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ADMISSIBILITY OF INVARIANT TESTS IN THE GENERAL
MULTIVARIATE ANALYSIS ‘OF VARIANCE PROBLEM*

By JOHN I. MARDEN
University of Illinois at Urbana-Champaign

Necessary and sufficient conditions for an invariant test to be admissible
among invariant tests in the general multivariate analysis of variance problem
are presented. It is shown that in many cases the popular tests based on the
likelihood ratio matrix are inadmissible. Other tests are’ shown admissible.
Numerical work suggests that the inadmissibility of the likelihood ratio test
is not serious. The results are given for the multivariate analysis of variance
problem as a special case.

1. Introduction. The general multivariate analysis of variance problem (GMA-
NOVA) is a generalization of the growth curves model of Potthoff and Roy (1964). It has
as special cases the multivariate analysis of variance (MANOVA) and multivariate analysis
of covariance problems. Ware and Bowden (1977) have applied the model to a circadian
rhythm analysis and Zerbe and Jones (1980) to a time series analysis. Gleser and Olkin
(1970) expressed the model in a convenient canonical form and used invariance consid-
erations to reduce the problem and derive the likelihood ratio test, also found by Khatri
(1966). Kariya (1978) reduced the problem even further by applying sufficiency arguments
to the invariance-reduced problem. He investigated several tests and found the locally
best invariant test, which is admissible among invariant tests and locally minimax. Hooper
(1983) applied Kariya’s work to confidence set estimation.

The admissibility of tests besides the locally best invariant has not been determined.
In this paper we find a minimal complete class of invariant tests for GMANOVA under
certain dimensionality restrictions. The results are used to prove particular tests admissible
or inadmissible. The popular tests based on the likelihood ratio matrix T (see 1.3) are
shown inadmissible in many cases. We also specialize to the MANOVA problem, finding
the minimal complete class of invariant tests.

The work.of Gleser and Olkin and Kariya implies that when one is interested in only
invariant tests, it is sufficient to consider the following multivariate analysis of covariance
problem. Let Y = (Y;, Y;) be a multivariate normal matrix with mean u = (u, u2) and
independent rows with common covariance matrix =, where Y, and p; are m X p, Y; and
u; are m X ¢, and = is (p + q) X (p + q) nonsingular. Let S, (p + @) X (p + q), be
independent of Y and have a Wishart distribution on n degrees of freedom with mean .
That is,

(1.1) N Y ~ Noxprgy(p, I® Z) and S ~ Wyii(n, 2)
where [ is the identity matrix. We assume n = p + q. The problem is to test
(1.2) Houi=0,u2=0 versus Ha:p # 0, uo =0 basedon X =(Y,S),

the matrix = being unspecified. Thus we wish to test whether p, = 0 knowing that u, = 0.
It is hoped that the covariates Y; can be used to find better tests than those based on
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(Y4, Su) alone. (S and Z are partitioned in concert with Y and u.) Kariya (1978) introduces
the statistic (T}, T5):

(1.3) T] = (I + Tg)—l/zyl.zsl_ll.z Y'lz(I + Tz)_l/2 and Tg = sté_zl Y’z
where
Yio=Y, - stgzlszl and Sy = Su— 81282_21321-

Here and elsewhere we take a matrix square root to be symmetric. Conditional on T, the
statistic T is distributed as the usual matrix in MANOVA. Among the tests proposed for
GMANOVA (see Kariya, 1978) are analogs of the popular MANOVA tests, which we will
denote by «:(Ty), t = 1, 2, 3, 4. For a symmetric m X m matrix M, the x;(M) tests reject
H, for large values of the following statistics: '

k(M) :\ (M) (Roy’s Maximum Root Test);
(1.4) ko(M):tr(M) (Lawley-Hotelling Frace Test);

ks(M):tr[M(I + M)™'] (Pillai’s Trace Test);

k(M):| I+ M|,

where \;(M) is the ith largest characteristic root of M. The test x4(T}) is the likelihood
ratio test (LRT) for problem (1.2). Other tests are «;(T') tests, where

(1.5) T=YSY' =T+ T)"’( + TYU + T)*? -1,
appropriate for testing u = 0 versus p # 0 without assuming u, = 0, and «;(T*) tests,
where
(1.6) T = Y281 Y,
appropriate for problem (1.2) when 2,, = 0.
We now introduce the invariance group used. The «;(T;) and «;(T') tests are invariant,

whereas the «;(T*) tests are not. Let G, be the group of (p + q) X (p + ¢) nonsingular
matrices A of the form

_[Au O . )
A= <A21 A22)’ Anisp X p, AxisqXg,

and Z(m) be the group of m X 'm orthogonal matrices. Problem (1.2) is invariant under
the group G; X #Z(m) which acts on X via

(A, T):(Y, S) - (I'YA, A’SA),

and on (g, Z) similarly. Kariya (1978) hias shown that any invariant test is a function of
only (T4, Ts), although the statistic itself is not invariant. Banken (1983) gives an explicit
representation of the maximal invariant statistic. The maximal invariant parameter is

el A = Ny B out),

where \®(M) is the vector consisting of the k largest ordered characteristic roots of the
symmetric matrix M. The reduced problem tests

(1.8) Hy:A=0 versus Hy:AE Q= Q— {0},
Q=AER™PINZ= A= - = Appp = 0.

Kariya showed that the locally best invariant (LBI) test rejects H, when
(1.9) tr(I+ Ty) ' [(n+ m—q)T(I + T — pIl >c.

This test has greater power than any other essentially different invariant test of the same
level for A in some neighborhood of 0, thus is admissible among invariant tests. For m =
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1, Marden and Perlman (1980) found.the minimal complete class of invariant tests, proved
that the level o LRT is admissible among invariant tests if and only if & < «* for some
o* depending on (n, p, q), and proved that the test based on T is admissible among all
tests.

In Section 2 we present a class of invariant tests which are admissible among invariant
tests for problem (1.2). When p = m, this class is the minimal complete class of invariant
tests. In Section 3 we show that the «;(T}) tests are not in this class if m > 1, hence they
are inadmissible even among invariant tests if p = m > 1. The «(T) tests (modified if
p <m) and the «;(T*) tests are shown to be admissible among all tests for problem (1.2).

In Section 5 we do a small Monte Carlo study to see how serious the inadmissibility of
the LRT is, and to compare some of the invariant tests. The test based on

(1.10) I T+ To|P| I+ Ty|"tme

is generalized Bayes and admissible in the class of invariant tests. We expect this test to
be close in power to the LRT. The calculations support this expectation, suggesting that
the LRT is “c-admissible” (i.e., there exists an admissible test of the same level which
never beats it by more than ¢ in power) among invariant tests for reasonably small ¢ which
decreases as n increases. For example, ¢ ~ .01 when n = 5 or 10, and ¢ = .003 when n =
20, for a = .05.

The admissibility of the «:(T') tests is due to having good power at alternatives far from
H,, hence there is no guarantee that they have good power. for moderate values of the
parameter. The calculations in Marden and Perlman (1980) and Section 5 show that the
«4(T') test compares very unfavorably to the LRT. The LRT can beat the «,(T') test by as
much as .20 to .30 for « = .05, but rarely is beaten by as much as .001.

The LBI test (1.9) has the potential drawback, shared by the «3(T}) and (T tests,
that there may be a sequence { A} of parameter points for which A{™ — o but the power
does not approach one. See Anderson and Perlman (1982) for this behavior in MANOVA.
The numerical work shows that this drawback can be serious for small n, but lessens as n
increases. In comparing the LRT to the LBI test, it appears that the former is better when
A=(A,0,0---0)and A, is large, and the latter is better when A = (A,, Ay, - -+, A;) and
4, is small. For smaller n the differences are more pronounced. A more detailed study
would be needed to pin/down the relative advantages of the two tests.

2. Complete class results. Since (T}, T,) and (T, T) (see (1.3) and (1.5)) are in
one-to-one correspondence, any invariant test must be a function of (T, T'). The action
of Gis then (A, T'):(Ty, T) —» (T, I, I'TT"). For each T, choose 't € #Z (m) continuously
such that I'+TT 7 is diagonal with nondecreasing diagonal elements. Define the statistic
(V, W) = (u(X), w(X)) by

21) (X)) =Tz(I+ T)V'2T\(I + T)™VT%, w(X) = AmAe+)(T(] + T)™Y),
Let 7 ={w€E€R™P*|1>w; > w,> -+ > Wpaprg > 0}, and take 2 to be the space

of X in (1.2) with the null set of points deleted which lead to w(x) € % Thus for X € %,
# 1is the space of W.

The ratio of the density of the maximal invariant under a point 2 € Q, to that under
H, can be derived from Kariya (1978), Lemma 5.1 and Equation (5.6), by changing T to
I'Tr. The ratio as a function of x is then

Ri(x) = (const) f exp(— 1 tr £TTr(1 + TQ"I‘H"&)
2.2) £ (m) 2

% f |B'B|‘exp<— BB+t g'rQB') dBw(dT),
Gi(p) 2

where » is Haar probability measure on & (m), Gl(p) is the group of p X p nonsingular
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matrices, t = (m + n — p — q)/2, £ and Q are any m X p matrices such that
(2.3) =4, QQ =V,

and’for y € R* k < m, ¥ denotes the m X m diagonal matrix with diagonal elements
(v1, Y2 **+ 5 Yr, 0, - -+, 0). Complete the square in the exponent of (2.2) and notice that W
=[]+ V —=T¢({ + T;)"'T' 7 to obtain

(2.4) R, = (const)exp(— é ZA,-) f{( )exp<§ tr ZI‘WI")E,,(IB’B |9)»(dT)

where
B ~ N,x,(0, [,® I,) and 6 = £'TQ.

We need some definitions before presenting the Theorem. Extend the definition of
(Rs — 1)/Z A; continuously to A = 0 by setting

(2.5) (Rs — 1)/ZA;| amo = (mp)~'tr(tV + pW)/2 — Y% = LBI,
which is equivalent to the statistic in the test (1.9). The definition is legitimate by the
following.

KARIYA’S LEMMA. As ZA;— 0,

R: =1+ (SA)LBI + o(Z4)),
where 0(Z4A;) is uniform in x and ZA; < 1. Also, for all x,
-1 =< 2.LBI = ¢/p.
PROOF. See Kariya (1978), Lemma 5.3, and note that 0 <tr V=m, 0 < Zw, < m.

A set C C ¥ is said to be nonincreasing with respect to weak submajorization
(“nonincreasing,,”) if

(2.6) weC, we€ # and w <, w=w’ €C,
where <, is the partial ordering on # given by
2.7 w=s,w if wisw,wi+twir=sw +wy, . --,Zwi<uw;
and
w<,w if wi<w,wi+wr<w + w,, -+, Iw:<Zw,.

See Marshall and Olkin (1979), Definition 1.A.2 and Proposition 4.B.7. Define the class
% to consist of all closed (in 7 ), convex and nonincreasing, subsets of % which depend
only on the first m A p components of w. Let Qo={A€ Q| ZA; <1} and Q, = {A € Q| ZA;
= 1}, and for any finite measure #° on Q and locally finite measure ' on Q, define

(2.8) d(x; 7 7)) = f [(Ry — 1)/ZA]x%(dA) + f Rux'(dA).
Q (Ut

Denote by ® the class of invariant tests ¢ of the form
1 if wkx)€gC

(2.9) o(x) =<1 if d(x; =% 7)) >c
0 otherwise, a.e. [u],

where C € &, #° and =' are as above, | ¢ | < ®, u is Lebesgue measure on 2, and for w(x)
€int C, |d(x; 7°% 7') | < .
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THEOREM 2.1. For any (p, m), all tests in ® are admissible among invariant tests. If
p = m, ® is the minimal complete class of invariant tests.

REMARK 2.2 Within the class of invariant tests, generalized Bayes tests of the
following form are admissible. Let = be any locally finite measure on Q4 such that
JRaw(dA) < o« for all x. The test which rejects H, if and only if fRim(dA) > ¢’ for some
¢’ isin ®: take C = ¥,

71(dA) = Iyw(dd), #°(dA) = (ZA)]sj0<zs<am(dA)

and ¢ = ¢’ — 7(Q), where I, is the indicator function of A. Thus d(x; #° #') — ¢ =
JRw(dA) — ¢’ for d in (2.8), and %) < o since R, = 1 implies that = must have finite
integral near 0 in order for [R.w(dA) to be finite. Hence Theorem 2.1 proves the test
admissible among invariant tests.

PROOF. We will use the results in Marden (1982), but find it easier to apply them to
the following artificial problem. Consider (1.2) based on X € 2  with density R.(x)fo(x)
with respect to u, where f, is the density of X in (1.1) when u; = 0 and = = I. Since
(V, W) is a sufficient statistic in this new problem, and has the same distribution as it
does in the original problem, an invariant test is admissible among invariant tests in the
original problem if and only if it is admissible in the artificial problem. Below we will use
asterisks to denote theorems, equations, assumptions, etc., which appear in Marden (1982).
We note that in that paper, 2 is assumed to be convex. This is not true here, but
Theorem 2.1* goes through without that assumption.

First let (p, m) be arbitrary. A look at Part II* of the proof of Theorem 2.1* will reveal
that any test in & is admissible if the Local Assumption* and Equations (2.8)*, (2.12)*,
(2.13)* and (2.17)* hold. The Local Assumption* holds immediately by Kariya’s Lemma.
It is convenient to show (2.7)* now, which states that for any C € 7,

(2.10) int w™(C) = w™\(int C),

where the interiors are relative to 2 and # respectively.

Since w is continuous, w~'(int C) C int w™!(C). For the reverse, suppose x & w™'(int
C), so that there exists a sequence {w™}, w'® & C, such that w*® — w(x). For x = (y, s),
let ys~'/2 = T' Dy, where D is diagonal of order m A (p + q) with diagonal elements d; >
d2> - .- > dnap+g > 0, and T'(Y) is appropriately dimensioned with orthogonal columns
(rows). Since T(x) = ys7'y’, w; = d¥(1 + d?7'. Define x® = (y®, s) by letting
y*® = TD® y where d{¥ = [w®/(1 — w{®)]*/2. Thus w(x*®) = w'®, so that x*® & w™(C).
Also, x'® — x, which shows x & int w™'(C). Hence (2.10) holds.

Now (2.8)* requires that u (boundary w™(C)) = 0 for C € ¥. By (2.10), boundary
w™}(C) = w™ (boundary C). Since C is convex in %, its boundary has zero #-Lebesgue
measure. Since the distribution of W is absolutely continuous with respect to that measure,
u (w™ (boundary C)) = 0.

At this point we need the following lemma.

LEMMA 2.3. Take B ~ Npx,(0, I, ® I,). For fixed t > 0, there exist positive finite
constants B; and Bs such that for all p X p matrices 6,
(2.11) B; < |I+60’|Ey(|BB’|*) < Bs.

PrOOF. Let Y=B—0,H=(I+66’)"2and G = (I + 00’)7/%9. Thus
(2.12) HH’ + GG’ = I,.

Now
!
|I+ 60’ |Ey(|BB’|*) = E(|HYY'H' + GY'H’' + HYG’ + GG’ |*) = L(H, G).
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Consider L as a function defined for all p X p (H, G) such that (2.12) holds. For any fixed
such (H, G), L is clearly finite. It is also strictly positive since the determinant in the
expectation is strictly positive for Y = I and a continuous function of Y. The lemma
follows by noting that the set of matrices satisfying (2.12) is compact.

Thus by (2.4) and (2.11), R, is bounded above and below by B; and Bs, respectively,
times

(2.13) (const)exp(— % EA,-) f [T+ ¢TVI'¢ I‘expe trKI‘Wl")v(dI‘).
Let a(A) = | I + A |~ exp(“ = A;). Equation (2.12)* requires that for n € Q4 anda € R,

(2.14) lim,_.a(sn)exp(— sa/2)R;,(x) = 0() as n'w(x) <a (> a).

By (2.13), this is equivalent to

lim,_, f | I+ sq|~¢| 1+ saTVT’ I‘expe [tr ﬁI‘WI“’ - a])u(dl‘) = (o)

(2.15)

as n'w(x) <a (>a).
Since
(2.16) SUPre »(m tr ATWT’ = ZAw;, for AE Q, w€E ¥,

(2.15) does hold: if n’w(x) > a, there exists a set of I'’s of positive v-measure for which the
integrand goes to +o, and if n’w(x) < a, the integrand is bounded by exp[s/2(n’w(x) —
a)] because

2.17) [ VI<|I+A|*|I+ATVIV|*<1 for AE Q4.
In addition, this observation yields that

sup;soa(sn)exp(—% sa)Rs,,(x) < (const)Bs when 7'w(x) <a,

which satisfies (2.13)*.

For (2.17)* we need that when (%°, %, ¢) # (0, 0, 0), u({x|d(x; 7°, =') =¢}) = 0. If
(=°, #¥) = (0, 0), ¢ # 0, so that the set is empty. Otherwise, note that R, for A € Q, and
LBI are strictly increasing in each w; for fixed V. (See (1.9) and (2.4) and use tr ATwWI'’ =
23I'%Aw;.) Thus d in (2.8) also has that property, which implies (2.17)*. Thus all tests
in ® are admissible among invariant tests.

Next suppose p = m. We will verify the remaining conditions for Theorem 2.1*. Let &
be the class of subsets D of 2 such that for some sequence {r,} of finite measures on Q,,

(2.18) D= closure{x | lim supg—e f Ramr(dA) < oo}.

We must show that
(2.19) 2 ={wlC)|Ce %l

Start by taking C € ¥. Let {n’} C Q, and {a’} C R be sequences such that C = N;{w €
7 |w’'n® < a?}. Such sequences exist since C is convex and nonincreasing,,. Define the
proper measure 7,(dA) = Y2, 2 'a(kn”)exp(—ka'?/2) ki) (dA), where b, is point mass one
at A = 7. Hence by (2.14), D in (2.18) is w™(C). For the reverse, take D, {r,] as in (2.18).
By (2.17) and (2.13) we have

(2.20) B;| V|%e(A, w(x)) = Ry = Bse(4, w(x)),



1092 JOHN I. MARDEN

where

(2.21) e(A,w)=|I+ Zl‘exp(— 1 EA,~> f exp(l tr ZI‘II)I")v(dI‘).
2 6 (m) 2

Since p = m, | V| >0, so that by (2.20), for any subsequence {I(k)} C {&},

lim,__,m f RAﬂl(dA) = O(OO)
(2.22)
if and only if lim;_. f e(A, w(x))m(dA) = 0().

Hence from (2.18), D = closure w=!(C’) where
C' = «{w € # |lim sup,_. f e(A, w)m(dA) < oo}».

For each A € Q,4, e(A, w) considered as a function of w € (0, 1)™ is convex, symmetric
under permutations of the elements of w, and strictly increasing in each w;. Thus
Proposition 4.C.2d of Marshall and Olkin (1979) implies that e(A, w) is increasing,,, hence
C’ is convex and nonincreasing,. Taking C = closure C’, we have that C € ¥, and by
(2.10), that D = w™*(C). Thus (2.19) holds. -

It remains to show (2.9)* (2.10)* and (2.11)*. The first equation requires that if w €
int C for C € &, then there exists w’ € int C with w’ >, w. Since int C is open in %, and
# is open in R™, there exists ¢ > 0 for which the ¢-ball around w is contained in int C.
Thus w’ = (w, + ¢/2, ws, - - -, Wy,) satisfies the requirement. See (2.7). For (2.10)* we need
that for each D as in (2.18) and x & D, there exists a subsequence {l/(k)} C {k} such that

(2.23) lim;_ f Ri(x’')mi(dA) = © for all x’ with w(x’) =, w(x).

By the definition of D, there exists a subsequence such that the limit in (2.23) holds for
x’ = x. Since e(A, w) is increasing,,, (2.22) shows that the same subsequence can be used
to show (2.23).

Equation (2.11)* requires that if w(x’) >, w(x), then

(2.24) lim, e SUPz a2 [Ra(x)/Ra(x”)] = 0.

From (2.20) it suffices to show the - same with Ra(x)/Rs(x") replaced by e(A, w)/e(A, w')
for w’ >, w. Letting g(T', A) = tr ATw’'T"’ — ZA;w;, and multiplying the numerator and
denominator by exp(— Y2 ZA;w;), we have

SuPzAiz‘m[e(A’ w)/e(A) w,)] = SupZAxa‘W { J;'( )exp(% g(r’ A))V(dr)}
1. -1
=< { fi’(m)exp[é infs,=,,8(T, A)]y(dr)} .

ianA;zyog(r’ A) = infya‘yoianA,alg(F, 'YA) = inf‘y;‘yog(r),

where §(T') = inf{g(T, A)| ZA; = 1}. Note that the infimum in the definition of g can be
taken over the finite number of extreme points of the convex set {A € Q| Y A; = 1}. Thus
& is continuous in I' and is strictly positive for I' = I (see (2.7)) since these properties hold
for g(A, T') for each A. We can therefore find a set ¥ C ./~ (m) of positive »-measure on
which g(I') > ¢ for some ¢ > 0, that is, on which inf{g(T, A)| ZA; = vo} = 7ee. The final

(2.25)

Since Q is a cone,
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expression in (2.25) is consequently bounded by exp(— Y2 ¢ v,)(»(¥))~}, which approaches
zero. as vy, — . Equation (2.24) follows, completing the proof of the theorem.

We end this section with some properties that all tests in ® satisfy. Theorem 2.1 implies
that these properties are necessary for admissibility among invariant tests when p = m.
Recall that \;(M) is the ith largest characteristic root of M.

COROLLARY 2.4. If ¢ € ®, the acceptance region of ¢ is

(i) for fixed W, nondecreasing in each \(V);
(ii) for fixed V, convex in W and nondecreasing in each W;;
(iii) for fixed U= W — V, convex in (\1*(V), -, A¥%,(V)) and nondecreasing in each
N (V)
(iv) for fixed T., nondecreasing in each \(T)).

PrROOF. The function R, satisfies the above properties for each A, hence so does d of
(2.8), and likewise the set {(v, w)|d(x; #°, ) < c}. Since it'can be checked that each C
€ ¢ satisfies the conditions, the corollary is proved.

We show the conditions hold for R,. Property (ii) is clear. The convexity condition in
(iii) follows by writing (2.4)

R, = exp(— 1 EA;) f exp 1 tr ATUT’ + 1 tr ZI‘VI")E,(lBB’ | “)v(dT’)
2 Lo(m) 2 2

and noting that
exp(% tr KI‘VI")E,( | BB’ |*) = (const) fIBB’ I‘exp(— % tr BB’ + tr £’I‘QB’> dB,

where we take Q; = A*(V) fori =1, ---, m A p and Q;; = 0 otherwise. Property (iv)
follows from (iii) since U = I'7(I + Ty) Tz and T+ Ty (I + T)"'T'r = U™Y2VU~Y2, Finally
the monotonicity condition in (iii) and (i) will follow from showing that

(2.26) E,(| BB’|*) is nondecreasing in each \;(V).
In fact, the following lemma implies that
(2.27) R, is strictly increasing in each \;(V) for fixed W.

LEMMA 2.5. Suppose B is as in Lemma 2.3. If t = Y then E,(| BB’|") is strictly
increasing in each \;(60").

PROOF. It is enough to show the result for # diagonal and \;(80’) = 6%, with 6,, > 0.
Define B by Bi; = By, — 61, and B;; = B;; otherwise. Let M be B with the first row and
column deleted, so that

|BB’|* = [abs(| B| + 6| M])J*.

Since the first row of | B| has a distribution which is symmetric about zero, | B| and
— | B| have the same distribution, hence

(2.28)  E(|BB’|') = :E{[abs(| B| + 61,| M|)]* + [abs(| B| — 61, | M |)J*}.

Since 2t = 1, the expectant on the right hand side of (2.28) is nondecreasing in 6 for all
(1B, | M|) and strictly increasing in 6;; when | B| and | M | have the same sign. Hence
the lemma.

3. Specific tests. In this section we verify the admissibility and inadmissibility
results mentioned in the Introduction. Note that by taking #° =, 7' =0and C = % in
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(2.9), Theorem 2.1 reiterates Kariya’s result that the LBI test (1.9) is admissible among
invariant tests. The theorem also shows that tests of the form

(3.1) ¢(x) =1(0) as w(x) &€ C(EC) for CE ¥

are admissible among invariant tests. When p = m, the «;(T) tests are of this form. The
same holds for p < m if we replace T by A\?’(T), that is, we only consider the p largest
characteristic roots of T. The maximum root test «i(T') is not affected by this modification.
Proposition 3.2 shows that these tests are in fact admissible among all tests for problem
(1.2), as are the «;(T*) tests. At the end of the section we derive the Bayes test (1.10) used
in Section 5.

Turning to the «;(T:) tests, note that they are of the following form. Define T} =
ANmAP(T,), and let its space be 7 = {z € R™P|1> 2, > .- > 2,1, > 0}. Consider tests
such that

(3.2) o(x) =1(0) as TF & A(E A)

where A C 7 is nonincreasing in the sense that if 2 € A and z® € 7 with z® < z{
for all i, then 2? € A.

PROPOSITION 3.1. Suppose m > 1. No nontrivial test of the form (3.2) is in ®.

Hence by Theorem 2.1, if p = m > 1, the tests (3.2) are inadmissible even among
invariant tests.

PrOOF. Take ¢ nontrivial of the form (3.2), and assume ¢ € ® as in (2.9). Since the
regions where ¢ = 0 and ¢ = 1 are connected in 2, and d(x; 7°, ') is continuous, ¢ is
as in (2.9) with the “a.e.[u]” removed. First choose an arbitrary W € #, and find V and
T diagonal so that T, = (I — W)~'V is diagonal. Since A is nonincreasing, the elements
of V can be chosen small enough that T¥ € A. Thus W € C in (2.9), hence C = ¥.

Next take A on the boundary of A in 7 so that d(x; 7°, #') = ¢ when T§(x) = . For
w € ¥, define vV (w) to be the m X m diagonal matrix with diagonal elements v{*(w) =
N —w)ifl =i<mAp, v (w) =0 otherwise. Let v®(w) be the same as v™(w) except
that v{®(w) = M(1 — wy) and V2 (w) = M(1 — w,). Take w € ¥ with elements close
enough to one that (v*(w), w) are attainable values of the maximal invariant statistic.
Considering R, and LBI to be functions of (v, w), it can be seen from (1.9) and (2.4) that
their definitions can be continuously extended to be functionson Z = {(v,w)| 0 =v =<
I., w € ¥ (the closure of ¥ in R™**9)}, Also, d can be defined to be a function on
Z through (2.8). Take a sequence {w’} C # where w{’ — 1, w® = w; for i = 2, and let
w® be the limit. Below we show that

3.3) ¢ =lim_.dw®W®?), w; r°, ) = dWw®W°), w *°, '), k=12

Condition (2.27) holds also for R, on <, hence for d on &. Thus for fixed w = w° € %,
d is strictly increasing in each X\;(V). But from the definition of v*®, we have that v{"(w°)
= vP(w°) for i # 2, and v (W°) = Aa(1 — wy) < M(1 — wy) = v (w®). Thus the right-
hand side of (3.3) for & = 1 is strictly less than that for £ = 2, which contradicts (3.3).
Thus ¢ & .

For (3.3) we need to interchange the limit and integrals in (2.8). It is immediately
allowable for the first integral since its integrand is uniformly bounded in (v, w) € ¢ and
A € Q. See Kariya’s Lemma. Since this first term is uniformly bounded and d(v*(w), w;
m°, m') = ¢, the second integral is bounded by some finite K, hence

K = lim inf,.q,...,1) f R.(v®(w), w)x'(dA).
(Y

Thus Fatou’s Lemma and the fact that R.(v*®(1, ---, 1), (1, - - -, 1)) = 1 shows that #*(Q,)
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=< K. Using (2.20) we have

(const.)'Ra(v®(w®), w?) < Bse(A, w?) < Bse(A, w°)

= Bs(1 + A)™ L(m) exp(—A; Y T%(1 — wy)/2)w(dT),

which is bounded since w, < 1 (rank(T) = m A (p + q) = 2). Thus the Dominated
Convergence Theorem can be used for the second term in (2.8), proving (3.3). The proof
of the proposition is complete.

We now treat admissibility among all tests. Define w*: 2 — #* = {w € R™""|1>
Wy > -+ > Wmap > 0} by

(3.4) w*(X) = N (Yi(Su + Y1Y)7'YY),

and let £* be the class of closed, convex and nonincreasing, subsets of % *. The «(T™*)
tests are of the form

(3.5) o(x) =1(0) as w*(x) € C* (€ C*) for C*eE Z*

PROPOSITION 3.2. Any test of the form (3.1) or (3.5) is admissible among all tests for
problem (1.2).

Proor. We use the Stein-Birnbaum technique as Schwartz (1967) did. The distribu-
tion of X in (1.1) is exponential with exponent (g, Z)eX = — Y% tr Z7(S + Y'Y) +
tr 7'4’Y, and the alternative space is A = {(g, Z)| £ nonsingular, 4 = (u,, 0)}. For any
choice of (g, =) € A and s > 0, (u, Z/s) € A. Thus for any arbitrary collections {(u;Z:)}ies
C A and {c;}ie; C R, the test with acceptance region

(3.6) D= Nierf X | (i, Zi)° X < ¢}

is admissible. For A € 2, and c real, take £ as in (2.3) and define

D(A, ¢) = NanecfX [ (T'EAT, (AA")™) o X = ¢}
= {X|supumec(T'EA7}, (AA")™) o X < c}.

Since (I'"¢A™Y, (AA’)™Y) € A, D(A, ¢) is as in (3.6). To evaluate the supremum in (3.7),
change A to AcA for A, € G, satisfying Ao(S + Y'Y)A, = I and YA, =
(Y1282, V,S5372), where S =S + Y'Y and Y,, = Y; — Y,$5 S,:. Complete the squares
with respect to A;; and A;,, and use (2.16) to show that the supremum is 2 w’A. Since
any set C € 9 can be written as N2, {w € % | w’ #'” < ¢;} for some sequences {n} C Q4
and {c;} € R, by taking D = N D(n, ¢;), (3.6) and (3.7) show (3.1) to be admissible.

The proof for the tests (3.5) is similar except that we strict A € G, to have A;, = 0 in
3.7).

Finally we show that the test (1.10) is admissible among invariant tests. We start by
defining :

3.7

Ri(x) = (const)exp(— % tr M(I + To)™*M ’>
f |B’B|‘exp<—ltr B’B + tr MQB’) dB
Gi(p) 2
for M € _#, the set of p X m matrices of full rank. A straightforward calculation will yield
(3.8) f Ri(x) dM = c. | I + To|P2| I + Ty| ™92,

(Complete the square with respect to M and integrate it out to obtain the factor



1096 JOHN I. MARDEN

|I + T,|?2 Then change variables from B to B(I — Q'(I + T:)Q)™'”2, and note that
[I—Q'(I+ T)Q| =|I+ T:|™".) Since dM is invariant under M — MT for I' € .Z(m),

fRf,(x) dM = f f Rir(x)v(dT') dM
p4 #A ~ O(m)

(3.9) = L Ram(x)dM

= J; Ri(x)w(dA).

The second line comes from (2.4) by taking A(M) = A™"?(M’M), and in the third line =
is the measure on Q, induced by dM through A(M). Thus (3.8) and (3.9) show that the
test (1.10) is generalized Bayes as in Remark 2.2, hence admissible among-invariant tests.

4. MANOVA. Consider the problem testing
(4.1) Ho:ﬂl = (0 versus HA:ﬂl # 0 based on (Yl, Su),

where Y; and Sy; are as in (1.1). This problem is (1.2) with ¢ = 0. The invariance group
here is G = Gl(p) X .~ (m) which acts as in Section 1. Schwartz (1967) has given necessary
conditions and sufficient conditions for an invariant test to be admissible among all tests.

The maximal invariant statistic and parameter are w*(X) in (3.4) and A* =
AmAPY (4, B 5ul) respectively. The ratio of densities for the reduced problem is given in

James (1964, Equations (73), (74) and (23)) by

1 _
R = (const)exp(— 5 m,*) L ( )IFI(” ; ™. b % A* r-*wr')u(dr)

where b = max(p, m). It can also be written as R,. of (2.4) with (v, w) replaced by (w*,
w*). Let ®* be the class of tests based on (Y3, S;;) of the form (2.9) with (R, w, C, ¥)
replaced by (R%., w*, C*, £*).

THEOREM 4.1. ®* is the minimal complete class of invariant tests for problem (4.1).

PROOF. When p = m, the proof follows that of Theorem 2.1 with ¢ = 0 and R%.
instead of R,. When p < m, the proof is similar, but Equation (2.20) needs to be replaced
by

B, | w* |‘e*(A*, w*) = R%. < Bge*(A*, w*)

where
— 1 —
e*(A*, w*) = f | I+ I"uA*I‘ul‘lexp(i tr A*I‘uu')*I"u)u(dI‘),
7(m)

A* and w* are p X p diagonal matrices containing A* and w* as diagonals, and T';; is the
upper left p X p part of T'. For a fixed A*, e*(A¥*, w*) is clearly convex in w*, and increasing
in each w¥. It is also invariant under permutation of the elements of w* since any
permutation can be performed by transforming I';; alone. Hence e*( A*, w*) is convex and
increasing,. The rest of the proof follows as in Theorem 2.1 with minor changes.

The «;(T*) tests (1.4) are in ®* since they are of the form (3.5). Schwartz has shown
all such tests to be admissible among all tests. His necessary condition for an invariant
test to be admissible among all tests is that the acceptance region must be convex and
nonincreasing, in (w2, - . ., w¥Y%?2). That this condition is also necessary for admissibility
among invariant tests follows from Theorem 4.1 by using the technique in Corollary 2.4
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and noting that

R%. = (const)exp(— % ZA,*)

1 —
. f f |B’'B I‘exp(— ~tr B'B + tr A*l/zl"u’)*‘/“’B) dBy(dT),
#(m) YJGl(p) 2
which is convex and symmetric in (wiV?, .. ., wEy?).
We mention that the Bayes tests analogous to the one at the end of Section 4 is here
the LRT, ki T*).

5. Numerical comparisons. Consider the LRT, «4(T) of (1.4), and the Bayes test
(1.10). Under Ho, T, and T, are independent. See Kariya (1978), Lemma 3.1. For large n,
there are constants a and b depending on (n, m, p, q) such that

alog|I+Ti| = x2 and blog|I+ To| = xZn.

See, for example, Pearson and Hartley (1972), page 99. Thus the difference between the
LRT and Bayes test (1.10) is similar to the difference between tests based on x2,, and X2m
+ k x2, where

k=pln—-g—"%((p—-—m+1)]/[n—%(@—m+ 1)n+m-q).

For large n, k = p/n, hence the kx%, part adds little to the second test, suggesting that
the LRT and Bayes tests are alike.

The Monte Carlo study looked at the difference in power of the two tests for various
values of A for a = .05. Each difference was calculated using 10,000 pseudo-observations.
In Table 5.1 we exhibit the maximum the LRT beats the Bayes test and the maximum
the Bayes test beats the LRT, where each maximum was taken over between 10 and 15
parameter points. The standard errors for these differences ranged from .0004 to .003. As
can be seen, even for small n the two tests are very close in power, and the LRT almost
always beats the Bayes test by more than the Bayes test beats the LRT.

To compare the LRT to the LBI test (1.9) and the x,(T) test (1.4), we proceeded as
above, although some differences were based on only 100 replications. We include in Table
5.2 the comparisons as well as the maximum power the LBI test was observed to have.
Clearly the x4(T') test can be dismissed. The LBI test and LRT should be explored more
carefully, as it appears that each has some advantages over the other.
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