psi(k)$ does not vanish.

The functional ψ occurs also as a measure of performance when kernel estimators of a smooth distribution function are considered (see Reiss, 1981, and Falk, 1983). A discrete analogue to ψ is given in Reiss (1980b), formula (3.7).

Denote by K_m the class of kernels with support [-1, 1] which fulfill $\int k(x) dx = 1$, $\int x^i k(x) dx = 0$, $i = 1, \dots, m$, $\int k^2(x) dx < \infty$.

We know from Falk (1983), Theorem 2, where the functional ψ is extensively studied that, if p_m denotes the unique polynomial of degree not greater than m in K_m

$$0 < \psi(p_m) \sim (\pi m)^{-1}$$
.

Furthermore, we know that there is no kernel in K_m which maximizes ψ over K_m , i.e. there is no optimal kernel in K_m . However, it was shown by Mammitzsch (1983) that

$$\sup_{k \in K_m} \psi(k) = \binom{2[m/2]}{[m/2]}^2 2^{-4[m/2]-1}, \quad m \in \mathbb{N},$$

where [x] denotes the integral part of $x \in \mathbb{N}$, and thus

$$\psi(p_m)/\sup_{k\in K_m}\psi(k) \to_{m\in\mathbb{N}} 1.$$

This entails that

$$p_m(x) = \sum_{j=0}^{\lfloor m/2 \rfloor} \left(-\frac{1}{4} \right)^j \frac{4j+1}{2} \binom{2j}{j} l_{2j}(x), \quad m \in \mathbb{N},$$

where l_j denotes the Legendre-polynomial of degree j on [-1, 1], are nearly optimal kernels within a certain class for constructing kernel estimators of a distribution function as well as of quantiles.

- 2. Auxiliary results and proofs. When dealing with the mean square error we are concerned with the problem of computing moments of q_n and \hat{q}_n . To this end we establish the following two auxiliary results which are of interest in their own. For further results on moments of order statistics we refer to Sections 3 and 4 in David (1981), Bickel (1967) and Hall (1978).
- LEMMA 1. Assume that $\lim_{t\to\infty} t^{\delta}(1-F(t)+F(-t))=0$ for some $\delta>0$. Assume further that F^{-1} is twice differentiable in a neighborhood of $q\in(0,1)$ with bounded second derivative. If $r_n/n\to_{n\in\mathbb{N}}q$, where $1\leq r_n\leq n$, then the mean and variance of $Z_{r_n:n}$ exist if n is large and

$$\begin{split} &E((Z_{r_n:n}-q(F))^2) \\ &= (n+2)^{-1} \frac{r_n}{n+1} \left(1 - \frac{\tau_n}{n+1}\right) (F^{-1})'^2 \left(\frac{r_n}{n+1}\right) + O\left(\left(\frac{\tau_n}{n}-q\right)^2\right) + O(n^{-3/2}). \end{split}$$

LEMMA 2. Assume that $\lim_{t\to\infty}t^{\delta}(1-F(t)+F(-t))=0$ for some $\delta>0$ and that F^{-1} is (m+1)-times differentiable in a neighborhood of $q\in(0,1)$ with continuous second derivative if m=1 and with bounded (m+1)th derivative if $m\geq 2$. Assume further that the kernel k has finite support [-c,c] and fulfills $\int k(x) dx = 1$, $\int x^i k(x) dx = 0$, $i=1,\cdots,m$. Then $\mathrm{MSE}(\hat{q}_n)$ is finite if n is large and

$$n \text{ MSE}(\hat{q}_n) = (F^{-1})^{\prime 2}(q) \left\{ q(1-q) - 2\alpha_n \int x k(x) K(x) dx \right\}$$
$$+ O(\alpha_n^{2m+2}n) + O(n^{-1/4}) + o(\alpha_n).$$

PROOF OF LEMMA 1. Denote by $X_{i:n}$ the *i*th order statistic in a sample of n independent and uniformly on (0, 1) distributed random variables on some probability space $(\Omega, \mathcal{A}, \tilde{P})$. Then

$$\begin{split} E(Z_{r_n:n}^2) &= E((F^{-1}(X_{r_n:n}))^2) \\ &= E((F^{-1}(X_{r_n:n}))^2 1_{M_n}) + E((F^{-1}(X_{r_n:n}))^2 1_{M_n^2}) =: I_n + II_n, \end{split}$$

where $M_n := \{|X_{r_n:n} - r_n/(n+1)| \le \epsilon\}$, ϵ sufficiently small, and 1_A denotes the indicator function of an event A.

Hölder's inequality together with Lemma 1 in Wellner (1977) implies

$$II_n \leq E((F^{-1}(X_{r_n:n}))^4)^{1/2}\tilde{P}(M_n)^{1/2} = E((F^{-1}(X_{r_n:n}))^4)^{1/2}O(\exp(-n)).$$

Next we show that $E((F^{-1}(X_{r_n:n}))^4)$ is finite and uniformly bounded if n is large.

Fubini's Theorem implies

$$\begin{split} E((F^{-1}(X_{r_n:n}))^4) &\leq \int_0^\infty \tilde{P}\{X_{r_n:n} \geq \dot{F}(t^{1/4})\} \ dt + \int_0^\infty \tilde{P}\{X_{r_n:n} \leq F(-t^{1/4})\} \ dt \\ &=: A_n + B_n. \end{split}$$

We show that A_n , $n \in \mathbb{N}$, is uniformly bounded if n is large. Similar arguments yield that this is also true for B_n , $n \in \mathbb{N}$. From formula (2.1.6) in David (1981) we know

$$A_n = \frac{n!}{\{(r_n-1)!(n-r_n)!\}} \int_0^\infty \int_{F(t^{1/4})}^1 x^{r_n-1} (1-x)^{n-r_n} dx dt.$$

For $\eta > 0$ there exists $C_1 > 0$ such that if $t \ge C_1$ then $1 - F(t^{1/4}) \le \eta t^{-\delta/4}$. Thus,

$$A_n \leq C_1 + \frac{n!}{\{(r_n-1)!(n-r_n)!\}} \eta^{n-r_n} \int_{C_1}^{\infty} t^{-(n-r_n)\delta/4} dt.$$

Obviously it suffices to show that for appropriately chosen η the sequence $(n!/\{(r_n-1)!(n-r_n)!\})\eta^{n-r_n}, n \in \mathbb{N}$, tends to zero.

Stirling's formula implies

$$n!/\{(r_n-1)!(n-r_n)!\} = O(n^{1/2}(r_n/n)^{-r_n}(1-r_n/n)^{-(n-r_n)}).$$

Choose $\rho > 0$ and $C_2 > 1$ such that $q^{-1} - 1 - \rho > 0$, $C_2^{q^{-1} - 1 - \rho} \ge 4q^{-1}$. Then, for $\eta := (1 - q)/(2C_2)$ and n sufficiently large $\eta \le (1 - r_n/n)/C_2$ and thus

$$\eta^{n-r_n}(r_n/n)^{-r_n}(1-r_n/n)^{-(n-r_n)} \le (r_n/n)^{-r_n}C_2^{-(n-r_n)}
= \{(r_n/n)C_2^{(n/r_n)-1}\}^{-r_n} \le \{(q/2)C_2^{q^{-1}-\rho-1}\}^{-r_n} \le 2^{-r_n}.$$

This implies that A_n , $n \in \mathbb{N}$, is uniformly bounded if n is large.

Finally we treat I_n . Taylor's formula together with Lemmata 1 and 2 in Wellner (1977) implies if n is large

$$\begin{split} I_n &= E(\{F^{-1}(r_n/(n+1)) + (F^{-1})'(r_n/(n+1))(X_{r_n:n} - r_n/(n+1)) \\ &+ 2^{-1}(F^{-1})''(\dot{\theta})(X_{r_n:n} - r_n/(n+1))^2\}^2 \cdot 1_{M_n}) \\ &= F^{-1}(r_n/(n+1))^2 + (F^{-1})'^2(r_n/(n+1))E((X_{r_n:n} - r_n/(n+1))^2) \\ &+ F^{-1}(r_n/(n+1))E(\{(F^{-1})''(\theta)(X_{r_n:n} - r_n/(n+1))^2\} \cdot 1_{M_n}) + O(n^{-3/2}). \end{split}$$

An analogous expansion of $E(Z_{r_n:n})$ together with example 3.1.1 and formula 3.1.6 in David (1981) and elementary computations complete the proof.

PROOF OF LEMMA 2. The approximate variance of the kernel estimator is given by

$$E\left(\left\{\int_{0}^{1} (F_{n}^{-1}(x) - F^{-1}(x))\alpha_{n}^{-1}k\left(\frac{q-x}{\alpha_{n}}\right)dx\right\}^{2}\right)$$

$$= E\left(\left\{\int_{(q-1)/\alpha_{n}}^{q/\alpha_{n}} (F_{n}^{-1}(q-\alpha_{n}x) - F^{-1}(q-\alpha_{n}x))k(x) dx\right\}^{2}\right)$$

$$= E\left(\left\{\int_{-c}^{c} (F^{-1}(\overline{F}_{n}^{-1}(q-\alpha_{n}x)) - F^{-1}(q-\alpha_{n}x))k(x) dx\right\}^{2}\right)$$

for α_n small enough, where \overline{F}_n denotes the empirical distribution function according to n independent, uniformly on (0, 1) distributed random variables on some probability space $(\Omega, \mathscr{A}, \tilde{P})$. In order to apply Taylor's formula the above integral is split into two terms

$$\begin{split} E\bigg(\bigg\{\int \left(F^{-1}(\overline{F}_{n}^{-1}(q-\alpha_{n}x))-F^{-1}(q-\alpha_{n}x)\right)k(x) dx\bigg\}^{2}1_{M_{n}}\bigg) \\ +E\bigg(\bigg\{\int \left(F^{-1}(\overline{F}_{n}^{-1}(q-\alpha_{n}x))-F^{-1}(q-\alpha_{n}x)\right)k(x) dx\bigg\}^{2}1_{M_{n}^{c}}\bigg)=:A_{n}+B_{n}, \end{split}$$

where $M_n := \{ \sup_{x \in [-c,c]} | \overline{F}_n^{-1}(q - \alpha_n x) - q + \alpha_n x | \le \varepsilon \}$ for ε being sufficiently small.

 B_n is up to an additive constant bounded by

(1)
$$E(\max\{(F^{-1}(X_{\lceil (q-\rho)n\rceil;n}))^2, (F^{-1}(X_{\lceil (q+\rho)n\rceil;n}))^2\} \cdot 1_{M_n^c}) = O(\exp(-n)),$$

for ρ being sufficiently small, which is immediate from the proof of Lemma 1 and the inequality by Dvoretzky et al. (1956) since $\sup_{p\in(0,1]}|\overline{F}_n^{-1}(p)-p|=\sup_{t\in[0,1]}|\overline{F}_n(t)-t|$.

Applying Taylor's formula to A_n we derive

(2)
$$A_n = E\left(\left\{\int k(x)(F_n^{-1}(q-\alpha_n x) - (q-\alpha_n x))(F^{-1})'(q-\alpha_n x) dx\right\}^3\right) + O(E(\sup_{t\in[0,1]}|\overline{F}_n(t)-t|^3)) + O(\exp(-n)).$$

Furthermore,

$$\begin{split} n^{3/2}E(\sup_{t\in[0,1]}|\,\overline{F}_n(t)\,-\,t\,|^{\,3}) &= \int_0^\infty \,\tilde{P}\{\sup_{t\in[0,1]}|\,\overline{F}_n(t)\,-\,t\,|\,\geq\,n^{-1/2}t^{1/3}\}\,\,dt \\ &\leq C\,\int_0^\infty \exp(-2\,t^{2/3})\,\,dt < \infty, \end{split}$$

where C denotes the constant occurring in the inequality by Dvoretzky et al.

(1956). Thus, $E(\sup_{t\in[0,1]}|\bar{F}_n(t)-t|)=O(n^{-3/2})$ and therefore

$$A_{n} = E\left(\left\{\int k(x)(\overline{F}_{n}^{-1}(q - \alpha_{n}x) - (q - \alpha_{n}x))(F^{-1})'(q - \alpha_{n}x) dx\right\}^{2}\right) + O(n^{-3/2})$$

$$= E\left(\left\{\int k(x)(q - \alpha_{n}x - \overline{F}_{n}(q - \alpha_{n}x))(F^{-1})'(q - \alpha_{n}x) dx + \int k(x)(\overline{F}_{n}^{-1}(q - \alpha_{n}x) - (q - \alpha_{n}x)) + \overline{F}_{n}(q - \alpha_{n}x) - (q - \alpha_{n}x)(F^{-1})'(q - \alpha_{n}x) dx\right\}^{2}\right) + O(n^{-3/2}).$$

Since the second term above is the remainder term of the first Bahadur quantile-approximation (Bahadur, 1966), Theorem 1 in Duttweiler (1973) implies

$$A_n = E\bigg(\bigg\{\int k(x)(q - \alpha_n x - \overline{F}_n(q - \alpha_n x))(F^{-1})'(q - \alpha_n x) \ dx\bigg\}^2\bigg) + O(n^{-5/4}).$$

Furthermore,

$$E\left(\left\{\int k(x)(q-\alpha_{n}x-\overline{F}_{n}(q-\alpha_{n}x))(F^{-1})'(q-\alpha_{n}x) dx\right\}^{2}\right)$$

$$= n^{-1} \int_{0}^{1} \left\{\int k(x)(q-\alpha_{n}x-1_{(0,q-\alpha_{n}x]}(y))(F^{-1})'(q-\alpha_{n}x) dx\right\}^{2} dy$$

$$= n^{-1} \int_{0}^{1} \left\{\int k(x)(q-\alpha_{n}x-1_{(0,q-\alpha_{n}x]}(y))(F^{-1})'(q) dx\right\}^{2} dy$$

$$+ o(n^{-1}\alpha_{n})$$

$$= n^{-1}(F^{-1})'^{2}(q)\left\{q(1-q)-2\alpha_{n} \int xk(x)K(x) dx\right\} + o(n^{-1}\alpha_{n})$$

which follows from elementary computations.

Combining (1) - (4) we get

$$E\left(\left\{\int (F_n^{-1}(x) - F^{-1}(x))\alpha_n^{-1}k\left(\frac{q-x}{\alpha_n}\right)dx\right\}^2\right)$$

$$= n^{-1}(F^{-1})^{\prime 2}(q)\left\{q(1-q) - 2\alpha_n \int xk(x)K(x) dx\right\}$$

$$+ o(n^{-1}\alpha_n) + O(n^{-5/4}).$$

Since for sufficiently small α_n the approximate bias equals $\int k(x) \{F^{-1}(q - x)\} dx$

 $\alpha_n x$) $- F^{-1}(q)$ } $dx = O(\alpha_n^{m+1})$ the assertion of Lemma 2 is immediate from standard arguments.

We remark that it is possible to utilize a differentiation argument instead of the Bahadur approximation in the preceding proof (see Chapter 8 in Serfling, 1980, for details). However, this would require restrictive conditions on k.

PROOF OF THE THEOREM. Let $r_n \in \{1, \dots, n\}, n \in \mathbb{N}$, be such that $|q - r_n/n| = O(n^{-5/8})$. Obviously, $i(n) = \min\{j \in \mathbb{N}: \mathrm{MSE}(Z_{r_j:j}) \leq \mathrm{MSE}(\hat{q}_n)\}$ tends to infinity as n increases. Therefore, from Lemmata 1 and 2 and the definition of i(n)

$$\begin{split} \operatorname{MSE}(\hat{q}_n) &= n^{-1} \{ (F^{-1})'^2(q) q (1-q) + o(1) \} \ge \operatorname{MSE}(Z_{r_{i(n)}:i(n)}) \\ &= i(n)^{-1} \{ (F^{-1})'^2(q) q (1-q) + O(i(n)^{-1/4}) \} \end{split}$$

which implies $\limsup_{n \in \mathbb{N}} i(n)/n \ge 1$ yielding

$$i(n) \ge (1 + O(n^{-1/4}))(F^{-1})^{2}(q)q(1-q)/MSE(\hat{q}_{n}).$$

A similar argument yields

$$i(n) \le (1 + O(n^{-1/4}))(F^{-1})^{2}(q)q(1-q)/MSE(\hat{q}_{n}).$$

The assertion now follows from Lemma 2 and elementary computations.

REFERENCES

BAHADUR, R. R. (1966). A note on quantiles in large samples. Ann. Math. Statist. 37 577-580.

BICKEL, P. J. (1967). Some contributions to the theory of order statistics. *Proc.* 5th Berkeley Symp. I 575-591.

DAVID, H. A. (1981). Order Statistics, 2nd ed. Wiley, New York.

DUTTWEILER, D. L. (1973). The mean-square error of Bahadur's order statistic approximation. *Ann. Statist.* **1** 446-453.

Dvoretzky, A., Kiefer, J. and Wolfowitz, J. (1956). Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. *Ann. Math. Statist.* **27** 642-669.

FALK, M. (1983). Relative efficiency and deficiency of kernel type estimators of smooth distribution functions. *Statist. Neerlandica* 37 73-83.

GALAMBOS, J. (1978). The Asymptotic Theory of Extreme Order Statistics. Wiley, New York.

HALL, P. (1978). Some asymptotic expansions of moments of order statistics. Stochastic Process. Appl. 7 265-275.

MAMMITZSCH, V. (1983). On the asymptotically optimal solution within a certain class of kernel type estimators. *Statist. Decisions*, to appear.

PARZEN, E. (1979). Nonparametric statistical data modeling. J. Amer. Statist. Assoc. 74 105-121.

Reiss, R.-D. (1980a). Estimation of quantiles in certain nonparametric models. Ann. Statist. 8 87-105.

REISS, R.-D. (1980b). One-sided tests for quantiles in certain nonparametric models. In: Nonparametric Statistical Inference (Colloq. Math. Soc. János Bolyai, Budapest 1980) 759-772.

REISS, R.-D. (1981). Nonparametric estimation of smooth distribution functions. Scand. J. Statist. 8 116-119.

Scott, D. W., Tapia, R. A. and Thompson, J. R. (1977). Kernel density estimation revisited. Nonlinear Anal. 1 339-372.

SERFLING, R. J. (1980) Approximation Theorems of Mathematical Statistics. Wiley, New York.

Wellner, J. A. (1977). A law of the iterated logarithm for functions of order statistics. *Ann. Statist.* **5** 481–494.

WERTZ, W. (1978). Statistical Density Estimation. A survey. Vandenhoeck and Ruprecht, Göttingen.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SIEGEN HÖLDERLINSTR. 3 5900 SIEGEN 21 WEST GERMANY