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A MODIFIED KOLMOGOROV-SMIRNOV TEST
SENSITIVE TO TAIL ALTERNATIVES

By Davip M. MasoN AND JOHN H. SCHUENEMEYER

University of Delaware

It is well known that the Kolmogorov-Smirnov (K-S) test exhibits poor
sensitivity to deviations from the hypothesized distribution that occur in the
tails. A modified version of the K-S test is introduced that is more sensitive
than the K-S test to deviations in the tails. The finite and infinite sample
distribution along with the consistency properties of the proposed test are
studied. Tables of critical values are provided for two versions of the test (one
sensitive to heavy tail alternatives and one sensitive to light tail alternatives)
and the finite sample properties of these two versions of the test are investi-
gated.

N

1. Introduction. Let Xj, ..., X, be independent random variables with common
continuous distribution function F and let X, < ... < X, , denote their order statistics.
F, will denote the right continuous empirical distribution function based on Xj, ---, X,.
Also let Fy be any fixed continuous distribution function.

We will write the Kolmogorov-Smirnov (K-S) statistic as

. K, =sup{n'?| Fn(x) — Fo(x)|: —0 < x < 0} ;
and the Rényi-type statistics (refer to Rényi, 1953, 1968) as
L,; = sup{Fo(x)/Fp(x):x > X1},
L2 = sup{F,.(x)/Fo(x) : —0 < x < 0},
U1 = sup{(1 — Fo(x))/(1 — Fn(x)):x < X}, and
U2 = sup{(1 — Fr(x))/(1 — Fy(x)) : —0 < x < o0},

(Though these statistics are usually called Rényi-type statistics, L,; and U, were first
studied by Chang (1955) and later by Tang (1962); likewise, L, 2 and U, 2 were first studied
by Daniels (1945) and later by Robbins (1954).)

Consider the following hypothesis testing procedure based on the statistics L1, Lyz,
U1, U,z and K, for testing

Hy.F=F, versus H,.FE % atlevel aq,
where Zis a specified class of continuous distributions not containing F,: Reject H, if
max{w: L., weLnz2, Kn, w3Up1, waUnz2} > ¢,

where w,, -.-, ws are predetermined nonnegative weights and 0 < ¢ < « is a constant
(depending on n) chosen so that the probability of rejection is a. (Observe that when w,
= wy; = w3 = wys = 0 this prdcedure reduces to the usual K-S test.)

Any version of the above procedure will be called a modified K-S test or M test for
short. The object of this paper will be to study the finite and infinite sample properties of
various versions of the M test. Most importantly, it will be shown that particular versions
of the M test are much more sensitive than the K-S test to deviations from the hypothesized
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934 D. M. MASON AND J. H. SCHUENEMEYER

distribution Fo that occur in the tails. This will be shown both asymptotically by comparing
the behavior of the K-S test to the M test with respect to appropriately chosen “local tail
alternatives;” and for finite samples by comparing the power function of two versions of
the M test (one sensitive to “heavy tail alternatives” and one sensitive to “light tail
alternatives”) to the power function of the K-S test calculated for selected families of
alternative distributions. Tables of finite and infinite sample critical values are provided
for these two versions of the M test.

Versions of the M-test may also be inverted, as is typically done with the usual K-S
test, to form confidence bands for F,. This is discussed in Section 5.

2. The finite sample and asymptotic distribution of the M test under the null
hypothesis. In this section we assume that F' = F. Since in this case the M test is
distribution free, we will replace Xi, ---, X, by n independent uniform (0, 1) random
variables Ui, -+, Uy X1n < +++ = Xn. by the order statistics Uyp < --+ < Uy of Us,
..., Uy; F,, by G, the empirical distribution based on Uy, - - -, Uy; and Fo by the uniform
(0, 1) distribution. Hence, we will write (L1, Lnz2, Kn, Un1y Unz2) as

(sup{u/Gn(u) : U, <u<1}, sup{G.(w)/u:0<u<1},

sup{n?| Gu(u) —u|:0<u<1}, sup{(l —u)/(1—Gu(w):0<u<U,},
sup{(1 = G.(u))/(1 —u):0<u<1}).

For any choice of weights 0 < wy, - - - , ws < 1 and 0 < ¢ < % the probability of accepting
H, using the M-test becomes: '

(1) P(wan’I =c, szn’Z =g K, < c, W3 Un,l =c, Wy Un,z = C).
It is routine to show that the probability in (1) can be written equivalently as
(2) Pu;=U,,<v:l=<i=<n),

where u; and v; with u; < v; for i = 1, ..., n are nondecreasing positive constants
determined by ws, - - - , w4 and c. This last probability can be calculated by Steck’s formula
(1971) or Noé’s algorithm (1972).

We now obtain the asymptotic distribution of the M test under the null hypothesis.
First, it is well known that for any 0 < ¢ < o
(3 P(K,<c)— P(|B||=c¢) =1+2Y5 (—1)% 2,

where B is a Brownian bridge defined on (0, 1) and || B || = sup{| B(x)|:0 < u < 1}. (Refer,
for instance, to Billingsley, 1968.) Also it can be shown by a simple application of Theorem
7 of Wellner (1977) that for each choice of 1 < a, b < « that

(4) PlL,y=a,Ly,s=b)=P(U,i<a, U< b) >
(5) . P(l/a=N@)/t=b for E=t< )

where N is a Poisson process with parameter 1 and first jump at E.
We will write
G(c) =P(|Bll=¢)
for any choice of 0 < ¢ < o; and
H(a,b) =P(1/a<N(@t)/t<=b for Est< )
for any choice of 1 < a, b < . In particular, when 1 <@ <o and b =
(k —1*"

H(a, ©) =1 — exp(—a) — 22"=1—k—' a*exp(—ka)
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andwhena=owandl<b<
H(o,0) =1—b"1

(Refer to Pyke, 1959, or Wellner, 1977.) For general values of 1 < a, b < « a recursion
formula for H(a, b) is outlined in the Appendix.

In the following theorem and elsewhere in this paper, repeated use will be made of the
following fact:

Let {k.} be any sequence of positive integers such that

(K) k,—> o and k,/n— 0, then both
(C1) nUin/kn—p1l, and
(Cz) n(l - Un-—kn,n)/kn —p 1.

The proof of this fact is elementary. (See page 18 of Balkema and de Haan, 1974.)

THEOREM 1. (The Asymptotic Distribution of the M Test under the Null Hypothesis.)
Under the null hypothesis, for any choice of 1 < a1, a2, b1, b= and 0 <c <

6) PLpni<ai,Lys=<b,K.=<c, Uy =< az, Upa =< b2) > H(ai, b:1)G(c)H(az, b2).

Proor. Let k, =[2lnn]+ 1and 4 = [(In n)2/2] + 1. ([x] = greatest integer < x.) Let
Lui(kn) = sup{u/Gn(u) : Upn < u < Us,n},
Lyso(kn) = sup{Gn(w)/u:0 < u =< U n},

Kn(4) = sup{n"?| Gu(u) — u|: Upn < 4 < Un—4un},

Uni(kn) = sup{(1 — w)/(1 — Ga(w)) : Un—ppn < u< Unn}, and
Una(kn) = sup{(1 — Go(u))/(1 — t) : Upn—pn < u <1}.

We will show that

(7) (Lnj, L2, Kny Uni, Ung) = (Lni(Rn), Lna(kn), Kn(4), Uni(kn), Unz2(kn))

converges in probability to 0, from which we can conclude from Lemma 1 of Rossberg
(1965) (using the fact that k./4, — 0) that the random variables (L, :, L,2), K., and
(Up,y, U,g) are asymptotically independent and hence from (3), (4) and (5) that the
conclusion of the theorem holds.

Observe that | L,1(k:) — Ly, | is less than or equal to

(8 sup{| Gn() — u|/Ga() : Uy n = u < 1},
and | Ly 2(k») —‘Ln,g | is less than or equal to
9) sup{| Gn(w) — u|/u:Upn<u<1}.

Theorem 0 of Wellner (1978) implies that expression (8) converges in probability to zero.
The same theorem in combination with (C1) above implies that expression (9) converges
in probability to zero. Hence (Ly,1, Ln2) — (Ln1(kn), Ln2(k,)) converges in probability to
(0, 0). Similarly (U,1, Unz2) — (Uy1(k»), Unz2(ks)) converges in probability to (0, 0). Now

(10) lKn(dt) - Kn | = Sup(n 1/2| Gn(u) - ul u g (U/;l,m Un—/,”,,n)}'
It is known for a more general situation (see Shorack, 1979) that

(11) sup{(n'?| Gu(u) — u|:u & ((In n)*/n, 1 — (In n)?/n)} —p 0.
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Thus by (11) we can conclude as above using (C1) and (C2) that K,.(4) — K, converges in
probability to zero. O

3. A convenient class of local tail alternatives. Here we introduce a class of
“local tail alternatives” that will simplify our study of the consistency properties of the M
test with respect to local deviations from the null distribution Fo that occur in the tails.

For any 8> 0and 0 < p < %, set

—p Pl —-uw? for 1—-p<u<l
Qsr(u) =qu for psu=1-p

=k for 0<u<p.

Let Fjp, denote the distribution which has inverse equal to Qg p, i.e.,

_p(B—l)/B(l — x)l/ﬂ 1 —-p<x< 1
Fgp(x) =9x p=x=1-p

(B=1)/B,, /B 0<x<p.

Notice that when 8 = 1 each F}, is equal to the uniform (0, 1) distribution (U(0, 1)).
Observe that whenever 8 > 1

(12) limyo(Fp,p(u) A (1 = Fpp(1 — w)))/u = o,

that is, Fp, has heavier lower and upper tails than U (0, 1); and whenever 0 < 8 < 1 the
limit in (12) is equal to zero, that is, Fg , has lighter upper and lower tails than U (0, 1).

For future reference, we note that the Kolmogorov distance between Fj, and the
U(0, 1) distribution is

ANl = suposusi | Fpp(u) — u|=pB* V| B - 1].

Observe that || A || strictly increases from zero to p as a function of 8 on the interval [1, o)
and strictly decreases from p to zero on the interval [0, 1].

For any choice of 8 > 0 and sequence {k,} satisfying (K), let Fx, = {Fpp,:n = 1},
where p, = k,/n for each n = 1. Whenever B > 1 [respectively 0 < 8 < 1], %, will be
called a class of local heavy tail alternatives [respectively local light tail alternatives].

It will assist our discussion later on to introduce the following definitions.

Let {X?:i=1, ..., n,n=1} denote a triangular array of random variables. For each
n = 1let T, denote a statistic based on the empirical distribution F, of X", -.. , X. For
any fixed value of 0 < 8 < » and sequence {k,} satisfying (K)

T, —r,, and T, —d,,

will denote convergence in probability and convergence in distribution respectively assum-
ing that for eachn =1, X, ..., X" are ii.d. Fs,. (When 8 =1, T, —>p and T}, —q will
denote convergence in probability and convergence in distribution respectively.)

DEFINITION 1. A sequence of statistics {7} will be said to be consistent against local
tail alternatives; respectively local heavy tail alternatives; respectively local light tail
alternatives if
(D) T,—.to a nondegenerate random variable (say with distribution H) when 8 = 1, and
(E) T.—p,, X=, where x, = inf{x < o : H(x) = 1}, for every sequence {k,} satisfying (K)

and 0 < 8 < = such that 8 % 1; respectively every 1 < 8 < o; respectively every 0 <
B<1

DEFINITION 2. A sequence of statistics {7,} will be said to be inconsistent against
local tail alternatives; respectively local heavy tail alternatives; respectively local light tail
alternatives if for every 0 < 8 < o such that 8 % 1; respectively 8 > 1; respectively every
0 < B < 1 there exists a sequence {k,} satisfying (K) such that T, does not converge in
probability (under Pg,) to any number greater than or equal to x.
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4. Consistency and inconsistency properties of L,,1, Ln,2y, Un,1, Un,z, and K, against
local tail alternatives. Equipped with the definitions given in the previous section, we
now establish some important consistency and inconsistency properties of Ln,1, Ly, Upa,
U, and K, against local tail alternatives. These are the following:

PROPERTY 1. L,; and U, are consistent against local heavy tail alternatives, but
inconsistent against local light tail alternatives.

PROPERTY 2. L,.; and U, are consistent against local light tail alternatives, but
inconsistent against local heavy tail alternatives.

PROPERTY 3. K, is inconsistent against local tail alternatives (both heavy and light).

The following propositions establish these properties. First observe that when F = Fg ),
for some choice of 0 <p =< % and 8> 0.

(13) Ly =asup{Qp () /Ga() : Urn <u <1},

(14) Lz =asup{G.(w)/Qpp(u):0 <u <1},

(15) Up1 =asup{(1 — @4,())/(1 — Go(1)):0 < u < Uy},

(16) Unz2 =asup{(1 — G,(w))/(1 — @pp(1)):0<u<1}, and
17) K, =q sup{n'?| G.(u) ~ Qep(w)|:0<u<1).

To avoid additional notation, whenever F = Fs ,, Ln1, Ln2, Un1, Uns and K, will denote
the right side of (13)-(17).

PROPOSITION 1.
(a) For every B > 1 and sequence {k,} satisfying (K), Lno—>p,, ; whereas
(b) for every 0 < 8 <1, Lnop—>p,,1 with k. = (In n)2. The same statements hold for Uns.

ProoF. First consider (a). Choose any 8 > 1 and sequence {k.} satisfying (K). Let
(k4} be any sequence of positive integers such that k}, — o and k,/k, — 0. Observe that
(18) (k;t/kn)B_Ian = (k;z/kn)ﬂ_l[k;t/ (nQﬂ,Pn(Uk;,n))] a.s.

(Recall p, = k./n.)
Since nU,,,/kr» — 1, we see that with arbitrarily high probability and all r sufficiently
large that the right side of inequality (18) is greater than or equal to

(19) (kn/ (U, n))",

which converges in probability to 1. Since 8 > 1, we see from (18) that (a) is true.
Now to prove part (b). Choose any 0 < 8 < 1. Notice that

Lz = max{I1.(B), Ln(B)}
\where

L1n(B) = sup{G.(t)/Qp,p,(w) :0 <u=pn}, and

Ln(B) = sup{Gn(t)/Qp.p. () :pn = u < 1}.
First we claim that
(20) LIa.(B) —p 1.
Observe that

| In(B) — 1| < sup{n' ™| Gu(u) — u|/((kn)' #uf):0 <u = pn} = Snp.
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LEMMA 1. For every 0 < B < 1 there exists a sequence of positive constants {k.}
satisfying condition (K) such that
Sn, B —>p 0
(The choice k, = (In n)* works for all 0 < B < 1.)

Proor. First assume that 0 < B8 < % and {k.} is any sequence of positive constants
satisfying (K). There exists a universal constant K > 0 such that for every ¢ > 0

Pn
P(S,, 5 > ¢) = Knl 2R, 2+2hs 2 j uP du=¢e2K(1 — 28) k"
0

(See, for instance, Pyke and Shorack, 1968.) Now assume that % < 8 < 1. Observe that
(21) Snp= k;1+ﬁsupo<u<1nl_3| Gu(u) — ul/u?,

but by Theorem 1 of Mason (1983) the right side of inequality (21) converges in probability
to zero for any sequence {k,} satisfying (K).

Finally assume that 8 = %. It is immediate from Corollary 2 of Jaeschke (1979) that for
any sequence of positive constants {k,} such that

(L) In k2, = o(ln n)
that
(22) sup{n'?| Gu(u) — u|u™*:0 < u < p,} = 0,((In In n)'?).

Hence by (22) if, in addition to (L), &, satisfies
M) k7' = o(1/(n In n)),
S,.,1/2 converges in probability to zero. Observe that the choice &, = (In n)? works for all
valuesof 0 =B8<1. O
Hence we have shown (20). Notice that
(23) L.(B) = (1 — pn) tsup{Gn(u)/u: p. <u<1},
but Theorem 0 of Wellner (1978) implies that the right side of expression (23) converges
in probability to 1. This completes the proof of Proposition 1. 0

Since L, :— 4H(c,-), when 8 = 1, we see that Proposition 1 establishes Property 1.
(Recall (D) and (E) above and Definition 2.)

PROPOSITION 2.
(a) For every 0 < B < 1 and sequence {k,} satisfying (K), L,, 1—p,, ®; whereas

(b) for every 1 < 8 < o, L,1—p,, 1 with k, = (In n)?. The same statements hold for
U, 1.

ProoF. First consider (a). Choose any 0 < 8 < 1 and sequence {k,} satisfying (K). Let
{k,} be any sequence of positive integers such that %k, — o and k,/k, — 0. We see as in
the proof of Proposition 1 that with arbitrarily high probability and all n sufficiently large
that

(24) (k3/ka) Loy = (RUy,, . /RR).

Since 0 < B8 < 1 and the right side of (24) converges in probability to 1, the proof of part
(a) is complete.
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Now consider part (b). Choose any 8 > 1. Let
Jn(B) = sup{n*'uPkPGu(u): Upn < u<py}.

(Jn(ﬁ) = 0 if Ul,n >pn-)
We claim that

(25) Ju(B) —p1

for the sequence &, = (In n)?. We will require the following lemma.

LEMMA 2. For every > 1
Tn,p = sup{n' " VeRYF | Gu(u) — u|/(Ga(u))/F: Uy <u=p,} —>p0

with k, = (In n)?.

ProoF. Choose any 8 > 1.
(26) Tp < Sn1p(up{u/Gn(u): Uy, < u < 1})Y8,
Hence, by Lemma 1 and (4) and (5) above, the right side of (26) converges in probability
to zero for the sequence %, = (In n)%. 0O
By Lemma 2 for every 8> 1 ‘
(27) SUpy, <u<pt’ kn P(Gr(1)) Pt — . (B) —>p 0

for the sequence %, = (In n)% Using (C1) above it is easy to show that the first term in (27)
converges in probability to 1. Hence we have shown (25).
The rest of the proof of Proposition 2 proceeds very much like the proof of Proposition

1, therefore we omit the details. 0

Since L, 1—qH (-, ©), when B8 = 1, we see that Proposition 2 establishes Property 2.
Let @ denote the class of nonnegative continuous functions g defined on (0, 1) such that

(ql) g1 on (0,%) and issymmetric about ', and
(92) lim, jofuln In(1/u)]™"*q (u) = c.
It is well known that whenever g € @
K.(q) = n'’sup{| Ga(u) — u|/q(u): 0 <u <1} —a | B/q]||.

(See O’Reilly, 1974, and Shorack, 1979.)
To establish Property 3, we will actually prqve the more general property:

PROPERTY 4. For every q € @, K, (q) is inconsistent against local tail alternatives.

ProPOSITION 3. For evéry 0 < B <xandq € Q, K.lq) >4, | B/qll, where k, =
In In In n for large n.
ProoF. Choose any 0 < 8 < . Since by Shorack (1979)
sup{n'’?| Gu(u) = Qp.0(4)|/q(@p.p(4)): p» <u < 1= P}
= sup{n'?| G.(u) —~ u|/q(u): p» <u<1-p,} —>a|B/q|,
it is sufficient to show that for each 0 < 8 < « both
An(B) = sup{n'?| Gu(u) — Qp.p,(w)/q(Qpp(1)): 0 < u=p,}

and the corresponding upper tail term converge in probability to zero. Now ¢ € @ implies



940 D. M. MASON AND J. H. SCHUENEMEYER

that for all u sufficiently small

(28) q(u) = (ulnIn (1/u))v2

Hence by (28) for all n sufficiently large

9(Qp,p, (1)) = q((ka/n) PuP) = (kn/n)"#*uP’*(n In(n/k,))"?
= (kn/n) B2y B2,
for every 0 < u < p,,. Therefore it is enough to show that
SUPo<u=put?| Gu(u) — prPul |/ (u?by (b /0) S =P72)

= SUPo<u=p, 2 T ?Gn() / (WP Pbp kS F?) + kYD,
=L.(B) + kx/*/b, —, 0.

The choice of {&.} implies that 2./2/b,, — 0. To show that

(29) I.(B) —p 0,

we require the following elementary lemma.
LemMa 3. Let 8> 0 and {k,} be any sequence satisfying (K). Then for every x > 0
P,(x) = P(sup{n'*G,(u)/u’ 0 < u Sp,;} >x) < <w> ” + o(1),
where the o(1) term is dependent only on the sequence {k.,)}.

Proor. Choose x > 0.
Pp(x) < P(sup{n' ™G, (u)/u: 0 < u =< Uy, 111} > x)
+ P(Uy,, 41,0 < Pn) = Pin(x) + Py n(x).
But

1/8
Pin(2) = P(@Lka] + DU > 2) < (2[’“—,1”) :

(C1) above completes the proof.

(A more refined version of this inequality for % < 8 < 1 is given in Mason, 1981.)
Choose any ¢ > 0. By Lemma 3

oAk, 1 2/B
P(In(ﬁ)>e)s<?[]2-1]/;__w> +o(1).

We see by the choice of {&,} that the proof of (29) is complete. 0

We should remark here that the K-S test will be consistent against subclasses of local
tail alternatives for which (i) n'/°p, = k,n "> — o and will have non-degenerate asymptotic
power when (ii) p, = dn™"* for some d > 0. To see this, observe that for any positive 8 not
equal to 1 the Kolmogorov distance between Fj, and the U(0, 1) distribution has the
property that n'/? | A|| — o if (i) holds and n'/||A|| — dB*/9~#| B — 1] if (ii) holds.

This same format can be carried out to study the behavior of these statistics against
local deviations that occur in the middle of the distribution. Let {£,} be any sequence of
finite constants such that | £,| — o but £,/n> — 0 and choose 0 < a < %.
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Let

u for l—-a<u<l
@2, (u) =4 Piecewise linear from (o, @) to (14, Yo+ £, /\n)
and (%, %+4/vn) to (l1—a,1—a) for a=u=<1-—a
u for O<u<a.

Let G, denote the distribution with inverse @7 .. Any class G, = {G.,.: n = 1} will be
called a class of local middle alternatives. It can be shown that L,, 1, L, 2, U, 1, and U, ; are
all inconsistent against local middle alternatives, whereas K,, is consistent against local
middle alternatives. (The details are elementary and are left to the reader.) Hence the
conclusion of this section is that any M test for which w; >0fori=1, - .., 4 is consistent
against both local tail and middle alternatives.

5. Two versions of the M Test. In this section we examine the finite sample
performance of two versions of the M test, one sensitive to light tail alternatives and one
sensitive to heavy tail alternatives. These are statistics of the following form:

L, = max{wL,,;, K,, wU,,:}, and H, = max{wL, s, K,, wU,},

where w > 0 is a positive weight to be specified later.

The asymptotic results of Section 4 indicate that L, should be sensitive to light tail and
middle alternatives, but fairly insensitive to heavy tail alternatives; and conversely, H,
should be sensitive to heavy tail and middle alternatives, but fairly insensitive to light tail
alternatives. This will be confirmed by the numerical evidence that follows.

One problem that arises in the practical implementation of these tests is in the
determination of criteria for the selection of the weight w. For our two examples we have
chosen the following:

For a given significance level a, we select that weight w for the L, test such that

P(wL,,1 < %o,n) = P(WU, 1 < Xo0) = (1 — ), and
P(Kn = x«x,n) d (1 - a)1/3’

where x, , is the sample size n a-critical value for the L, test. Similarly, we select that
weight w for the H, test such that

P(WLns < Yan) = P(WUn2 < Yon) = (1 — a)”?,  and
P(Kn sya,n) d (1 - a)1/3,

where y, . is the sample size n a-critical value for the H, test. These criteria say that
asymptotically these two versions of the M test assign equal probability of rejecting H,
when it is true due to deviations that occur in the lower, middle, and upper sample
quantiles.

Tables of weights and finite sample critical values for these two versions of the M test
are provided. The computations were performed using Noé’s algorithm on a DEC-10 in
double precision. The tabled numbers are accurate to the significant digits displayed.

The power functions of the K-S test, the L, test, and the H, test for sample sizes n =
25 and n = 50 using the a = .10 significance level are plotted in Figures I, II, IIT and IV
with respect to the alternatives Fjg, for 0 < 8 < o and the choices of p = % and p = %;
Figures I and II are plots of the power functions for p = % and Figures III and IV are plots
of the power functions for the p = %. Values of 0 < 8 < 1 correspond to light tail
alternatives and values of 8 > 1 to heavy tail alternatives. (The power functions were
computed directly using Noé’s algorithm.)

We see that the numerical evidence indicates that the L, test is much more sensitive to
light tail alternatives than the K-S test alone, but less sensitive to heavy tail alternatives;
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TaBLE 1
Weights and critical values for the L, test

Sample a w a w a w
size .10 2738 05 .2559 .01 2267
5 1.139 1.259 1.495
10 1.185 1.294 1.546
15 1.253 1.353 1.567
20 1.293 1.396 1.608
25 1.317 1.423 1.638
30 1.333 1.441 1.659
35 1.345 1.455 1.675
40 1.354 1.465 1.688
45 1.361 1473 1.697
50 1.367 1479 1.705
o ‘ 1.425 1544 1.788
TaBLE I1
Weights and critical values for the H, test
Sample a w a w a w
size .10 .0491 . 05 .0261 .01 .006
5 1.336 1.442 1.642
10 1.368 1.480 1.704
15 1.380 1.495 1.726
20 1.387 1.503 1.737
25 1.392 1.509 1.744
30 1.395 1.512 1.749
35 1.398 1.515 1.753
40 1.400 1.517 1.756
45 1.402 1.519 1.758
50 1.403 1.521 1.760
© 1.425 1.544 1.788
8
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F16. 1. Power functions of L, and K, for p = Y.
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whereas the oppesite conclusions are true for H,.. This is in agreement with the asymptotic
power studies in Section 4. In practical data analysis we would advise using all three tests.

A much more thorough finite sample study of the M test, where positive weights are
applied to each component of the statistic will appear elsewhere. We chose these two
examples to demonstrate the power of the M test in two extreme cases.

The statistics L, and H, may be inverted to form confidence bands for Fo. These are
constructed as follows:

For a given critical value x,,, of L, L, < X.,» if and only if A,(x) = Fo(x) < B.(x) for
all x, where

A (x) = max{F,(x) — 1772001 — w (1 — Fo(x))Xsn, 0}, and
B,.(x) = min{F,.(x) + n7 %% n, W' Fp (%)X, 1};

and for a given critical value y,,, of H,, H, < y,, . if and only if C,(x) < Fo(x) < D,(x) for
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Fi6. IV. Power functions of H, and K, for p = %.
all x, where

Cn(x) = max{F,(x) — n %y, ., WFy(X)/Yan, 0}, and
Dy(x) = min{F,(x) + n7"yon, 1 — w(l — Fu(x))Yan, 1}.

The confidence bands based on H, are closely related to the one-sided confidence bands
based on L,,» considered by Robbins (1954). His bands are constructed in the obvious way
utilizing the fact that P(L,2<A)=1—A"'forA > 1.

It is easy to show that the confidence bands just described give, for large enough n,
narrower bands for the upper and lower tails of F, than those that can be obtained by the
K-S test alone; but with a sacrifice of slightly wider bands for the middle of F,. A quick
way to see this is to note that the critical values of L, and H, are always greater than or
equal to the corresponding critical values of the K-S test.

6. Some concluding remarks. Any version of the M test can be written as
sup{n'*¥,(Fo(x), Fn(x))| Fn(x) — Fo(x)|: — 00 < x < 00}

where ¥, is a positive weight function dependent on n and the choice of w1, ws, ws, and ws.
The asymptotic consistency and inconsistency properties established for the individual
components of the M test in Section 4 are in agreement with the remark on page 118 of
Eicker (1979) regarding the possible futility of finding a uniformly good fixed weight
function that will make a weighted K-S test sensitive to local deviations that may occur at
any place in the support of the hypothesized distribution. We have not found a uniformly
good weight function, but we have shown theoretically that there do exist weight functions
dependent on n that make particular weighted K-S tests consistent with respect to local
deviations that may occur in the tails or the middle of the distribution.

Révész (1982) has recently considered an approach to a modified K-S test sensitive to
deviations in the tails that is very similar to ours. His statistic can be written as

R, = max{wdJ,, K, },

where o, is the Eicker-Jaeschke statistic. (See Eicker, 1979, and Jaeschke, 1979, for
details.) He proves that ./, is consistent with respect to a particular class of local tail
alternatives, whereas the K-S test is not. The M test is easily shown to be consistent
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against his class of local tail alternatives, but a slight extension of Proposition 3 shows that
Jy is inconsistent against local tail alternatives in our sense. The Révész test suffers from
the same problem that the M test does, that is, the determination of reasonable criteria for
the choice of the weight w. For the R, test this problem is compounded by the fact that
the finite sample distribution of J, converges very slowly to its asymptotic distribution.
Refer to page 108 of Jaeschke (1979) or compare the asymptotic distribution with the
tabled values given in Noé (1972).

7. Appendix. Here we outline a recursion formula for H(a, b). Choose 1 < a, b <
o, and set s; = ai and ¢, = b~'i for i = 1. Let r = max{i: ; < s1}.

First notice that if N(s;) =0,1lorr+ 1,r + 2, - . ., then with probability 1 N (¢) crosses
the line a ™'t or bt for some ¢ = E. Also notice, H(a, b) = 0 if » = 1. Thus assuming that r

=2
H(a,b) =Yy P(N(s;) =i, and a't<N(t)=<bt for t=E),
but by independence the right side of the above expression i\s equal to
Yis AiB,

where

Ai=P(N(s))=i, and at=<N@E)<bt for E<t<s), and

B;=P(N(s) =i, and at—i<N@)—i<bt—i for t=s)

=Pla'u+ (a's; —i) < N(u) < bu + (bs;, — i) for u=0).

Since a™'s; — i <0 and bs; — i = 0 for 2 < i < r a recursion formula for B; is available on
pages 445-447 of Durbin (1971), which for the sake of brevity is not repeated here.
In order to derive an expression for the A; we must consider two cases.

Casel. t,<siandr=2. Inthiscasefor2=<i<r
A= Z?r; P(N(tl) = 0’ N(t2) - N(tl) = kl’ ] N(tr) - N(tr—l) = kr—l’
N(sl) - N(tr) = kr),

where the notation Y{} denotes summation over all r-tuples of nonnegative integers
(k1 + -+, k) such that

Siiki=i and Yjk;=¢ foreach ¢=1,...,r

Hence
. b7 ab — r)te
A=Y —— "= =
Y ki .o R
CaseIl. ¢ =s;and r=2. First notice that if r = 2, H(a, b) = 0, so we assume that
r = 3. In this case

. b
A=y, ¢
L B e By

fori=1,...,r—1and A, = 0 since ¢, = s;.
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