The Annals of Statistics,
1983, Vol. 11, No. 4, 1218-1224

ESTIMATING EVENTS

By MiICHAEL EvVANS

University of Toronto

The problem of estimating an event, having positive probability content,
based on a sample of n observations is considered. A natural metric is shown
to exist on the space of possible values for the event. This leads to the
definition of optimal estimators. We derive optimal estimators for events
which correspond to quantiles for the univariate exponential model. Further
optimal estimators are derived for the events bounded by the ellipsoidal
contours of the density function in the multivariate normal model.

1. Introduction. The problem we are concerned with. here is the estimation of an
event which has positive probability content. More precisely we suppose that for statistical
model # = (S, <7 {P,| 6 € Q}) we have the map Q:Q — o satisfying P,(Q(6)) > 0 for
every 6 € Q. The reason for requiring @ to have positive probability content will be
explained later. An estimator of @, based upon a sample of n observations from _#, is then
amap C:S" — 2 = {((0) |0 € Q). We would naturally like C to come “close” to @, in
some sense, in repeated sampling. In Section 2 we define what we mean by “close”.

We can consider the problem of estimating'the quantiles of a univariate distribution
as a special case of our problem. For if S = R!, o/ = %' and q: 2 — R is a §-quantile for
the model; i.e. Py((—, q(0))) = B8 = Py((—, q(#)]) for every § € Q, then we can speak
equivalently of estimating q or @:Q — %" defined by Q(6) = (—, q(6)]. The estimation
of quantiles for univariate distributions has been considered by a number of authors; for
example Mann (1969); Zidek (1969a); Zidek (1971); Robertson (1977); Dyer, Keating and
Hensley (1977); Dyer and Keating (1979); Schafer and Angus (1979); Angus and Schafer
(1979) and Reiss (1980). In Section 3 we present optimal estimators for the quantiles of
the exponential distributions which are different from those previously obtained.

In Section 4 we consider the problem of estimating the regions bounded by the contours
of the density of the multivariate normal distribution. Estimating these sets represents a
generalization of the traditional domain of application for estimation theory.

An alternative approach to making inferences about @ arises in the context of the
theory of tolerance regions; see for example Fraser and Guttman (1956), Evans and Fraser
(1980). The optimality theory of such regions is, however, quite different than the
development here which is based on a metric defined on 2.

2. Optimal estimators of events. Suppose that C:S™ — 2 is an estimator of Q.
If 6 is true and we have observed s we want a measure of how close C(s) is to Q(6). A
purely set-theoretic measure of the difference between two sets A and B is the symmetric
difference A A B= A U B — A N B. Further if u, is a measure on (S, &) then it is easy
to prove that dy: &/ X o/ — R defined by d,(A, B) = us(A A B) is a semimetric on &/
and thus also on 2. If 6, # 0, implies us(Q(6:) A Q(f2)) # O then clearly d, is a metric on
2. Thus dy(C(s), Q(f)) gives a numeric measure of the difference between C(s) and Q(6).
Taking dy(-, Q(8)) as the loss function we then have that estimator C is optimal in a class
% of possible estimators if C minimizes E,[d,(C(s), @(6))] uniformly in 6.

In a given context we must choose the u,. If S is Euclidean we might take u, = u where
u is Borel measure. Perhaps a more natural choice, and it is the one we will employ here,
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is to take us = Py. Thus it is the expected probability content of the set C(s) A () which
we wish to minimize for each . We note that we always have 0 < E,[dy(C(s), Q(9))] = 1.
Also if P4(Q(9)) = 0 then any C satisfying P,(C(s)) = 0 would be an optimal estimator of
C. For this reason we consider only those @ having positive probability content.

As a direct consequence of Fubini’s Theorem, as used in Robbins (1944), we have the
following result.

PROPOSITION 1.  For statistical model #, Q(0) € o7 and C:S"™ — <7 define ¢:S""' —
R by ¢(s, s) = 1 when s € C(s) A Q(6) and 0 otherwise. If ¢ is measurable and P§ X u,
integrable then E,[d,(C(s), Q(0))] = [s Pi(s € C(s) A Q(0)) dus(s).

Taking u, = P, this result says that the expected probability content of C(-) A Q(0) is
just the probability that in a sample of size (n + 1) from P, the (n + 1)-st value s is covered
by C(s) A Q(8). As we will see in Section 4, this proposition can be useful in computations.

As the problem we are discussing here is a decision problem we can speak of unbiased,
equivariant, consistent, etc., estimators for @. In the following sections we will restrict
attention to estimators which are equivariant under a group G acting on S which leaves
{P,]| 6 € Q} invariant. We note that there does not appear to be an easy analogue of the
Rao-Blackwell Theorem in this context and so the class of estimators which are functions
of the minimal sufficient statistic may not be essentially complete.

3. Estimating quantiles. We consider the problem of estimating Q(6) = (—o, g(6)]
where ¢ is a 8-quantile for (R!, &, {Py| 6 € Q}). Then the estimator C must be of the
form C(s) = (—, ¢(s)] and C(s) A Q() = (minjc(s), q(0)}, max{c(s), q(8)}]. If we take u,
to be Borel measure then an optimal estimator ¢ minimizes the expected distance from gq.
Taking u; = P, and denoting the distribution function by F, we have that d,(C(s), Q(6)) =
| Fy(c(s)) — Fo(q(6)) |.

In Robertson (1977) estimators of the quantiles of the exponential (f) distribution are
discussed. This paper obtained the estimator in the class of those of the form c(s) =
2., a;s; which minimizes E,;[d3(C(s), Q(8))]. We consider this problem using the approach
developed here and obtain new estimators.

EXAMPLE. Suppose that x = (x;, - --, x,)’ is a sample from the exponential (§) model
where § > 0 is unknown and we wish to estimate the 8-quantile g(#) = —6 In(1 — g8). This
problem is equivariant under the group G = R* with the product being ordinary multipli-
cation and with action on R” given by gx = (gx,, - - -, gx,)’. Accordingly we restrict our
attention to estimators satisfying ¢(gx) = ge(x). A maximal invariant statistic under the
action of this group is given by d = x/% where £ = (1/n) Y%, x; and thus c¢(x) = zc(d). As
% and d are statistically independent, see Fraser (1976) page 466, Problem 6, the optimal
conditional equivariant estimate given d will correspond to the optimal equivariant
estimator. Hence we write ¢(x) = %k and find the optimal & > 0.

Now d,(C(x), Q(0)) = | 1 — exp{—(z/n)k} — 3| where z = (n/8)x ~ Gamma (n). Then
E[dy(C(x), Q(6))] = E[| 1 — exp{—(2/n)k} — 8|] = d(k) and since 1 — exp{—(z/n)k} = B if
and only if z = —(n/k)In(1 — B)

d(k) = f (1 —‘exp{— Z k} - ﬁ)h(z) dz
—(n/k)In(1-8) n
—(n/)In(1-B) 2
- J(: (1 - exp{— o k} - B)h(z) dz

where h is the Gamma (n) density. Note that d(0) = 8, d() = 1 — 8 and thus when 8 =0
the optimal estimator is 0 and when 8 = 1 the optimal estimator is co.
Differentiating d using Leibnitz’s formula, Abramowitz and Stegun (1965), setting

(1)
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d’(k) = 0 and simplifying we obtain that k is a critical point of d if and only if k satisfies
G(—2(1 + n/k)In(1 — B)) = Y% where G is the chi-squared (2n + 2) distribution function.

Thus k is a critical point of d if and only if —2(1 + n/k)In(1 — B) is the median of the
chi squared (2n + 2) distribution and when this is so we have

b= -nIn(l — B)
T In(1 - B) + (%)xi(@2n +2)°

It is easy to show that d”(k) > 0 whenever d’(k) = 0 and thus whenever d has a critical
point it gives the absolute minimum. If d does not have a critical point then the optimal
equivariant estimator is given by ¢(x) = . We note that a finite k exists satisfying (1) if
and only if x%(2n + 2) = —2 In(1 — 8) and this is always true whenever 8 < .5. Further,
for any B, since x3(n) — ® as n — =, there exists an N, such that for all n = N; the
optimal equivariant estimator is finite. We have proved:

PROPOSITION 2. If x = (x;, -+, X,)' is a sample from a distribution in the class
{exponential (9) | 6 > 0} then a finite optimal equivariant estimator exists for the quantile
—0 In(1 — B) if and only if x5(2n + 2) > —2 In(1 — B) and this is always true whenever 8
=< .5. When such an estimator exists it is of the form xk where

B = -n In(1 - B)
T In(1 - B) + (%)x%i(2n + 2)°

We thus have that tables and approximations for the chi-squared distribution can be
used to evaluate this estimator. As the group G is transitive and abelian we have, by
Lehmann (1959, page 23) that this estimator is unbiased. Further, it is easy to show that
the estimator is consistent almost surely for the quantile.

In Dyer, Keating and Hensley (1977) an extensive discussion is given concerning
various point estimators for the quantiles of the univariate normal distribution. Follow-
ing the previous example, optimal equivariant estimators of these quantiles can be devel-
oped which differ from those previously considered. Reflecting the symmetry in the
normal case, an alternative definition of a -quantile could be Q(k, ¢) = [k — 620-g2,  +
62a-p)y2]. For a discussion of an applied context where this would be appropriate see Owen
(1964). Estimators for such quantiles are obtained as special cases of those derived in the
following section. The analysis for two-sided quantiles is substantially different than the
one-sided case.

4. Estimating the central events of the multivariate normal. Suppose that
X= (x{ -+ X,) € RP*" is a sample from the N,(u, Z) distribution where u € R? and I €
RP® positive definite, are unknown. Let @(, 2) = {y | (y — #)’ 27y — ») < ko} where ko
= xi-s(p) is the point exceeded with probability 8 by the Chi squared (p) distribution and
note that P, 5)(Q(u, Z)) = B for every (u, ).

On intuitive grounds we restrict attention to estimators C taking values in .2 and based
on the minimal sufficient statistic (%, S(X)) = ((1/n) Y%, x;, XX’ — nX X’). We note that
this problem is equivariant under the group G = {[a, B]|a € R?, B € RP* det B # 0}
with product [a,, B;][a;, B:] = [a; + B,a,, B;B,] and induced action on the minimal
sufficient statistic given by [a, B](X, S(X)) = (a + Bx, BS(X)B’). We then further restrict
to those estimators which are also equivariant under G. Thus C(x, S(X)) = [, S(X)r]C(0,
I) where Sy € R”* denotes the unique lower triangular matrix with positive diagonal
elements satisfying S = S7.S7 for positive definite S € R”**. The special case x = 0, S(X)
= I implies C(0, I) € 2; i.e. C(0, I) is an ellipsoid. If @ € R”*" is orthogonal then [0,
Q]C(0, I) = C(0, QQ’) = C(0, I) and this implies that C(0, I) is a sphere in R” centered
at 0. Thus C is of the form C(x, S(X)) = {y | (y — X)'S™(X)(y — X) < k} for some k. We
note that, as pointed out by a referee, we could extend the class .2 to include all convex
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subsets of R” and the above argument leads to estimators of the same form. In the
following we determine the optimal k. Whether or not this estimator is optimal in the full
class of equivariant estimators is undetermined.

Now
C(x, S(X)) A Q(u, 2) = {[x, S(X)7]C(0, D)} A {[n, Z7]Q(O0, I)}
= [, Zrli[n, 2717, S(X)7]C(0, I) A Q(0, I)}

-1
where z = Y7MX — u) ~ N,(0, (1/n)I) is statistically independent of S =
{ZrSUX)Zr) ~ W, n — 1), see Anderson (1958, page 162) and where W,(Z, m)
denotes the Wishart distribution in p dimensions with matrix ¥ and m degrees of freedom.
From the above we have that P, ) (C(x, S(X)) A Q(g, Z)) = P n(C(z, S) A @0, I))
where P, ) denotes the Np(u, =) distribution. Thus

E,[d/(C(x, S(X)) A Q(0))] = E[P0.(C(z, S) A Q(O0, )]

where the second expectation is with respect to the joint measure for (z, S) which we will
denote by P. By the proposition of Section 2 this expectation equals

(2 f  Ply€(z 9 A Q(0, 1)) dPo(y).

If |yl2 < ko then y € C(z, S) A Q(0, I) if and only if y & C(z, S); i.e. if and only if
Z-y)'S(z—y)>k.If|y|?> kotheny € C(z, S) A Q(0, I) if and only if y € C(z, S);
ie.ifandonly if (Z — y)'S™Hz — y) < k.

For fixed y we have «/r_z(i -y)~ N,,(—«/r_z , I) statistically independent of S ~ W,(I,
n — 1) as above. Assuming n > p, Anderson (1958, page 106, Theorem 5.22) gives that
((n — p)/p)n(z — y)'S~Y(z — y) is distributed as a noncentral F(p, n — p) distribution
with noncentrality n| y||2 If F(., 3, m, n) denotes the noncentral F(m, n) distribution
function with noncentrality 6 and with density f(-, §, m, n) then

P((z—y)'S™z —y) = k) = F(((n — p)/p)nk, n| y ||?, p, n — p).
Thus putting x = ((n — p)/p)nk, (2) is equal to

®3) J; iy IFGnlly I%.pn=p)} dPe, 1(y) + f iy F@nly I%.pin=p) dPe, n(y)-
Y=k 0

1y

Now | y I ~ x*(p), so putting s = || y||%, G, equal to the x* (p) distribution function,
&, = G}, and noting F(x, ns, p, n — p) is a function of s, we have that (3) is equal to

oc

ko
4) dx)= J; {1 — F(x, ns, p, n — p)}g,(s) ds + J/;, F(x, ns, p, n — p)gy(s) ds.

Note that d(0) = G,(ko) = 8 and thus the optimal estimator of u is given by X.

Differentiating d with respect to x, setting d’(x) = 0 and simplifying we obtain that x
is a critical point of d if and only if H(k, | x) = 2 where H(- | x) is the distribution function
of the distribution with density given by

h(s|x) = f(x, ns, p, n — p)gy(s) / { J(: f(x, ns, p, n — p) - gp(s) dS}%

Thus x is a critical point of d if and only if &, is a median of H(- | x).
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We have

flx, ns, p, n — p) = Ty {2g2m+z(ns)}{f<p +p o 0,p+2m, n — p)(p +p 2m)}

and thus

ko
J(: flx, ns, p, n — p)gy(s) ds

ko
= Zhmo { f 28emia(n)g(5) ds} {f(p L% 0,p+2m,n~ p)<p +p2m)}
([ (s e gt
) s e
rtmnasvimar))

x 1 . i n
= ( 0,p, n— p) ——l Y=o {Gpram((n + 1)ko)}{b<m, 3 p(x))}

= Z:.=0

n+1’

where b(m, r, p) = {T'(m + r)/(T(m + 1)I'(r))} p"(1 — p)™ is the negative binomial (r, p)
probability function and

o= 1= G259/ (2250

Thus we obtain h(s|x) = Yreo {b(m, n/2, p(x)}{gpsem((n + 1)s)(n + 1)}; i.e. an infinite
weighted sum of independent chi squareds where the weights are negative binomial
probabilities.

Now d’(x) = ¥ _o am(x) where

am(x) = {f(n—i—l 0,p,n— p)(ﬁ)}{l = 2Gpram((n + l)ko)}{b<m, g p(x)>}.

Differentiating a,,(x) with respect to x we obtain an(x) = am(x){k:i(x) + ko(x)m} where

_(p—2)(n—p+ px) — npx _ 2n—2p + px
kl(xf) N 2x(n — p + px) and  ky(x) = 2x(n — p + px)°

Justifying the differentiation through the summation by the dominated derivative theorem,
Fraser (1976, page 551) we have that d”(x) = ki(x)d’(x) + ko(x) Ym-0 man(x). Since {1 —
2Gp2m((n + 1)ko)} is an increasing function of m, there is an m* € N, such that a,,(x) <
0 for m = m* and a.(x) > 0 for m = m*. Now k,(x) > 0 and thus whenever d’(x) =0 we
have

d"(x) = ky(x){Zmzo Man(x) + Yoemesr Map(x)}
> Ro(x){Xmio M*am(x) + Yoemess m*am(x)} = 0.

Therefore any critical point of d is a point where the absolute minimum is achieved. If no
critical point exists then as d(®) = 1 — 8 we have that d is increasing whenever 8 < %
and thus the estimator is given by % and d is decreasing whenever B > Y2 and the estimator
does not exist.
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We note that Gp((n — 1)kg) = lims_oH(ko | ((n — p)/p)nk) and
m=0 b(m, n/2, 1/(n + 1)) Gpram((n + 1)ky) = limu_ H(ko | ((n — p)/p)nk).
Thus a sufficient condition for a critical point to exist is that G,((n + 1)ky) > % and
Y=o b(m, n/2, 1/(n + 1))Gpizn((n + 1)ky) < Y.

It is straightforward to show that these conditions are also necessary for the existence of
a critical point. It can also be shown that for a given 3 there exists an N; such that for all
n = Nj a finite estimator exists. We have the following

PROPOSITION 3. If X = (x4, - - -, X,) is a sample from a distribution in {N,(u, Z) | p €
RP, T € RPP p.d.} then an optimal estimator of the form C(X) = {y|(y — X)'S (x)(y —
X) < k} where k € [0, ) exists for Q(u, Z) if and only if

1 1 . 1
Go((n + 1)ko) > 3 and Yo b<m, g, m)ap+2m((n + ko) < 3

When such an estimator exists, k is the solution to H(ky | ((n — p)/p)nk) = Y.

We see that the evaluation of the optimal estimators requires the calculation of the k
satisfying V2 = H(ko | ((n — p)/p)nk) = Tm=o b(m, n/2, p(((n — p)/p)nk)) + Gpram((n + 1)ko).
If we truncate this series at a value of m such that Gpom((n + 1)ko) < ¢ and iteratively
solve for k using a Newton-Raphson routine, then ignoring numerical errors, the true
probability differs from % by less than e.

Let C, be the optimal estimator for n = N; and C}¥(x, S(X)) = {y | (y — X)'S-1(X)(y
— X) < ko/(n — 1)}. Then

0 = E\ 5[de(Ca(x, S(X)), @u, 2))] = E5[des(Ch(x, S(X)), Qr, 2))].

As the elements of X, (1/(n — 1))S(X) converge almost surely to the respective elements
of u and = we must have, for all y, that (n — 1)(y — x)’S™(X)(y — X) converges almost
surely to (y — u)’ Z7(y — u). Accordingly if y & Q(u, =) then

Plx(y € Ci(x, S(X)) A Qg, 2))
=P((n -1y -x)STX)(y —X) <k) >0 as n—o

and similarly if y € Q(u, =) then P, »)(y € C¥(%x, S(X)) A Q(u, Z)) — 0 as n — . Then
by the proposition of Section 2 we must have that E, 5)[d,. 5 (Ck (%, S(X)), Q(u, =))] -0
as n — . Therefore we have that C, converges to @(u, =) in the mean of the metric.

Events other than the ellipsoidal contours of the density function could also be of
interest for the multivariate normal. For example we might be interested in estimating an
infinite rectangle with one corner on a particular line in R” and containing 8 of the
probability. The approach developed here could be used to obtain optimal estimators of
such events.

5. Conclusions. We have been concerned here with obtaining optimal estimators
for events with positive probability content. We have applied our approach to univariate
problems and also have shown that it leads to estimators in an important class of
multivariate problems. Further it can be easily shown that the estimators obtained here
agree with the formal Bayes procedures for these problems, with the same restriction on
the estimates, following the development of Zidek (1969b).

We note that the optimal estimators obtained here may not exist for certain sample
sizes; e.g. in the example of Section 3 we may have « as the value of the estimate. From
the examples we considered, it would seem to be the case that the further the set being
estimated is from the center of the distribution, the more data we need to avoid this
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phenomenon. This would seemr to be in accord with the intuitive idea that inferences
about the tails of a distribution require more data than inference about the centre.
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