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A PROOF OF THE CONJECTURE THAT THE TUKEY-KRAMER
MULTIPLE COMPARISONS PROCEDURE IS CONSERVATIVE!

BY ANTHONY J. HAYTER

Cornell University

In this paper we present a first general proof of Tukey’s (1953) conjecture
concerning the extension of the Tukey multiple comparisons procedure to the
case of unequal sample sizes, thereby proving that the so-called Tukey-Kramer
procedure is conservative in all cases. Also a brief history of the conjecture is
given and some extensions and further problems concerning the procedure
are discussed.

1. Introduction. Consider the usual one-way fixed effects analysis of var-
iance (ANOVA) model

X,‘j=/.l,,'+€,‘j l=sj=n,1<i=<k)

where the ¢; are independent N (0, ¢%) random variables and ; is the mean of
the ith treatment (1 < i < k). The yu; and ¢? are unknown parameters. Let X; be
the sample mean of the ith treatment based on n; observations (1 < i < k), and
let S% be an unbiased estimate of ¢2 which is distributed independently of the X;
as a o%x%/v random variables. Usually the ANOVA mean square error with » =
S& ., n; — k degrees of freedom is used as the estimate S2.

A commonly occurring inference problem in practice is that of making simul-
taneous pairwise comparisons between the treatment means y;. Tukey (1953)
proposed his celebrated T-procedure to do this in the special case when all the n;
are equal to a common sample size n (say). This procedure can be summarized
by the following probability statement which gives exact (1 — a)-level joint
confidence intervals for all the differences u; — u;:

(1.1) P{#i—#je[)_(i—)_(j"—'qw%];15i,j5k}=1—a
n

where ¢ is the upper o point of the Studentized range distribution with
parameter k and v degrees of freedom (Miller, 1966, page 38).

When the n; are unequal, Tukey (1953) suggested that (1.1) be modified by
replacing 1/vn by {(1/n; + 1/n,)/2}%in the confidence interval for u; — p;(1 < i,
j < k). He made the conjecture (which we shall refer to as the Tukey conjecture)
that this procedure “. . .is apparently in the conservative direction . ..” (Tukey,
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62 ANTHONY J. HAYTER

1953, page 39), i.e.

(1.2) P{ﬂi—ﬂdiE[Xi—in'q;gy)S ‘;‘(%+l)];15i,j5k]r21—a
i J

for all values of the n;. If the n; are equal then, of course, we have equality in

(1.2) because of (1.1). Kramer (1956) independently proposed the same modifi-

cation, though in the slightly different context of a multiple range test procedure,

and so (1.2) is referred to as the Tukey-Kramer (TK)-procedure.

Over the past thirty years many statisticians have attempted to prove or
disprove the Tukey conjecture but its general resolution has remained an unsolved
problem. Nevertheless, despite the uncertainty associated with the Tukey con-
jecture, the TK-procedure is widely preferred to many other procedures because
of its intuitive appeal and because it provides shorter intervals. In this paper we
offer a first general proof of the validity of the TK-procedure.

We now give a brief history of the problem. In a doctoral dissertation under
Tukey’s supervision, Kurtz (1956) proved the inequality (1.2) when k = 3 and for
nearly equal n’s when k = 4. (The case k = 2 trivially gives equality in (1.2).) He
also studied certain limiting cases (involving highly unequal n;s) for arbitrary k,
and found the conjecture to be true in these cases. Based on these results he
expressed “a strong feeling” for the truth of the conjecture for all k. Later, Miller
(1966, page 87) advised against the use of the TK-procedure, describing it as
“inexact” and as having “no mathematical proof or numerical substantiation.”
Instead Miller suggested using Scheffé’s (1953) S-procedure or the classical
Bonferroni procedure, neither of which requires the assumption of equal n/s.
However, these procedures are rather conservative—especially the former if
interest is confined to pairwise comparisons of the means. This situation
prompted many authors to develop other procedures to deal with the case of
unequal sample sizes, e.g. Spjgtvoll and Stoline (1973), Dunn (1974) and Hoch-
berg (1974a, 1975). However, the TK-procedure provides shorter intervals than
these other procedures and so it became crucial to settle the validity of (1.2). For
this purpose Dunnett (1980) carried out an extensive simulation study which
provided a quite strong indication of the truth of the conjecture for all k. Inspired
by these simulation results, Brown (1979) succeeded in proving the conjecture
for the cases k = 3, 4 and 5. Based on all this evidence, Stoline (1981) concluded
that “For all practical purposes, the TK method is conservative.” The proof
presented in this paper finally removes any uncertainty concerning the use of
the TK-procedure.

The proof of the Tukey conjecture is given in Section 2 of this paper and a
technical lemma required in this proof is given in the Appendix. Some extensions
and further problems relating to the TK-procedure are discussed in Section 3.

2. The main result. By conditioning on S it is apparent that the inequality
(1.2) follows from the theorem stated below.

THEOREM. Let X; ~ N(0, 0,2): 1 < i < k, be independent where 0 < ¢; < ®,
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and let &= q(a? + o})*for some fixed ¢ > 0 (1 < i, j < k). Then the function
F=F(o, --,00) =Pl Xi — Xj| = &1 =<i,j <k}

is strictly minimized when the o; are equal.

REMARK. Note that when the o; are equal, F is independent of their value.
Also, since F is strictly minimized, there will be strict inequality in (1.2) when
the n; are not equal.

The proof of the theorem is rather long and so it is broken into several lemmas.
We first explain the main idea and the steps involved in the proof so that it will
be easier to follow. The proof depends upon the fact that if we take the partial
derivative of F with respect to one of the ¢’s, o), say, then this may be written as
the sum of k — 1 terms, G;, 1 =i < k — 1 (Lemma 1) where the sign of each G;
depends only on the sign of ¢; — o, (Lemma 4). Lemma 2 shows that the G;, as
defined in Lemma 1, can be written as the integral over R of an odd function
multiplied by another function H,(r) (see (2.6) in Lemma 4). The functions H;(r)
involve integrals over intervals R;; which are investigated in Lemma 3. In
particular, Lemma 3 shows that the sign of the midpoints of these intervals
depend only on the sign of ¢; — 0%, and using this result, Lemma 5 in the Appendix
shows that the sign of H;(r) — H;(—r) is the same for all r > 0 and depends only
on the sign of ¢; — g,. Lemma 4 then follows from this last result and Lemma 2.

PROOF OF THE THEOREM. Let

Yr(xy, <+, x) = (H¢=1 foi(xi))Il|x,—xj|5£i};lsi,jsk;

where f,,(-) is the density function of a N(0, ¢7) random variable and I 4, is the
indicator function of the set A. The subscript k on ¢ refers to the dimension of
its domain. Then

F = f---f%(xl,---,xk)dxl---dxk

—0=xy,- -,
- f o f ‘pk_l(xl’ Tt xk—l)fdk(xk) X (H?;ll I”xk_x”s&k}) dx; --- dx;.
—O=Xy, -, Xp=0
Substituting y, = x/0 gives
i ' —yi
F = f f ... f (211,)—1/2(”{1){_1r
Ypg=—%® 2
| xi=ypop| <tipl<isk—1
2.1)

X Y1 (21, -+ oy Xp-1) dxp - -+ dxeo1 Y.

LEMMA 1. Forl <i=<k—1,define
xf =yeor+ &, Ni={jl=<j=sk-1,j#i},
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and the set Vi(y,) C R* 2as
Vilyr) = {(inj € N;): lxj — Yrop| < Eirs Vj e Nl

Then
/2
E = g ' k_—ll G
doy, T M
where
eee ¥ ... _
G L=_wf fexpl 2 J"pk l(xla y Xiy y Xk 1)

V(yk)
9
X [yk Ek;l(l—LrsN dx;) dye.

PrOOF OF LEMMA 1. It follows from (2.1) that

bl _ 2
(2.2) 9F _ (27) 12 f exp{ } D dy,
aO'k Yp=—0% 2

where
9 Yeorté1k YroktEp—1,k
D=— Yr-1(X1, -+ 5 Xem1) dxy - - dXp.
961 Yxr=yion—tus Xp—1=YrOk—Ek—1,k

Then if we let x}* = y,o, — £ we obtain

=y {f f¢k—1(x1, ceey XE, e e 1)[yk + %](HJGN dx;)

Vi)
9,
- f cee f \bk—l(xly ey x:'k*, ey xk—l)[ - ﬁ](HJEN de }
Vilyr)
=25 {Ai— B} (say).
If in B; we make the substitutions y; = —y, and x/ = —x;, j € N;; and since

ybk_l(xl, ey, xk_l) = 1[/k_1(—x1, vy, _Xk_l), we see that B,‘ = —Ai, l1<i<k-1.
Therefore

D =2 ¥kl A
* agik
=2 2 f f ¢k l(xI, BRI PRI xk_l)[yk + é?k:l(HjEN' dxj).

Vi(ye)

Lemma 1 now follows by putting this expression for D in (2.2) and exchanging
the order of the summation over i and the integration over y,. 0

LEMMA 2. For 1 < i < k — 1, the quantity G; defined in Lemma 1 can be
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expressed as

® 1{1 1 .
G =a; j::_m r exp{— 3 (;5 + ;_%)"2} f cee f Yr-2(x;: j € Ni)(Iljen, dx;) dr

x—r€R,; ;,JEN;
where a; > 0 is some constant and the set R;; C R is defined by
= Eif}’

2
0, &i
{xj: = Ejk][ N {xj: ——E—k-

0,2 + a%
= {xj:xj —re Rij}.
ProoF OF LEMMA 2. Notice that:

ohEin

Xi—r+
’ o? + o}

Xj —r—

¢k—l(xly ctty x?? Tty xk—l)
@) = ¢k_2(Xij € N;) X (210',2)—1/2

1
X exp{— 5—2 (yrow + Eik)2} (HjENiIlIxJ—ykak—E;leE;jl);

(ii) exp{—%y}Xexp{ k%'*fm)}
1 v ) 1,
- e}~ 5( o )orv ) el

afzk 2y1/2 O'kfik
dor {q(a, +o = ol + of

and
(ii1)
Then, writing

orkin

2=y +
Yk a?+a§

we use (i), (ii), (iii), and the definition of G; in Lemma 1 to obtain, for 1 < i <

R S O PR

(2.3) Vilye)
X Yr-2(x: J € Ni)(ILiendi15-nor-tal<)) (ILjen, dx;) dyr.

If we make the further substitution r = 0,2z, we have:

? 1 1 rdr
(1 + 6—2)22 = r2(—2 + —2), z2dy, = !
g7 g; Ok Uk

ohin

— Yo =x; —r+
’ 0,2+a§’
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and
ofkn
xj_ykak_&k:xj_r_a?+a%'
Substituting these expressions in (2.3) we obtain
q2
G = (2#)_1/2(0%0;)_lexp{— E]f
| 1{1 1 .
X Jr;_w r exp{— '2' (;? + ;g)ﬂ} f .. f ¢k_2(xj: jEN)
—wsijw,jEN,-

X (ILjen 1 s—r+(ctaasot+ o 1 <tuintiz-r—(deaad+ad 1 <e) X (ILien, dx;) dr.

Then for a; = (27) V?(s;0%) ‘exp{— (¢?/2)} > 0, the expression for G; given in
this Lemma follows by the definition of R;;. 0

LEMMA 3. For1l<i<k—1,j€ N, the set R;;defined in Lemma 2 is the
interval

2; —2
R; = [ ;l&k 5 — &ijs orbie \ fjk]

o; + o 0’,2+0'%

which has length > 0. Also, if the midpoint of R;;is denoted by m;;, then V j € N,
1=si<k-—-1,

a,-%ak(:m,-jEO.
ProOF OF LEMMA 3. Let

I = G?fik — & U?Eik &
! o’ + o} v o + a% ”_

and

2 2 T

—arir —ok&in
I = [—-2 — ks =+ £ |
k i

l+ 0 a?+a%

Then R;;= I, N I;. Observe that:

(i) (07 + oD)2 > | 0; — ar| > | (6} + o})'/* = (o} + 0])?|
and so
(2.4) En > | Ej — il
Suppose that I, 2 I,, then
2 2
ai&ir —okéir
G?_*_a%—&jﬁm—fﬁ=&k5&j—fjk
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which contradicts (2.4). Similarly, if I, 2 I;, then

2 2
—okbin aiki
7+ o + & = 7+ of + &, &r—&i=ta
which again contradicts (2.4). So neither of I, or I, is contained in the other.
Also,
(6? + a})2 + (62 + 012> 6, + 0r > (6} + 03)'?
(11) a %Eik —0 %Eik

-t <
1,
6,2+a% / 0,2+a%

=&+ Hii> k= + &
and so I; and I, are not disjoint.

Together (i) and (ii) imply that R;;is as stated in this Lemma, and the strict
inequality in (ii) means that R;;has length > 0.

Turning now to the second half of the Lemma, we have

g ,2 - 0 %
2m;; = (m Eir — & + Ein

so that
2m,~j _ [ ,2 — 0 %

(2:5) q (o + o)~

= [(e? + 6})* — (6 + o).

Immediately we see that if ¢; = 0%, then m;;= 0 Vj € N,.
If o; # o4, then a small amount of algebra leads to the following inequality:

o — o2

(0.2+ 0,2)1/2 > l(”t2+0'12)1/2_ (0'%"'0'12)1/2'-
i k

Therefore it follows from (2.5) that m;; has the same sign as (¢ — o2), i.e. m; 2
0 for U,‘% Ok, V]EN,D .

LEMMA 4. For the quantity G; in Lemma 2,1 < i < k — 1, we have
Op % g, & Gi % 0.

PrROOF OF LEMMA 4. From Lemma 2 we have that

(2.6) G =ua f r exp{— 1 (l2 + %)rz}Hi(r) dr
r=-—o0 2 \o; Ok

13

where

H;r) = f f Yr—2(x5: j € Ni)(Iljen, dx;)

x,—r€R;;,JEN;

= f s f (HjeNifoj(xj))I :|x,—x,,.|sg,,,.;w,meN,;(HjeN,. dxj)-

1,—r€R, JEN;
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By transforming from x; to x; + r we can rewrite this last equation as

(2.7) Hi(r)=f ---f(HjeN,-fu,(r'Fxj))qu.—xmlszm;w,meNA(HjeN, dx;).

4ER,,JEN;

Also by transforming from x; to —x; in (2.7), and since fo;(x) = f, (—x), it follows
that

(2.8) Hi(-r) = f f (ILendo(r + ) a-s01 <tmvimeny ([Ljen, dx;).

xj€—Ry,jEN;

Note that H;(r) = 0.

To prove this lemma we now use the results of Lemma 3 above, and Lemma
5 and its Corollary which are contained in the Appendix. In the case ¢; = ¢, we
have by Lemma 3 that m;;= 0 Vj € N,, so R;;= —R;; Vj € N;, and hence we see
from (2.7) and (2.8) that H;(r) = H;(—r). It then follows from (2.6) that G; = 0.

In the case ¢; > 0, we have by Lemma 3 that m;;> 0 Vj € N,. Then a direct
application of Lemma 5 to equations (2.7) and (2.8) gives H;(r) < H;(—r) for
r > 0. In fact we have strict inequality, H;(r) < H;(—r), because the conditions
of the Corollary to Lemma 5 are satisfied, namely:

(a) m;;> 0 and R;; has length > 0, Vj € N; (see Lemma 3),
and

(b) for VI, m € N; we have

2 2
—ain —0kéir
L + &n
‘ (a? + o} Elk) <a,2 + o} £ k)
Then since 0 < H;(r) < H;(—r) for r > 0, and a; > 0, it follows from (2.6) that
G;<0.
When ¢; < ¢, we have by Lemma 3 that m;;< 0 Vj € N;, and so in a similar

way it follows from Lemma 5 that 0 < H;(—r) < H;(r) for r > 0, and hence from
(2.6) it follows that G;> 0.0

= | & — Emel < & (see (2.4)).

We now complete the proof of the theorem. It follows from Lemmas 1 and 4
that dF/do;, can be expressed as

F
6 = Yk by
00’k

for some b;; which satisfy
bki%()(:)dk%m.

But ¢, was arbitrarily chosen from among the ¢’s, so more generally, for 1 < i <
k, 0F/da; can be expressed as
oF

—_ k b
= 2j=1 i by
(90,' J#i Uij
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for some b;; which satisfy

b,-j§0<=)a,~§aj.
This leads to the required result that F has a strict minimum when all the ¢; are
equal, as we now show.
Let op1) < o[g) < - - - < oy denote the ordered o/’s. If we

(1) increase o) to oy,

- (2) increase 0[1) and (2] to 0[3) (keeping o) = 0’[2]),

(k - ].) increase O[1]s *** s O[k—1] to O(k] (keeping o= - = U[k—l]),

then F will be strictly decreased at each step where an increase is necessary (and
there will be such a step unless the o; are all equal). This completes the proof of
the theorem. ]

3. Extensions of the Tukey-Kramer procedure. It is sometimes of
interest to have a procedure which gives joint confidence intervals for all contrasts
of the treatment means, i.e. for all parametric functions Y%, c;u; where Seie=
0. This is useful as it provides confidence intervals for any group of contrasts
which are selected for consideration after looking at the data (“data-snooping”).
We can extend the TK-procedure to do this by using the following result of
Tukey (1953).

Let C* be the set of all k-dimensional contrasts,

Ck = {c = (ch ce 9ck): Zf;l ¢ = 0} QRk.

Then for any real vector (y;, - -, yx) and nonnegative numbers £; satisfying
Eij= Eji’ 1= l1] = k1

lyi—yl <&, 1<i, j<k

(3.1) B vk b

Eoooa | < 2 Y= cici &y VeeC

ol Zenl =Zae e Y C
where ¢} = max(c;, 0) and ¢; = —min(cj; 0). Therefore if we let
1(1 1\]”
o= l®) =4+ =

b= akv 8[2 (ni nj)]

and

yi=Xi—#i
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it follows from (1.2) that

P{Z{‘il cim; €

k k -(1 1/2
k Bd «) i=1 2]':1 C; Cj (/2)(1/”1 + l/n])) . k
(3.2) [ kieXixq S %) Sy lal ;VeeC

=1—-a.

However, while it is true that when only pairwise differences of the treatment
means are considered, the TK-procedure is preferred to other procedures because
it provides shorter intervals, this may no longer be true when we consider all
contrasts of the treatment means. In particular, Scheffé’s (1953) S-procedure
(Miller, 1966, page 49) which provides exact (1 — «)-level joint confidence
intervals for all contrasts may be preferred in this case.

A further extension of the TK-procedure is to designs other than the one-way
layout, when estimates of the u;, g; say, are not independent (e.g. the one-way
analysis of covariance model). Suppose that the vector g = (4;, ---, ) has a
multivariate normal distribution with mean vector u = (u;, - - -, ux) and covari-
ance matrix ¢V, where o is unknown and V = (v;) is a known (k X k) posi-
tive-definite, symmetric matrix. It was proposed independently by Tukey
(1953) and Kramer (1957) that in this case, 1/«/5 in (1.1) be replaced by
[(vii+ v;;—2v;;)/2]*%in the confidence interval for u; — u;. Tukey conjectured that
this procedure is also conservative, i.e.

(3.3) Plu; — w € [ — i = ¢ S[% (va + v; —20)]"*; 1 < i, j < ki

=1-a.

Notice that if V is diagonal and if v; = 1/n; then (3.3) reduces to (1.2). Also,
using (3.1), (3.3) can be extended to the case of all contrasts of the u;.

In the case & = 3, (3.3) has been proved by Brown (1982). Also Hochberg
(1974b) has shown that whenever v; + v; —2v;; = v, V1, j, for some constant v (i.e.
the variance of i; — g; is the same for all i, j), then there is equality in (3.3) for
all k. The question of the general validity of (3.3) remains an unsolved problem.

APPENDIX

In Lemma 5 and its proof we use the following notation. For any set A, —A =
{x: —x€ A};andif BC Athen A — B=.{x: x € A, x & B}. Also if A is a finite set
then | A| denotes the number of elements in A. Finally NN is the set of natural
numbers {1, 2, 3, --- }.

LEMMA 5. For a finite set J C N, and for some fixed r > 0, 6;;= 0 and 7; > 0,
define

gu(x: i €J) = (Hilef,(xi + r))Il|xi—xJ|s:Sij;Vi,jeJl
where f, (x) is the density of a N(0, 77) random variable. Also for some fixed d; =
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0 and m, € R, define for n € N,
An=1{(x1, -+, x):m—d <x;<m+d,1<i<n]CR"
so that
—A,={(x1, -+, X)) —mi—di < x; < -m+d;,1<i=<n] CR"

Then if m; = 0 for 1 < i < n we have

f"' fgn(xly "',xn)dxl e dxn
An

(A1)
= f fgn(xh cee, X)) dxy ce - da,
_A'l

foralln € N.

PRrROOF OF LEMMA 5. We shall prove (A1) by induction on n. For m;, d; = 0,

my+d; —my+d,
f fr (% + 1) dx; = f fr (x1 + 1) dxy,

my—d; —my—d;

so (Al) is true for n = 1.
Now assume that (A1) is true forn =1, 2, --., k — 1 and we will show that
this implies that (A1) is true for n = k. The proof is divided into four parts:

(i) Let B = Ar — (Ax N —Ay), so —B, = —A; — (A N —A,). Then a necessary
and sufficient condition for (A1) in the case n = k is that

f fgk(xl, ey Xg) dxy - dxg
By

(A2)
Sf fgk(xl, cee, X)) dxy - dxg
-B,

(Note: If m; — d; > 0 for any i, 1 < i < k, then A, N —A, = &, the empty set, and
B, = A,. Also if m; = 0 for each i, 1 < i < k, then A, = —A, and B, = @.
Throughout this proof, for convenience; we define an integral over an empty set
to be 0.)

(ii) Define Dy = {(x1, - - - , %) € By: x; > —m; + d;, 1 < i < k} and define C,=
By, — Dy, (so —C, = =By, — (—=Dx)).

First note that (x;, -+, %) EBi= (x1, -+, x) EAr=>x,<sm;+d;, 1 =1 <
k. Therefore D, = & if any m; = 0.

If D, # @ then (x1, -+, xx) € D= x> 0,1 < i<k, since

x; > —m; + d; by the definition of D,
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and

x; = m; — d; by the definition of A, (and D, C A;).
Therefore, because f,.(x; + r) <f, (—=x; + r) for x; > 0, we have
(A3)  glxy, -++, 1) S gu(=21, --+, —xx) for (x;, -+, xx) € Dy.

Hence either D, = @ or

f fgk(xl, cee, xp) dxy - dxksf"' fgk(xl, ceey Xg) dxy - e dxg.
Dy - -D,

So to show (A2) it is sufficient to show that

f---fgk(xl,---,xk)dxl---dxk
Cy

(A4)
Sf fgk(xl, coe, X) dxy ce - dg.
—C

(iii) Let _# be the set of all nonempty, proper subsets of {1, 2, ---, k}. For
eachI € £ let I*={1,2, ..., k} — I and define

M) ={(x:i€l):m—di<sx;<m+d;, x;>-m+d; Vi€ I} CR
and
Llxzi€D))={(x:jEI*): mj—d<x<m+dj, 5, < —m; + d,
|x; — x| < 6,; Vi€ j€E I* C R,

For each (x;, - -, x;) € Cy, 31, 1 < i <k, such that x; > —m; + d; (otherwise
(21, -+, xx) € Ay N —A), and 3j, 1 < j < k, such that x; < —m; + d; (otherwise
(x1, -+, xx) € Dy). Therefore it follows from the definitions of M, L and J# that

f...fgk(xl,...,xk)dxl...dxk
Cp
=21§/f-"fg|1|(xiii61)f'--fg|1*|(injEI*)dx1-“dxk

M) . L((x;:i€1))

nd
f fgk(xl, cee, X)) dxy - dag
-G,
(A6)
=21€/f fg,1|(xi:i€I) f fg”q(xj:jel*) dx, --- dx.

—M(I) —L(—(xzi€I))

(A5)

a
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Suppose (x;: i € I) € M(I) for some I € #. Then using similar arguments to
those in part (ii) of this proof, we have x; > 0 for each i € I, and hence

(A7) g|1|(x,-: 1 E I) = g|1|(—x,~: 1 E I)

It follows from (A5), (A6) and (A7) that to show (A4) it is sufficient to show
that for each (x;: i € I) € M(I) for any I € #, either L((x;: i €I)) = or

f “ee fgll‘l(xj:j € I*)(ILjer dx))
L((x,:i€1))

(A8)
< f e fgm,(xj:j (S I*) (HjEI" dxj).

—L((x,;:i€1))

(iv) For (x;: j € I'*) to be in the set L((x;: i € I)) it is necessary, by the definition
of L, that m; — d; < x; and x; < —m, + d; for each j € I*. So if m; — d; > 0 for any
Jj € I*, then L((x;: i € I)) = &. Otherwise

x:jeEI*EL((x2i€l)) & x;€EE; VjEI*
where
E; = Nies [x: — &y, xi + 651 N [m; — dj, —m; + dj].

Now E; is the intersection of intervals each with midpoint = 0, so either it
is empty, or it is an interval with midpoint = 0. If E; = & for any j € I* then
L((x;: i € 1)) = @, and if E; is an interval with midpoint = 0 for each j € I'*, then
(AS8) is true by the induction assumption since 1 < | I*| <= k — 1.

So in all cases either L((x;: i € I)) = & or (A8) is true, which proves (A1) is
true at the kth stage. That (A1) is true for all n € N follows by induction. O

COROLLARY TO LEMMA 5. Suppose that

(a) d;, m; >0 Vi, and
(b) | (m;+d;) — (m;+ d)) | <éijvi

Then
f'--fgn(xl,---,xn)dxl---dxn
A'l

(A9)
<f--'fgn(xl,'--,xn)dxl---dxn
v

foralln € N.

PRrROOF OF COROLLARY. If m,;, d; > 0 then

my+d, —my+d;
f fr(xr + 1) dxy < f fr(xy + 1) dxy,
my—d, d

—m,—a

so (A9) is true for n = 1.



74 ANTHONY J. HAYTER

For n = k = 2, conditions (a) and (b) = 3 6x;> 0, 1 < i < k, such that

(l) Fk={(x1,~--,xk):mi+d,—6xi5x,»5m,~+d,~,1Sisk}(_:Dk and
(ll) (xly"'1xk)EFk=|xl_x]l56ij’ ]-Sl’.]Sk

To see this, notice that (i) is satisfied if m; + d; — éx; > —m; + d;, and m, + d;
— 0x; = m; — d;, 1.e. éx; < 2m; and 6x; < 2d; for each i (which we can satisfy by
condition (a)); and (ii) is satisfied if

0x, < Yo min; <<, {6; — | (m, + d;) — (m; + d;)|} for each i,
(and the right hand side of this inequality is > 0 by condition (b)).
Now (i) = (my + dy — 6x1, -+, mp + d, — 6x,) € D,
=m+d —06x;,>0, 1<i<k

(see part (i1) of the proof of Lemma 5)

m,+d, —(m,+d,—éx,)
= f frlx:+r)de; < f frile;+7r)de, 1<is<k

,+d,—ox, —(m,+d,)

Therefore, because the indicator function term of g is 1 everywhere in F} by
condition (ii) above, we have

f fgk(xl’ ...’xk) dxl dxk
Fy,

m+d, —(m,+d,—éx,)
(A10) = JI&, f folxi + 1) dx; <[5 f fr(x, + 1) dx;

,+d,—éx, —(m+d)

—F,
Define G, = D), — F;,. Since G, C D, it follows from (A3) that

f fgk(xl, “‘,xk)dxl <o dxp
Gy,

Szf fgk(xl, ceey X)) dxy - dXg.
-Gy,
Then (A10) and (A11) imply that

f"’fgk(xly“‘,xk)dxl"'dxk<f"‘fgh(xl,“',xk)dxl“'dxk-
Dy, —Dy,

Therefore the inequality (A4), which was verified as part of the proof of Lemma

(A11)
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5, is sufficient to show that

f"'fgk(xl’""xk)dxl”'dxk<f"'fgk(xly“"xk)dxl"'dxk'
A —Ag

This completes the proof of the Corollary. 0]
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