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IMPROVING ON INADMISSIBLE ESTIMATORS
IN THE CONTROL PROBLEM"

BY L. MARK BERLINER

The Okhio State University

Let X have a p-variate normal distribution with unknown mean 6 and
identity covariance matrix. The following transformed version of a control
problem (Zaman, 1981) is considered: estimate @ by d subject to incurring a
loss L (d, 8) = (6'd — 1)*. The comparison of decision rules in terms of expected
loss is reduced to the study of differential inequalities. Results establishing
the minimaxity of a large class of estimators are obtained. Special attention is
given to the proposition of admissible, generalized Bayes rules which dominate
the uniform prior, generalized Bayes controller when p = 5.

1. Introduction.

1.1. Statement of the problem. The control problem arises when it is desired to choose
design variables in a standard linear regression model so that the resulting dependent
(scalar) random variable will be close to a desired value. Presentations of this problem
may be found in Zellner (1971), Lindley (1968), and Dunsmore (1969). Our discussion
focuses on a transformed version of the problem (see Zaman, 1981). In particular, let X =
(Xi, «++, Xp)" have a multivariate normal distribution with unknown mean 8 = (6, - - -,
0,)" and identity covariance matrix. The problem is to choose a (non-randomized) rule
8(x) = (81(x), -+, 8,(x))%, subject to a loss L(3, ) given by

(1.1) L3, 6) = (86 — 1)

Such a decision rule is to be evaluated in terms of its risk or expected loss function,
R(8, 0) = E,L(8(X), 0).
Define a spherically symmetric (s.s.) rule to be of the form

(1.2) 3(x) = Y(|x|)x

where | x|?> = Y2, x%. Virtually all previous results, as well as the results presented here,
apply only to s.s. rules.

In addition to proper Bayes rules, two control procedures stand out in the literature.
The first is the uniform measure generalized Bayes rule 8, given by

(1.3) 8u(x) = (1+ [ x])7x.

This rule has been shown to be admissible for p < 4 (see Zaman, 1981, and Stein and
Zaman, 1980). Furthermore, 8, is inadmissible when p = 5 (see Takeuchi, 1968, and Stein
and Zaman, 1980).

The second major rule often considered is 8, defined by

(1.4) Sm(x) = | x| %x.

This is perhaps best thought of as the maximum likelihood estimator of the quantity
|8]726 (see the loss function (1.1)). This rule is also known as the certainty equivalent
estimator in control theory literature (Aoki, 1967). However, a complete class theorem of
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Zaman (1981) demonstrates that if a s.s. estimator §(x) = {/(| x|) x is admissible then
(1.5) O0=y(r)=1, Vr=0.

Hence, 8, is inadmissible in all dimensions.

The main purpose of this paper is to present methods for finding rules which dominate
inadmissible control procedures. Particular attention is given to the domination (when
possible) of §8,. Berliner (1982), employing the theory developed here, considers the
domination of §,,.

In general, to compare two competing estimators, 8° and 87, in terms of risk, the quantity
A(8) = R(8° 6) — R(8", 9) is considered. By definition, if A(6) = 0 for all § with strict
inequality for some 6, then §' dominates 8°. Unfortunately, in most cases A (6) is a difficult
object to study. However, Stein (1973), while considering the estimation of a multivariate
normal mean, introduced a method whereby the integrand of A(6) is manipulated in order
to obtain a more manageable quantity for analysis. Stein’s original procedure was to derive
an expression of the form A(0) = E,A*(X), where A*(X) is not a function of §. The study
of the sign of A*(X) may then lead to the desired dominance assertion. The quantity
A*(X) is usually obtained via integration by parts and, therefore, involves various (partial)
derivatives of 8° and 8'. Hence, the expression A*(X) = 0 is called a differential inequality.
Note that A*(X) is an unbiased estimate of the difference of risks, A(8).

This general technique of analysis has been applied in many settings. Examples include
Berger (1980a), Haff (1977), Hudson (1978), Zidek (1978), and references given in these
papers. The basic technique used here is a variant of this type of argument.

1.2. Preliminary results. Some general background is now presented. First, inspection
of the loss function given in (1.1) justifies defining the parameter space © to be R? — {0},
where {0} denotes the origin. Second, Berger, Berliner, and Zaman (1982) have shown
that non-randomized rules form a complete class for the problem considered here.

Two other previous results will play important roles below. First, Zaman (1981) has
shown that if #(0) is a s.s. prior measure on @ (ie., dn(8) = g(|8|)d8), then the
corresponding s.s. (generalized) Bayes rule 87 is unique and is given by

(1.6) 8"(x) = [E™(06'| X = x)]'E"(0] X = x).

As an example, consider the multivariate normal prior with mean (0, - - -, 0)*and covariance
721,. Then the resulting Bayes rule &, is given by

(1.7) 8,(x) =[1+ {r%/(1 + )} |x|*] 'x.

Second, employing invariance arguments, Berger, Berliner, and Zaman (1982) have ob-
tained a useful formula for the (finite) Bayes risk of an arbitrary, finite risk s.s. estimator
8 against a given s.s. prior measure 7. Let (8, 7) denote the indicated Bayes risk. Also, let
0* = (6, ---, 6,)". Let S(,) denote the surface area of a p-sphere of radius 1. Then the
results of Berger, Berliner, and Zaman yield the equation

18 707 = Sin@n "
L[ roresorn -1 expic 0= rirespic st 9 ar | aco
o 0

The remainder of this section briefly reviews previous admissibility results for the
control problem. These results motivate much of the discussion below. The most general
inadmissibility results are found in Berger, Berliner and Zaman (1982). Their consideration
of rules of the form

(1.9) 8x) = (c+ | x| % + | x| w(| x|)x,

where c is a constant and w(|x|) = o(1) as x — o, is of particular interest here. It was
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shown that if ¢ > 5 — p, then 8 is inadmissible. In related work Zaman (1977) considered
rules of the form

(1.10) 8(x) = (c+ x| x

for | x| large. He showed that if ¢ = 5 — p, the corresponding rule 8, is asymptotically
optimal (i.e., for all | 8| sufficiently large, 8, has the smallest risk of rules of the form (1.10)).

Berger. Berliner, and Zaman (1982) also considered the admissibility of generalized
Bayes rules. Let g(|8|) be a bounded, generalized prior density and let 8, denote the
corresponding generalized Bayes rule. Under suitable regularity conditions it is shown that
if, for a constant K,

gllo)=K|o|""

when | 0| is large, then 8, is admissible.

Next, note that if g(|8]) = |0]|°", g can be approximated as in (1.9) (see Berger,
Berliner, and Zaman, 1982). Hence, combining the above results, we see that (generalized
Bayes) rules which behave like 8, are on the “boundary of- admissibility.” That is, they
correspond to generalized prior densities with tails as flat as possible, while preserving
admissibility. Such rules are therefore attractive for use in the absence of complete prior
information. The reader can find a complete discussion of this reasoning in Berger (1982).

2. The main theorem and related results. In this chapter a differential inequality
for the control problem is obtained. This relation is then used to establish the minimaxity
of a large class of estimators. Finally, classes of rules which dominate 8, are presented.

2.1 A differential inequality. The derivation of the differential inequality requires
some preliminary computations. First, by employing spherical symmetry, and the implied
invariance, some useful representations of risks can be obtained. Since much of the
argument here is based on or overlaps with that given in Berger, Berliner, and Zaman
(1982), our discussion will be brief.

For an arbitrary, finite risk estimator 8(x) = ¥(]x|)x and a fixed 6, consider the
(artificial) prior m which assigns a uniform probability measures on the p-sphere of radius
|8]. Then R (8, ) may be viewed as a Bayes risk;

(2.1) R(3,0) = J R(8, 1) dm(n) = r(8, m).
m:|nl=101}

Let Ko = (27)7#/%; also, let S(,) = 277/*[[' (% p)] " be the surface area of a p-sphere of radius
1. Hence,

dmo() = [Sip | 017717 do(n)

where do(n) is the uniform measure on the sphere.
For notational convenience assume p > 1. For p = 1 the analysis is parallel to that given
below. Define Z (| 8|) by

Z(|8]) = KoS(p-1| 0] Pexp(—14|0]?).

Then applying Formula (1.8) in (2.1) and performing the integration over (1, -+ -, ) yield
16l

R5,0)=2(|6]) [J r®{ry(rym — 1}%exp(rm)
2.2) e

exp(—% rz) dr](] 012 — 9?32 dy,.

Define the function £[y(r)] by
E[y(r)] = r'* VY2 (r)exp(—Yar®)
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and the quantity {(y) by
$() = £[¥(r)]exp(rn)[§.
Also, define the differential operator 2 by
W) =) {2ry'(r) + (p + 1 = r’)Y(r) + 2}

where

dy(r)
dr

Y(r) =

THEOREM 2.1. Let 8o(x) = Yo(]| x|)x and 8:(x) = y1(]| x|)x. Suppose that both {, and
Y1 are continuous, piecewise differentiable functions on (0, ») such that, for all real n,

f | €'[¥o(r)]lexp(rn) dr < e, J [€'[¥1(r)]lexp(rm) dr < =,
0 0

and
| $(o)| < o0, [ ()] < co.
If
(2.3) 2((r)) = DWo(r)), Yr>0
then

R(81, 0) SR(&), 0)’ v é.

Furthermore, if the inequality (2.3) holds and is strict on a non-degenerate interval, then
8, dominates 8.

ProoF. First, consider the inner integral of the risk representation (2.2); namely,

j r® V22 (rini — 2ry (r)m + l}exp(rm)exp(— % rz) dr.
()

Note that the first term of this integral is

m J §[y(r)Imexp(rm) dr.
0

When integration by parts is valid, we obtain the equivalent expression

nl[w) - f (dif, 5w<r>])]exp<rm> dr.

Now consider the quantity A(#) where A(f) = R(8:, §) — R(8o, ). Since the above
integration by parts argument is valid for both y, and 1, A(f) can be written as (after
some algebra)

16l

A(0)=—Z(|0|)f m(| 82 = n2) @972

]

[ j r(2h(r)) — 2 (xl/o(r))]exp(ml)exp(—% r2) dr+{@Wo) — ¢ (4/1)} dm.
0
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Observe that { (o) and {(y1) are independent of 3, and that

i
J m(| 0" — 9} ®~"2 dmy = 0.
1o

Then, clearly, A(f) is given by
161 L 1
AG) =-Z(]9]) J m(| 9 — n3) P72 J rPlexp(rm) — eXp(—rm)]eXp<—§ r“’)
o o

[2 W) — 2 (Yo)] dr dms.

Since exp(rn:) = exp(—rn,) for all non-negative r and 17, it follows that A(d) < 0 if (2.3)
holds.
The dominance assertion is obvious. 0

It is interesting to note that the inequality (2.3) is not the only relation obtainable by
the above type of argument. For example, the unbiased estimate of risk for the control
problem has been obtained by Zaman (1977). However, its derivation requires integration
by parts twice. Hence, the resulting differential inequality involves both first and second
derivatives of Yo and ;.

For most estimators considered below, the integration by parts conditions are easily
verified. An exception occurs when y/(r) = Kr~? for r near zero. In this case the integration
by parts requirements are violated when p = 1, 2. However, this is not a severe restriction
since the associated estimator clearly has infinite risk.

2.2. Minimax control procedures. Note that for the control problem, the minimax risk
is identically equal to one for all p. A proof goes as follows. First, note that the control
problem loss function (1.1) is a polynomial in the coordinates of 6. Then, since the normal
distribution is a member of the exponential family, the control risk function is continuous
in ¢ (by continuity of the Laplace transform). Observing that for any 8, R (8, §) = 1 for 8
= (0, ---, 0)%, it is clear that the risk can never be bounded away from one.

THEOREM 2.2. Suppose 8(x) = Y(| x|)x where y satisfies the conditions of Theorem
2.1. Define the differential operator 2™ by
MW () =2ry'(r) + (p+ 1 — rY(r) + 2.
IfY(r) =0,V r=0, and 2™Y(r)) =0,V r = 0, then 8 is minimax.

Proor. The proof follows directly from Theorem 2.1, after noting that §(x) = 0 is
minimax. [0

The minimaxity of an interesting class of estimators is considered in the following
theorem.

THEOREM 2.3. Let a and b be constants such that 0 < a <2, b= 0. Let 6 be defined
by 8(x) = ¢(|x|)x = a(b + | x|*)'x. Then & is minimax in the following cases: (i) p = 1,
b>0,a=4b2+b), (i) p=2,06>0,a<4b(1+ b)), and (ili) p=3, b= 0.

Proor. The proof is a direct application of Theorem 2.2 (note that for p = 1, 2; b > 0).
Hence, we must verify that 2M(y(r)) = 0, V r. Computation and simplification yield the
equivalent inequality

(2.4) C-ar*+[(p—3a+@d—a)blr’+ (p+ Dab+28*=0;, Vr=0.
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Case (iii) follows immediately. Next, let p = 1. Then (2.4) holds when —2a + (4 — @)b=0
or a < 4b(2 + b)™". Case (ii) is established in the same fashion. 0

Note that Cases (i) and (ii) are not the most general statements possible, based on the
sufficient condition (2.4). They do, however, suit our purposes. In particular, note that for
all p, minimaxity is implied when 0 < @ = b < 2. Hence, the uniform measure, generalized
Bayes rule 8, (see (1.3)) is minimax. Theorem 2.3 also implies an interesting result
concerning the normal prior Bayes rule 8, (see (1.7)). It is easy to check that, for all p, if
T =1, §, is minimax.

Also, note that is clear from Case (iii) above that if p = 3, §,, (see (1.4)) is minimax.

2.3. Domination of 8,. The first theorem below is a generalization of the results of
Takeuchi (1968) and Stein and Zaman (1980). Recall that 8, is admissible when p < 4.

THEOREM 2.4. Let 8.(x) = (| x|)x = | x| *x. Define 8c(x) = Ye(|x|)x = (c + | x [,
for ¢ >0, a constant. Assume that p = 3. If 2(p — 5) + ¢ = 0, then 8., dominates §..
Proor. Substitution of  and v, into the differential inequality (2.3) yields
@5) r2rr ) + (p+1—r)r2+2]
=e+r)2rilc+r T+ (p+1=r)(c+r)1+2]
or, equivalently,
(2.6) [20—5) +clr*+c[8(p—8) + c]r’+ (p — 3)c*= 0.

Clearly, (2.6) is true for all r = 0 if 2(p — 5) + ¢ = 0. Since ¢ > 0, the inequality (2.6) is in
fact strict. Theorem 2.1 then implies the result. 0

Theorem 2.4 implies that 8,, dominates 8. for all ¢ > 0 when p = 5. Takeuchi (1968)
gave the same result but for p = 6. Stein and Zaman (1980) proved that 8,, dominates 8. for
c=1 (ie, 8. = 8,) when p = 5. The results that 8, dominates §. if (i) p = 4 and ¢ = 2, or
(ii) p = 3 and ¢ = 4 are new, but not surprising in light of the inadmissibility results of
Berger, Berliner, and Zaman (1982) discussed in Section 1.2.

THEOREM 2.5. Assume p = 5. Let §(x) = ¢(|x|)x where ¢(r) = (1 + r — g(r))™*
Suppose that Y(r) = 0 for all r = 0 and that y satisfies the conditions of Theorem 2.1. If

2rg'(r) + (1 + r’) g {[2(p — 4) — g(")]r®
@.7) +[&°(r) - 3(p — 1g(r) + 6(p — 2)]r*
+ [pg’(r) — 3(2p + 1)g(r) + 6p]r’
+[(p+3)g°(r) — Bp + Nglr) +2(p + 2]} = 0,
for all r > 0, with strict inequality on a non-degenerate interval, then 8 dominates §,.

Proor. The proof is a direct application of Theorem 2.1 and is therefore omitted. 0

Though Theorem 2.5 is rather general, the key inequality (2.7) is quite complex. Hence,
the following more readily applicable, though less general, result is presented.

THEOREM 2.6. Assumep = 5. Let 8(x) = (1 + | x|* — g(| x|))"'x. Define the quantity
T (p) by

T(p)=(p—497%(20* + 95
(2.8)
—p[10 + {6 — (2p)"'[3p + 7 — 2[2(p* + 5p + 6)]*]}"/*]).
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If (i) g(r) is continuous, piece-wise differentiable, (ii) g(r) is not identically zero, and
g'(r) =0, and (iii) 0 =< g(r) = min{p — 4, max{T (p); 2})"'r?}, for all r > 0, then §
dominates §,.

Proor. The proof is an application of Theorem 2.5. Since g is non-decreasing and not
identically 0, the inequality (2.7) reduces to (suppressing the dependence of g on r).

2p—4) —glrf+[g’-3(p—1g+6(pp—2)I*
(2.9)
+[pg®—32p+1)g+6plr*+[(p+3)g>— Bp+T7g+2p+2)]=0.

Let P(r) denote the quantity on the L.H.S. of (2.9). Let £and % be non-negative constants.
Also let ¢ = max{T (p); 2}.
Assumption (iii) implies that r = c¢g = 2g. Simple manipulation then implies that

PH={2(p—4) —glr*+g>—3(p—1g+ (6—2)(p—2)}r'
(2.10) + {(pg*—[32p+1) — 2(p — 2)¢]1g + (6 — k)p)}r*
+ {(p +3)g” - [3p + 7 — 2kp]g + 2(p + 2)}.

Let the three terms in brackets ({}) be denoted A(¢ k), B(4 k), and C(k) respectively.
Values of Zand k& will be found such that these three terms are non-negative.
First, define %o by

ko= (2p)7'[3p + 7 — 2[2(p + 2)(p + 3)]"°].

Note that it is easy to check that 0 < &, < 6 for all p = 5. Then, clearly,
Clho) = (p+3)[g— (20 +2)/(p + 3)} T = 0.

Next, define 4 by

bo=1[2(p — 2)]7{3(2p + 1) — 2p(6 — ko)"/*}.
Again, it is easy to check that 0 < 4 < 6 for all p = 5. Then

B(t, ko) = plg — (6 — ko)"*T' = 0.

Finally, consider A (4, ko). Since r? = cg and g < p — 4, it is clear that
(2.11) A(lo, ko) = (1 — ©)g” + [2(p — 9)c — 3(p — )]g + (6 — 4)(p — 2).

Let Q(g) denote the quantity on the R.H.S. of (2.11). Since @(g) is quadratic in g and ¢
= 2, it suffices to show that @ (0) and @ (p — 4) are non-negative. Clearly, @(0) = (6 — %) (p
—2) > 0. Next

Qip—4)=(c+1p- 4’-3(p—-1(p—4) + (6—4)(p—2).

Simple algebré reduces @ (p — 4) = 0 to the inequality ¢ = T (p) where T (p) is defined in
(2.8). Hence P(r) =0 for all r = 0.

Inspection of P(r) (see (2.9)) implies that P(r) > 0 for all r sufficiently large. Hence, §
dominates 8. 0

For convenience, the function max{T (p); 2} is given in Table 1.

2.4 Remarks. 1. It is interesting to compare the domination results presented here
with analogous results for the problem of estimating a p-variate normal mean under
quadratic loss. Since the work of Stein (1955) and James and Stein (1960), a large body of
literature has been devoted to the domination of the usual maximum likelihood (or least
squares) estimator 8 when p = 3. For our purposes, consider spherically symmetric
estimators of the form 8 (x) = {1 — (| x|)| x| %}x. Under regularity conditions permitting



IMPROVING ON INADMISSIBLE ESTIMATORS 821

TABLE 1

Values of max {T(p); 2}

p max {T(p); 2} p max {T(p); 2}
5 2.000000 13 2.242694
6 2.000000 14 2.229505
7 2.000000 15 2.216882
8 2.199960 20 2.166817
9 2.259628 30 2.111882
10 2.271731 50 2.066866
11 2.266819 0 2.000000
12 2.255721

integration by parts, it can be shown that if p = 3 and
(2.12) 4r'(Jx ) + (|2 P x| [2(p — 2) — 7(|x[))]= 0,

with strict inequality on an interval, then 8§ dominates 8,. This result is due to Efron and
Morris (1976). (Their result is actually more general since their proof does not use
integration by parts.) The analogy between (2.12) and (2.7) of Theorem 2.5 is clear. It is
interesting to compare the relative complexity of conditions (2.7) and (2.12). Also, note
that if ' = 0, then (2.12) implies that if 0 < (| x |*) =< 2(p — 2), with strict inequality on an
interval, then 8 dominates 8, (Baranchik, 1970). This case is analogous to our Theorem 2.6.

2. It is suspected that the requirement that g(r) = p — 4 implicit in Theorem 2.6 is
stronger than necessary. However, the result has been tailored for use in proposing control
procedures. Therefore, this bound does not impose a serious limitation in that rules which
attain this bound are asymptotically optimal (see Section 1.2).

3. New control procedures. The results of Chapter 2 are now employed to propose
control procedures which dominate 8,(p = 5). It is assumed that the decision maker is
unwilling to assume perfect prior information, ruling out a standard Bayesian solution. It
is then common to evaluate proposed rules in terms of minimax criteria and admissibility.
However, the results of Section 2.2 indicate that the minimax principle is not a very
discriminating criterion in the control problem. (All rules proposed below are minimax.)
Attention is given to admissibility and asymptotic optimality (see Section 1.2). It is also
reasonable to require that a rule be relatively simple to compute. This is the case for the
rules below.

The method of construction of estimators is Bayesian. However, the particular gener-
alized prior measure employed may be considered as merely a tool. Within the scope of
this paper, it is not necessary to consider, in depth, Bayesian justifications of the prior or
the resulting rules. The prior (or versions of it) has been useful in the problem of estimating
a multivariate normal mean. In particular, see Strawderman (1971), Berger (1976), (1980b).
For convenience, results from Berger (1980b), required in the analysis here, are presented
in the Appendix.

Define a generalized prior density g,(6) by

1
&n(0) = (21r)_”/2f [((1 + a)/A — DT
3.1) 0

exp{— -;— [(o(1 + a)/\ — 1)]_1|0|2}>\‘"_1"’/2’ dA,

where p > 0, a > 0, and n = %. Also, define the function r, by
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' 1
v f A”exp(— = v)x) dA
b 2
1 1 .
j A""”exp(— s v>\) dA
b 2

Let| x| =[p(1 + @)]'| x |*. In Lemma A.3 of the Appendi, it is shown that the generalized
Bayes control rule §” corresponding to g, is given by

(3.2) ra(v) =

(3.3) 8x) = {1+ |x)? — sa(||x|P)} '
where
(3.4) 5:(v) = r(V)[p(1 + @)V — 141 (V)]/[p(1 + @)V — ra(v)].

We now find values of the constants n, p, and a such that the resulting rule satisfies the
desired properties. First, Lemma A.2, iii, implies that

x) = {1+ |xP—2n)""x

for | x| large. Therefore, if n = %(p — 4) the resulting rule, denoted §*, is asymptotically
optimal. Furthermore:

THEOREM 3.1. Ifp =5, then 8* is admissible.

The proof is a direct application of the results of Berger, Berliner, and Zaman (1982)
and is, therefore, omitted. It is interesting to note that for n = %(p — 4), g" = g* is given
by

g*(0) = K|9|“™"
for | 0| large and K a constant (Berger, 1980b). Hence, 8* is on the “boundary of
admissibility” alluded to in Section 1.2.

The next step is to find conditions under which §* dominates §,. This is done by
applying Theorem 2.6.

THEOREM 3.2. Assumep = 5. If
(3.5) p(1 + a) = (p — 4)(p — 2)"'max{T (p); 2},
where T (p) is defined by (2.8), then 8* dominates ..

ProOF. Letc=p(1 + a). Let s* = s, and r* = r, when n = (p — 4)/2. First, it is clear
that (see Lemma A.2) s* is continuous, differentiable, and non-negative. To verify that s*
satisfies the conditions of Theorem 2.6, it is sufficient to check that: (i) s* = min{p — 4;

(max{T (p); 2})" | x[*}, and (i) s*'(v) = 0.
(i) First, since r,+1(v) — r.(v) > 0 (Lemma A.2vii), it follows that

[ev — rav(v)]/[cv — ra(v)] = 1.

Therefore, it is sufficient to verify that (i) holds with s* replaced by r*. Lemma A.2i,
implies immediately that r* < p — 4. Also, Lemma A.2v, implies that

r*w)/v=(p-4)/(p—2).

A simple manipulation and (3.5) then yield the result.
(ii) Note that s,(v) is given by (suppressing the dependence on v)

Sh = 1p(CV — Iny1)/(cv — 12)
(3.6)
+ ro{(c = rhw1)/(cv — 1) — (¢ — rh)(cv — rov1)/(cv — 1))
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Employing Lemma A.2vi, (3.6) can be written as
$h=(Sa/U){1 = (rp+1 —r)/2+ 1
+ (Po41/2) ((Pnsz — Tn1) /(€U — Fn41))

— 1 — (ra/2)((rn+1 — 1)/ (cv — 1))}
or

$h = (8o/U){1 — (Sn+1 — 82)/2}.

Hence, it suffices to show that s,+1 — s, < 2. It is easy to check that s,+1 — s, = 2 is
equivalent to

3.7) 2 — (8rn+1/cv) — (ra/cV) + (Fn+1/(cV)®) (Fasz + 1n) = O.
Lemma A.2v, implies that (3.7) holds if

2—-3n+1)/c(n+2) —n/e(n+1).=0.
Hence, it is enough if
(3.8) 2n+ 1)/e(n +2) = 1.

For n = (p — 4)/2, (3.8) reduces to ¢ = 2(p — 2)/p, which is trivially satisfied by hypoth-
esis. 0

Theorem 3.2 only provides a constraint on the values of @ and p under which §*
dominates 8,. One possible choice for these constants is now suggested. This discussion is
based on Berger’s (1980b) arguments concerning the prior measure used here. Note that
by Lemma A.2iv, §" is given by

(3.9) 8 x) = {1+ [1— (n/(o(1 + a)(n + 1))) | x[F]}) '«

for | x| small. Let 8%(x) denote 6"(x) when n = (p — 4)/2 and p = n/(n + 1). For the
remainder of the discussion, assume that a = max{T (p); 2} — 1 so that, by Theorem 3.2,
8% dominates §,. Note that (3.9) implies that, for | x | small,

S*x) = (1+[1—(a+1—-d)/(all + a)]|x|*} 'x,

where d = (p — 2)*/(p(p — 4)). Now let the function 7%(a) be implicitly defined by the
equation

(3.10) 1+r%a)'=0+a)'A+ 1A -d)/a).

Then for a fixed a and for small | x|, 8% is approximately equal to the normal prior Bayes
rule with prior mean (0, - - - , 0)* and prior convariance 7%(a)I, (see (1.7)). (The prior g* is
in some sense a “robust” or flat-tailed version of the above normal prior.) (Note that 7%(a)
is increasing in a if p = 6. If p = 5 7%(a) is decreasing in a for 1 < a < 2 and increasing for
a > 2. This anomaly could be avoided by a suitable redefinition of p when p = 5.)

Intuitively this Bayesian interpretation suggests two possibilities. First, we might expect
the greatest improvement in risk of 8% over 8, to occur when | 8| is small. This is not the
case, however, since all risk functions are driven to 1 as | §| — 0 (see Section (2.2)). Second,
as a and hence 7%(a) increase (moderated by the above remark if p = 5 and 1 < a < 2), the
“size” of the region of © in which 82 offers significant improvement over §, is expected to
increase, but the maximum amount of improvement should decrease. This observation is
true, as can easily been seen from the analysis in Chapter 2.

Table 2 presents some risk computations for the case p = 5. First, the risk of d.,
R(8,, |9]) is given for various values of |@|. Then the quantity PIR, the percent of
improvement in risk, defined by

PIR(B:, 811) =1- R(B:’ lel)/R(su’ Iol)

is given for several values of a. All entries were computed numerically.
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TABLE 2
R(8., |0]) and PIR (8%, 8.): p=5
PIR (8%, 8.)

|10 R(3.,|01])
a=1.0 a=15 a=2.0 a=25 a=3.0
25 .98440 .00147 .00156 .00159 .00157 .00153
.50 93364 .00590 .00626 .00635 .00629 .00615
.75 .85584 .01333 .01410 .01430 .01416 .01384
1.00 75976 .02376 02504 .02537 02514 .02459
1.25 65519 .03710 .03890 .03936 .03903 .03823
1.50 .55113 .05300 .05524 .05583 .05541 .05436
1.75 45449 .07084 .07335 .07403 07352 .07229
2.00 .36934 .08962 .09215 .09285 .09232 .09099
2.25 29714 .10817 11042 11106 .11055 .10925
2.50 23752 .12520 .12688 12738, .12696 .12585
2.75 .18933 .13932 .14022 .14052 14024 .13946
3.00 15137 .14875 .14879 .14885 .14875 .14837
3.256 12256 15126 .15052 .15035 15042 .15047
3.50 .10170 .14526 .14396 .14362 .14383 14425
3.75 .08705 .13185 .13031 .12988 .13018 .13083
4.00 .07640 .11549 11401 .11358 .11390 11464
4.25 .06748 .10144 .10018 .09980 .10009 .10083
4.50 .05874 .09248 09150 .09120 .09144 .09211
4.75 .04983 .08788 .08715 .08691 .08712 .08770
5.00 .04156 .08371 .08319 .08301 .08318 .08368
5.25 .03522 .07426 07392 .07380 .07393 107432

Note that the maximum PIR in Table 2 is about 15%. At first glance this improvement
seems small (especially when compared to the success of Stein-type estimators in the
problem of the estimation of a multivariate normal mean). However, two points should be
raised. First, employing standard approximation techniques and Lemma A.2viii, ix, it can
be shown that the PIR defined above is approximately given by

PIR=1- (p+|0]»%(p|08])?

for p very large. The maximum indicated PIR is then 1 — 4/p, attained at | § |? = p. Hence,
substantial improvement is obtainable.

The second key point concerns the limitations of spherical symmetry. The transfor-
mation (alluded to in Section 1.1) yielding the problem considered here defines the
normally distributed random vector X and its mean 8 by

X=A"8; 6=A""B

where ,é ~ N,(B, A) is a estimate of the regression coefficients of some underlying linear
model (whose output is to be controlled). See Zaman (1981) for details. Hence, any
spherically symmetric Bayes rule incorporates rather unrealistic (perhaps silly) prior
information. First, if | §| was really believed to be near zero, one would probably not be
attempting control. Second, a prior covariance matrix for § proportional to the identity
(corresponding to a prior covariance matrix for 8 that is a function of the design matrix
A) is quite unlikely. It then seems that the incorporation of realistic prior information
would usually require consideration of non-symmetric priors. Non-symmetric versions of
g* and 8 are readily obtainable. See Berger (1980b) for non-symmetric analogs of g* and
Lemma A.1. Minor modifications of Lemma A.3 then yield the corresponding control rules.
However, obtaining extensions of the mathematical results of Section 2 in such cases
appears to be quite difficult.
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APPENDIX

LemMMma A.l.  (Berger, 1980b). Assume X ~ Np(6, I). Let E (6| X = x) and Cov(8|X =
x) denote the posterior mean and covariance of 0 w.r.t. the prior measure defined by (3.1).
Then

(A1) E@|x) =1 - r(|x]P| x| =
and
(A2) Cov(f] X = x) = (1 = ru(l|x|P)| 2|1

+ (|2 rnea (N2 IP) = ol |P)]] o [ .

LEmMMA A2. (Berger, 1980b). If n > 0, then (i) 0 < r,(v) < 2n, (ii) ri(v) > 0, (iii)
limy_wra(v) = 21, (iv) limy_or.(v)/v = n/(n + 1), (v) r.(v)/v < n/(n + 1), (vi) ri(v) =
{ra(v)/v}[1 = Y%{rp«1(v) — ro(v)}], (vil) 0 < rp41(v) — ra(v) < 2, (viii) lim,_,.r.(v) = v, and
(ix) lim,,o[7:(2rc)/(2n{min(1, c¢)})] = 1.

LEMMA A3. The generalized Bayes control rule 8™ corresponding to g, is given in
Equation (3.3).

Proor. Combining (1.6) and Lemma A.1, §" can be written as
(A.3) 8x) = I+ W(|x|)xx"} 'x
where

wW(x|) =1-r(|x|P) x|
(A4)
+ (a2 P)rass (N2 P = ra(l 2 BT/ L@ = ra(fl [P 2 [7)] 2 ).

Consider the following well-known identity for a non-singular, p X p matrix B and p
dimensional column vectors E and F":

(B + EFY)™ = B — 1 + F'B'E]"\(B_'E)(F'B™).
Application of this identity in (A.4) yields
87(x) = {1+ W(|x])| =) .
Simplifying W (suppressing the dependence on || x|?) implies
0Mx) = {1 —ra+ | x>+ [Fa(roes — ) /(| x> = )]} '
= {1+ [rarna + | 2]* = 2|2 |’ra]/(|x|* = 1)} '
=1+ x| = ra(|xf = rae)/ (|2 = ra)} '

as was to be shown. 0
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