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A NOTE ON THE VARIABLE KERNEL ESTIMATOR OF THE
HAZARD FUNCTION FROM RANDOMLY CENSORED DATA®

By MARTIN A. TANNER
University of Wisconsin

In a recent paper (Tanner and Wong, 1983b), a family of data-based
nonparametric hazard estimators was introduced. Several of these estimators
were studied in an extensive simulation experiment. The estimator which
allows for variable bandwidth was found to have a superior performance. In
this note, sufficient conditions for the variable kernel estimator to be strongly
consistent are presented.

1. Introduction. Let (T}, C;),i=1, ..., n be independent and identically distributed
pairs of non-negative random variables. Assume that T; and C; are independent for all i,
Denote by Sr(fr) and Sc(fc) the survivor (density) functions of T; and C;, respectively.
(See Miller, 1981.) In the random censorship model we observe the pairs (Y;, 5,-), i=1,

++, n where

Y, = min(T}, C;)
Si=IT.<C)
¢=Ym &

The problem is to estimate the hazard function A(z) = fr(z)/Sr(2).

Deﬁne Ry as the distance from the point z to the kth nearest of Y;, .., Y, , where
5,1 =§, = 8 =1 (assume %k =< ¢). R, then is the distance to the kth closest failure
neighbor from 2. Let d; be the indicator random variable associated with Y ;).

The variable kernel estimator of h(z) is defined as

5,' —Yi
@ h(2)=_2‘“ n—i+1K(22Rk“)‘

This estimator has the appealing feature that the configuration of the data plays a role in
determining the degree of smoothing. In data sparse (dense) regions, R, will be large
(small) and the kernel will be flat (peaked).

In an extensive simulation study, Tanner and Wong (1983b) compare a data-based 3-
parameter nonparametric estimator, which incorporates the kth nearest failure neighbor
distance, to a data-based 1-parameter nonparametric estimator with constant bandwidth.
(The theoretical properties of the 1-parameter estimator are discussed in detail in Tanner
and Wong (1983a), while Yandell (1983) and Ramlau-Hansen (1983) examine a truncated
1-parameter kernel estimator.) The performance of the data-based 3-parameter estimator
is shown to be superior to that of the 1l-parameter estimator. Our ultimate goal is to
establish the theoretical properties of this fully data-adaptive estimator. However, this is
a difficult problem. We regard the present paper as solving a significant component
problem. One must understand how these estimators behave when the parameters are
chosen deterministically as a prerequisite to the analysis of the behavior of the data-
adaptive procedure.
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Several authors (Fix and Hodges, 1951; Loftsgaarden and Quesenberry, 1965; Wagner,
1975; Moore and Yackel, 1977; and Mack and Rosenblatt, 1979) have discussed the
theoretical properties of the variable kernel estimator of the density function and the
special case nearest neighbor estimator. We point out that the estimation of the hazard is
a somewhat more difficult problem, since formula (1) depends on both the order statistics
of the sample and the ordering induced by estimating the hazard at a point and sorting the
data to obtain the kth nearest failure neighbor of this point. For this reason, direct
application of previous techniques yields intractable formulas.

2. Consistency of 4, We assume that the survivor and density functions are
continuous in a neighborhood around the point of interest. We begin with some lemmas.
In Lemma 2.1, we present the density of R.. We use this result in Lemma 2.2 to show that
R, converges almost surely to zero. Lemma 2.3 enables us to use Proposition 3i of Aalen
(1978) to prove almost sure convergence of l;,,(z).

LeEmMA 2.1. Let Ry represent the distance between ‘the point x and its kth nearest
failure point. Let p = P(T; > C;),

G(r) = J fr(y)8c(y) dy, F(r)=(1-p)G({r),
lx=yl<r

G'(r) = fr(x = r)Sc(x —r) + fr(x + r)Sc(x +r) and F'(r) = (1 — p)G'(r).
Then the density of Ry, is .

fr, = n(Z - })F(r)k-l(l — F())"™F'(r).

ProoF. The probability of m censored observations in a sample of size n is given as
n m - n—m
P(m) = (m)p 1=-p™

In addition, given that m observations in a sample of size n have been censored, the density
of Ry is given as

P(r|m) = (n — m)<” P I)G(r)’““(l = GG (r).
The result now follows by direct calculation.

LEMMA 2.2. Let k = k(n) = [n*], 0 < a < 1, and let R be defined as above. Then
Rk —>as. 0~

PRrOOF. Given 8’ > 0, by Lemma 2.1 and repeated application of integration by parts
it is easy to show that

P(R,>8") <= Yk ('l.‘)s"(l - &)™

From Chernoff (1952), it can be shown that this quantity is bounded by 274", where A (n)
equals

p _ o
—{log2(8°(1 = 8)'™)] + log:[ p*(1 — p)' "] + 10g2<1 ;8> - logz(l 8 8) ;

1
10g2< 1- Ta)
n

with p = k/n. It is now straightforward to show that

logz(l - %)
n

] - L [(1 — a)logs(nc) —
n

I

—nA(n) = —n{[e -
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For n sufficiently large we have —nA(n) < —ne’, for some positive ¢’ < ¢, and the result
follows.

LEMMA 2.3. Let R, and k = k(n) be defined as above, with V> < o < 1. Then

n1/2

log(n)

Riny —as. .

ProoF. The result will follow if we can show that for all ¢ > 0,

. n 1/2
En=2 P Rk(n) =¢ | < oo,

log(n)

n1/2 Flea) n-—1 k k
—_ —1 — $\—
P(log_(n) Ry = 8) = L n(k _ l)t (‘1 t) dt,

1
where ¢, = ¢ (:lgl(/rzt) . One can show that the result will follow if

Now

P f n(z _ })t"“(l — )" dt < +oo.
0
Proceeding analogously to Lemma 2.2
" (n—1 k-1 n—k n ( n ) i n—i ~nA(n)
n 1 - 8) dt=2i=k Jen(l—e)" =2 ,
| G7) ¢

where, for p = k/n,
A(n) = —logze5 — loga(1 — &)™ + logz(p)? + loga(1 — p)*™”
1 1

1 n/2+a1 1 TR
At log2<£ log(n)) * (1 - n""‘)log2 elogn |’
1——7
n

Hence for 1/2 < a < 1 and sufficiently large n, —nA(n) < —n*, where 0 < a’ < , and the
result follows.

THEOREM 2.1. Let k = k(n) = [n*], 1/2 < a < 1, and R, be defined as above, let
K(-) be a function of bounded variation with compact support on the interval [-1, +1],
let h be continuous as z, then h,(2) = a5 h(2).

PRroOF. Let A, = {SUPm=n|An(z) — h(z)| > €} for ¢ > 0. Now choose & such that
(z — 28) = 0, then
A, = {An N {SUPm=nRiem > 8}} U {An N {SUPm=nRrm < 8}}.
Now
P(A,) = P(A, N {supm=nRrwm > 8}) + P(An N {SUPm=nRrem < 8})

and by Lemma 2.2, R, — . 0. Hence we need only consider the event {A, N {supm=nRim)
< 8}}. Now by the triangle inequality one can show that

{An N {SUPmznRrem < 8}} C {A% N {SUPm=nRim < 8}} U {A7 N {supm=nRrm < 8}},
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where,
A, = {Supmzn< K(u) dHn(z — 2Ryem1)
|u|=1
K(u) dH(Z - 2Rk(,,,)u)

Al = m=n Zf s
(=rer{ )=3)

H(t) is the cumulative hazard function and I?,,(t) is the empirical cumulative hazard
function discussed in Nelson (1972).
Regarding the first event, using an application of integration by parts, one can show

1
2Rk(m)
1
" 2Rum)

)

|u|=1

K(u) dH(z — 2Riimyur) — h(2)

|u|=1

2Rk(m)

c

{An.nN {Sllpmanmm) < 3}} C {1 SUPm=n| = Supye[z—%,z+26]lﬁm(y) —H(y)|)= z s
2Rk(m) * 4

since K(-) is assumed to be a function of bounded variation with compact support. But by
Proposition 3i of Aalen (1978) and Lemma 2.3, we have that

iy P(SUPmzn(C SUPyerz-25,2+281 | Hn( ) — H(y) |/2Ruim) = €/4) = 0.
Regarding the second event, it is immediate that
{47 0 {(suppznReom < 8)} C (AX).
Therefore, if the function
0 a=0

flo) =

K(u)h{z — 2au) du — h(z)| a>0

|u|=1

is continuous at z, then lim, ,.P(A;) = 0, since Ry —.. 0. Now f(«) can be shown to be
dominated by

maxjy =1 | Az — 2au) — h(z)| | K(u)| du.

|u|=1

If we let @« — 0, the result follows.
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