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FURTHER RESULTS ON THE CONSISTENT DIRECTIONS
OF LEAST SQUARES ESTIMATORS!

By SoNG-Gul WANG AND C. F. J. Wu

Chinese University of Science and Technology, Hefei, Anhui; and University of
Wisconsin, Madison

Wu (1980) defined the consistent directions of the least squares estimator
in a linear model as the linear combinations of parameter estimates that are
asymptotically consistent. For the polynomial regression model, a character-
ization of the space of consistent directions S was obtained in terms of the
convergence rates of the corresponding design sequence to its limit points. By
employing a more general and yet simpler approach, we obtain here a similar
result for any regression model with one independent variable and smooth
regression function. When f;(x) is an extended Tchebycheff system, the above
characterization is further refined and the consistency region C is shown to
be either the set of limit points of the design sequence or the whole real line.

1. Introduction. Recently there has been a revived interest in the consistency
properties of the least squares estimators in the linear model (e.g., Chen, 1979; Lai,
Robbins and Wei, 1979; Chen, Lai and Wei, 1981; and others in the references of Wu,
1980). A basic result is that the least squares estimator 6 — 6 a.s. (or in probability) if and
only if (X}, X,)™! — 0 when {e;} =, are i.i.d. (or uncorrelated) with mean zero and variance
o? (Notations defined in (1.1) and (1.2) below). Wu (1980) observed the following
interesting fact: the best linear unbiased estimator b’6 of a linear combination b’0 can be
consistent for b’6 for some vectors b, even if the vector-valued estimator 6 is not. Such a
vector b is called a consistent direction of the least squares estimator §. Wu gave a general
characterization of the space of consistent directions of §. For the one dimensional
polynomial regression, he gave a more refined characterization in terms of the convergence
rates of some design subsequences. More recently Li (1982) has extended some of the
results to regression models with infinite parameters. The results of Wu (1981) and Li
(1982) show that for finite parameters the consistency of the least squares estimator is
equivalent to the existence of a consistent estimator. Therefore the consideration of linear
estimators herein is not restrictive.

The consideration of a design sequence converging to a finite number of limit points is
relevant in some statistical contexts. In stochastic approximation, the design sequence, if
properly chosen, converges to the desired location with probability one. An excellent
recent work is Lai and Robbins (1979). In sequential generation of optimal designs for
nonlinear situations, the design sequence tends to cluster around the (finite number of)
points in the support of an optimal design. A particular case was studied by Ford and
Silvey (1980). Our results are not directly applicable since these sequences are dependent
due to the nature of sequential generation.

It was discovered later that, by employing a simple and unified approach, a similar
characterization can be obtained for any one-dimensional regression problem with smooth
function f. Before spelling out the details, we shall give the basic framework and result in
the following.
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A linear model is given by

(1.1) y =221 0ifi(x) + e =0'f(x) + ¢

i=0

where 6 and f(x) are p X 1 vectors. We assume that x is a scalar, the random error ¢ has
mean zero, variance o2 and errors corresponding to different observations are uncorrelated
or independent. If y; is observed at x;, i =1, - - -, n, and X, = (f(xy), - - -, £(x,)) is of full
rank, the least squares estimate of 8 is given by

(1.2) b= (X.X,)'X,y,

wherey’ = (31, -+ -, ¥n)-
The following theorem plays a key role in the determination of consistent directions.

THEOREM A (Wu, 1980). u is a consistent direction if and only if
(1.3) o (Wh(x)2 =0 forall wu # 0.

Denote the space of consistent directions and the consistency region by S(f) and C(f),
respectively, i.e.,

S(f) = {b: b (X, X,)b = b’ (T £(x)f(x)') b —> 0 as n— o},
C{f) ={x:f(x) € SF),x € 2}, .

where 2 is a set on which linear model (1.1) is valid.

The main result for models with one independent variable x and smooth function f(x)
is stated as Theorem 1. When f(x) is an extended Tchebycheff system, the decomposition
of S(f) in Theorem 1 is further refined and a simple characterization of C(f) is given in
Theorem 2. For smooth regression models with several independent variables, extensions
of Proposition 2 are given in Wang and Wu (1982).

2. General consistency results for one independent variable. In the process of
establishing the characterization of S(f) for the polynomial regression model, Wu (1980)
employed special algebraic properties of the polynomial system. It will be shown that the
use of these algebraic properties is not necessary. The simple approach given below
involves examining the dominating terms of the Taylor series expansion of f(x). It is
generally applicable for any smooth f(x).

Let L(uy, u,, - - -, u,) be the subspace spanned by vectors u,;, uy, ---, u, and C’(a, b)
the set of functions with rth continuous differential in (e, b). In particular, C%a, b) is the
set of continuous functions in (a, b). Define f(x) € C'(a, b) if fi(x) € C'(a, b) for i = 0, 1,
.-+, p — 1. Throughout this paper we assume the design sequence {x;}7, is bounded. If
there is an infinite subsequence n; such that x,, — a as i — ®, we say that a is a limit
point of {x;} 2.

ProprosITION 1. If f(x) € C%a — 6, a + &) for some 6 > 0, then f(a) is a consistent
direction for any limit point a of the sequence {x;}i-..

It follows immediately from Theorem 2 of Wu (1980).

PROPOSITION 2. Ifx, —>aasi— 0, X7, (x,, — a)* = oo, f(x) € C"(a — 6, a + b) for
some 6 > 0, then £(a) are consistent directions fort = 1,2, - -, r, where

d’ d'fpr\

x=a

(Li (1982) obtained a similar result for nonparametric regression models.)
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Proor. We first prove that £f"(a) is a consistent direction. From Theorem 4, it is
sufficient to prove Y2, [w'f(x,)]? = « for any w'f”(a) # 0.

By the assumption, for any 0 < & < 6, there exists an N, such that |x, — a| < ¢ for
i > N.. Consider the Taylor series expansion of f(x,,) at a:

W E(xn) = Yheo (X, — @)W EP(a)/R! + (xn, — @)W ED(E) /(r + 1),
where & = a + 0;(x,, — @) and 0 < 6; < 1 from the mean-value theorem. Thus
Y W (x,)P = T2 (%, — @)

21 w'f(a) w'f%(a) w/f(a)  wErI(g)
. [(x,,i =a) (%, —a)" Pt Y (r+ 1)

2
(% — a)] .

Since f(x) € C™*'(a — §, a + §), 6 > 0, there exists a constant M > 0 such that | f{*V(&) |
< M for sufficiently large i and for all j. Therefore the last term inside the square bracket
of (2.1) converges to zero as i — .

Let i, be the first i with w/f®(a) # 0. From w’f"(a) # 0, i, < r. The terms inside the
square bracket of (2.1) are dominated by the leading term w’f"(a)/(x,, — a)"™", which
is bounded away from zero as i — oo. Therefore Y%, [W'f(x,)]* = o follows from
T (%, — @) = oo,

That f(a), t = 1,2, ---, r — 1, are consistent directions follows from the fact that
Y1 (xn; — @)* = o implies 32, (xn, — @) =0 for t <r:0

By combining the previous results for each limit point a; of the sequence {x;}i;, we

obtain the following main theorem.
Denote by V* and V; @ V,, respectively, the orthogonal complement of subspace V
and the direct sum of subspaces V; and V, (Shephard, 1966).

THEOREM 1. Suppose {x%,, j =1, 2, ---, k, are subsequences of {x;}7, such that
x$) — a;as i — o, and £(x) € C"*V (a; — 6, aj+ 8) for some §>0,j=1, ---, k, wherer; =
max{l: Y7 (2 — a;)* = o, | positive integer.) Then, the space of consistent directions

S(f) = T} Aj(f) © Ben(f),
where A;(f) = Lif"(a;),0<r=r}, j=1,2,---,k,
T A =fwu=3L u, u € A(D),
Bin(f) = {u € [T A;(D)]: T2 [WE()] = » for any w € [T} A;(F)]*

with w'u # 0}.

PrROOF. From Propositions 1 and 2, for each limit point a;, A;(f) C S(f)j=1, ---, k.
Therefore Y%, A;(f) C S(f). Since B,..(f) = S(f) N [T4, A;(£)]* by using the same
argument as in Theorem 2 of Wu (1980), the theorem is proved. O

We should note that there is no loss of generality in assuming finite k£ in Theorem 1.
In fact, if the design sequence {x;}%, has infinitely many limit points {a;}}~,, then there
exists a sufficiently large k such that A,(f) C Y%, A;(f) for all | = & + 1. In other words
the two sets {a;}%-, and {a;}%, are equivalent in the sense of producing the same space of
consistent directions.

COROLLARY 1. Under the conditions of Theorem 1, if the dimension of
L{f™q), r=0,1,---,1;,j=1,---,k} is p, then S(f)=R?, C(f) =R\
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In Corollary 1, an alternative sufficient condition for the asymptotic consistency of the
least squares estimator @ is provided. Unlike the more familiar condition (X,X,)™ — 0
which involves matrix inversion, our conditions are directly expressed in terms of the
“convergence rates” of the different design subsequences to their respective limit points.
There are many examples for which our conditions are easier to verify than the usual one.
We should also point out that Theorem 1 covers a broad class of f(x) functions including
those considered in Wu (1980).

3. Consistency results for the extended Tchebycheff system. For the poly-
nomial regression model, Wu (1980) expressed S (f) as the intersection of some subspaces.
Since the more general Extended T'chebycheff system (ET-system) shares all the required
properties of the polynomial system in establishing the characterization of S(f), we will
obtain, via Tueorem 1, a simpler characterization of S(f) for model (1.1) with f(x) being
an ET-system. For simplicity, we label such model as Model (T').

DEFINITION 1. The functions {f:(x)}2=} are called an ET-system of order ¢ + 1 on
[a, b), if fi(x) € Ca, b],i=0,1, ---,p — 1, and the determinant of the p X p matrix with
column vectors {f(x;), 0 =i<=m =gq, 1 =j=<k Y5, (m + 1) = p}, where f(x) =
(fo(x), - -+, fp-1(x))’, is positive for any choice a < x, < - .- < x;, < b. Further, if {f:(x)}i
is an ET-system on [a, b] foreachr=1,2, .- -, p — 1, then {f;(x)} 2/ is called an Extended
Complete Tchebycheff system (ECT-system) on [a, b]. The extensions of the ET-system
or ECT-system to open or infinite intervals are obvious.

According to Theorem 4.3 of Karlin and Studden (1966), the ET-system or ECT-
system includes a wide class of functions, e.g., the power functions {x} 2=}, the Tchebycheff
polynomial system {Ti(x)} 24 (i.e., To(x) = 1, Ti(x) = x and T,41(x) = 2x T\ (x) — T,-1(x),
r=1,2, ..., p — 2), and more generally any polynomial system {®;(x)}2, where ®;(x),
i=0,1, ---, p— 1, are polynomials of degree at most p — 1. Further, from elementary
properties of the ECT-system (Karlin and Studden, 1966, Theorem 1.2), it is easy to verify
that the following are ECT-system on the corresponding intervals: (i) {e**}; on (0, ), (ii)
{1, e*, xe*} on (— o, ), (iii) {1, In x, x} on (0, ).

The following two properties of ET-system will play a key role in determining S(f) and
C(f) for Model (T).

If {f;,(x)}*_) is an ET-system of order p on [a, b] and {x;}}, are k distinct points in
[a, b], then it follows from the definition that the vectors

(3.1) f2(x),0<=r=m,1=<j=<k 3k, (mi+ 1) =p}
are linearly independent.
The second property is stated as a proposition.
PROPOSITION 3. For an ET-system {f:(x)}2=3 of order p on [a, b],
L{fx),0<r=mj,1=j<k 3, (m+1) =p—-1}n{f(x), x € [a, b]}
={f(x;),l <j<k}
where {x;}%., are k distinct points in [a, b].
PROOF. The idea of proof is similar to that of Corollary 5 of Wu (1980). Any function
of the form F(x) = w'f(x) = Y25 w;f:(x), where w;, 1 =0, 1, - - -, p — 1, are real numbers,

is called a generalized polynomial. Consider a special generalized polynomial F (x) defined
by the determinant

F(x) = I f(O)(xl)’ Tty f(ml)(xl)’ f(O)(x2), Tty f(mz)(x2)’ Tty f(O)(xk)’ Tty f(Mk)(xk)’ f(x) I .

We note that x;, j = 1, - - -, k, are zeros of F(x) and their multiplicities are, respectively,
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mj+1,j=1, ---, k. According to Theorem 4.3 of Karlin and Studden (1966), F (x) has
no other zeros. From (3.1), f(x,), 0 = i< m;, 1 =j <k, are linearly independent.
Therefore

F(x) = 0iff f(x) € LIf(x), 0= i<m,1<j=<k Xk (m+1) =p}

The proposition is proved. O

We are now in the position to establish the characterization of S(f) for Model (T).
The notations are the same as in Section 2.

THEOREM 2. For model (T), i.e., model (1.1) with {fx)} 2= being an ET-system of
order p on {a, b],

(3.2) S(f) = &=, Ai(f).

This differs from Theorem 1 in that B (f) = 0.
Further, its consistency region takes two extreme forms,

(3.3) i) for Lk, (r;+1) = p, S(f) = R?, C(f) = R,
(3.4) (i) for Tk, (+1) =sp-1, C(f) = {a;}.

PrOOF. According to Theorem 1, X &, A;(f) C S(f), and from (3.1), the bases of the
subspaces A;(f), j=1,..., k are linearly independent. We may therefore replace Y%,
A;(f) by ®%, A;(f) in Theorem 1, i.e.,

S(f) = &1 Aj(f) © Ben(f).

It remains to prove Bys:(f) = {0}. To this end, it suffices to prove ey [wE (%)) < o for
any w € [®%, A;(f)]* because of Theorem A.

For any w € [®%, A;(f)]* and w # 0, we have w/f?(q)=0forj=1,---, kandi=
0,1, ---, r;. Therefore, the generalized polynomial w'f(x), x € [a, b], has zeros a, - - -,
with multiplicities r; + 1, - - -, rx + 1, respectively. By Theorem 2.3 of Karlin and Studden
(1966), w’f(x) has (= p— S4 (r, + 1)) other zeros, denoted by by, - - -, b,. Thus, for any
nonzero w € [®%, A;(f)]*, we may write

wE(x) = ¢ [k (x = @) [That (x — ba), x € [0, b]
where ¢ is constant, and
(3.5) ?il [W,f(xi)]2 =c? Y H;’g=1 (x; — aj)Z(r’+l) H‘.=1 (x; — br)?.

Because a;,j = 1, -+ -, k, are limit points of {x;}51, bn # a;, for any h=1,---,,j=1,
..., k. Therefore, the convergence or divergence of (3.5) is independent of the factor
[I4=1 (i — by)% It remains to prove the convergence of g(r) = Y1 I] by (g — a2,
where r’ = (ry, -+ -, re). Since | x; — a;| = b — q, for any i, j, we have

(3.6) 0=<g(r)=M3Yi I (x - )2,

where M = max{1, (b — a)zy“('f“)}. The convergence of g(r) follows from (3.6) and the

definition of r; in Theorem 1. The conclusions (3.3) and (3.4) follow easily from (3.1) and
Proposition 3, respectively. The proof is completed. O

Since the polynomial system is an ET-system, Theorem 2 applies to the general
polynomial regression models. For this special case Theorem 4 of Wu (1980) characterized
S(f) in terms of the intersection of some subspaces, while our Theorem 2 does it by the
direct sum of A;(f). Obviously, the latter is much simpler.

The results obtained so far provide us better insights to the following example given in
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Wu (1980, page 794):
y=0pe*+ 0,x + 0,x% + e =0'f(x) + ¢,

where f(x) = (e*, x, x?)’, 0 = (6o, 01, 05)’, y; is observed at x;.
There are two cases to be considered.

1. On [— 2, 2], {e, x, x?} is not an ET-system. It follows by taking x;, = =2, x, = 2, m, =
0, my; = 1 in Definition 1.
(1) Ifx; -2, T2, (x; — 2)2 =00, ¥y (x; — 2)* < o, by Theorem 1,

S(f) = L{f(2), £V(2)}.

From straightforward calculation, we have C(f) = {2, —0.5569}. It is a puzzling
phenomenon that consistency is achieved at x = —0.5569 whose neighborhood
contains no data at all. For an ECT-system this will not happen. Compare the
case 2(i) below.

(i) Ifx; > 2, 32, (1, — 2)2 = 3%, (x; — 2)* = o, by Theorem 1,
S(f) = L{f(2), £V(2), f?(2)} = R®* and C(f) = R.

2. On (-, 1), {e*, x, x%} is an ECT-system. It follows from Theorem 1.1 of Karlin and
Studden (1966). Thus by Theorem 2,

(i) If x; > 0, ¥5= x7 = 0, ¥i2; xf < oo, then
S(f) = L{f(0), fP(0)}, C(f) = {0}.
Gi) Ifx; =0, Y5, x? =3, xf = o, then

S(f) = L{f(0), £9(0), £2(0)} = R®, C(f) =R".
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