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EXPONENTIAL MODELS WITH AFFINE DUAL FOLIATIONS

By O. BARNDORFF-NIELSEN AND P. BLA&SILD
Aarhus University

Suppose an exponential model .# is partitioned into submodels, all of the
same parametric dimension. If each of these models corresponds to a linear
hypothesis about the canonical parameter and also to a linear hypothesis
about the mean parameter, we speak of the partitioning of ./ as an affine dual
foliation. We study those cases where the parameter sets defining the hy-
potheses are parallel either in the canonical space or in the mean space, and
obtain various characterisations and properties of these cases. It is shown,
inter alia, that canonical parallelism and mean parallelism are related to
likelihood independence of ¢ and 7, (and hence to S-ancillarity and S-
sufficiency), respectively to stochastic independence of 6 and 72. Here (61, 72)
denotes a mixed parametrisation of .# and 6, and 7. are the maximum
likelihood estimators of 6, and ;. Also, the two types of parallelism are
characterised in terms of observed and expected information. Mean parallel-
ism is closely related to the concept of reproductivity of exponential models
that forms the subject of a separate paper. A number of requisite general
results for exponential families are established, and these are also of some
independent interest.

1. Introduction. Consider a full exponential model .# on a sample space X and with
minimal exponential representation

4 p(x; ) = a(8)b(x)e”*?,

where 6 and ¢ = ¢(x) are vectors of dimension 2. We denote the domain of variation for the
canonical parameter 6 by ©, and the closed convex hull of the marginal distribution of the
canonical statistic ¢ by C. Furthermore, for § € int® (the interior of ) we let 7 = 7(§) =
Eyt, i.e. 7 is the mean value parameter, and we use the notation Z for the set of mean
values 7(int®). The model ./ is assumed to be steep which is equivalent to 7 = intC, cf.
Barndorff-Nielsen (1978) theorem 9.2. This is the case, in particular, if the canonical
parameter domain © of (1.1) is open. We take vectors to be row vectors and denote the
transpose of a vector v by v*.

Suppose O is partitioned into subsets which, except perhaps for some singular cases, are
differentiable submanifolds of ©, of some fixed dimension d where 1 < d < k. Typically, an
arbitrary parameter ¢ of .# induces such a partition. We then say that we have a foliation
of © of dimension d, and the subsets of © that constitute the foliation are called leaves. To
any d-dimensional foliation of @ there is a dual foliation of the space Z, namely the
partition of  induced from the partition of int® by the mean value mapping 7. To
distinguish between these two foliations we use the terms §-foliation and 7-foliation. If
each leaf of a foliation, of dimension d, of ® or J is contained in a d-dimensional affine
subspace, we call the foliation in question affine. Such foliations are generally of statistical
interest, affine §-foliations corresponding to linear hypotheses about the canonical param-
eter and affine r-foliations corresponding to linear hypotheses about the mean value
parameter. Cases where the dual foliations, of ® and J respectively, are both affine should
command special attention, and such cases are the objects of study in the present paper.
We speak of models with this structure as exponential models with affine dual foliations,
and our purpose is to derive properties of a general nature for such models.

To obtain useful general results it seems necessary to single out suitable subclasses of
the class of all exponential models with affine dual foliations for separate study. We shall

Received September 1982; revised March 1983.

AMS 1980 subject classifications. Primary, 62E15; secondary, 62F99.

Key words and phrases. Cuts, duality, expected information, independence, Legendre transforms,
mixed parametrisations, observed information, pivots, profile likelihood.

753

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIK@J:Y

o

yo 22

®

WWw.jstor.org



754 0. BARNDORFF-NIELSEN AND P. BLAESILD

discuss two such subclasses here, namely those with @-parallel and 7-parallel foliations,
respectively. A third subclass, that of §-7-cone foliations will be briefly indicated at the end
of the present section.

We say that the model .# possesses a #-parallel foliation of dimension d if there exists
an affine dual foliation of .# such that the leaves of the #-foliation can be described as the
intersections between © and the affine d-dimensional subspaces of R* that are parallel to
some given d-dimensional linear subspace of R* The concept of r-parallel foliation is
defined analogously. Let (¢1, £2), (61, 62) and (71, 72) denote similar partitions of ¢, # and 7.
In discussing @-parallel foliations, it causes no loss of generality to assume that the leaves
of the foliation are the subsets of ® obtained by fixing 6, at its various possible values, and
analogously for r-foliations. Various characterisations and properties of these two types of
foliations are discussed in Sections 4 and 5, respectively. In particular, it is shown that the
existence of a #-parallel foliation is equivalent to the existence of a proper cut in .Z. (For
a discussion of the concept of a cut and of its intimate connections to S-ancillarity and S-
sufficiency see Barndorff-Nielsen (1978), Sections 10.2-4.) This, in turn, is essentially
equivalent to likelihood independence of 6; and 5. On the other hand, the existence of a
7-parallel foliation determined by fixing 7, at its potential values turns out to be closely
related to stochastic independence of the maximum likelihood estimators é; and 7, though
a complete equivalence has not been established.

Legendre transforms turn up in a natural and useful way in the study of #-parallel and
7-parallel foliations and for this reason we give in Section 2 the definition and some
elementary properties of the Legendre transformation.

Section 3 contains various elementary general results for exponential models that are
required in Sections 4 and 5. Several of these results are new and of independent statistical
interest.

Throughout the paper we use the concept of an indefinite integral of a r X s matrix
function of a s-dimensional vector. If 4(y) = {h;(y)};, where y = (y1, - - -, ¥s), we say that
the r-dimensional function H = (Hj, - .-, H,) of y is an indefinite integral of A if aH*/dy
= {38H:/dy;}; = h. A sufficient condition for A to possess an indefinite integral is that the
derivatives dh;/dy. exist and are continuous and satisfy oh;/dyr = dhi/dy; for all i = 1,
cee, 1, j=1,---,sand k = 1, ---, s. Indefinite integrals will be denoted by the capital
letters corresponding to the lower case letters used for the matrix functions.

The present report is strongly related to the report by Barndorff-Nielsen and Blsesild
(1983). The paper by Bar-Lev and Reiser (1982) has been an important source for some of
the developments in the two reports and together these reports provide inter alia an
extension, from exponential models of order two to exponential models of arbitrary order,
of the main results of Bar-Lev and Reiser (1982), as given in their Theorems 3.1 and 3.2.

As announced above, we conclude this section by indicating a third type of dual affine
foliations that seems of some particular interest but for which we have not, so far, obtained
any general results. We say that the model .# has a 0-t-cone foliation of dimension d if
there exists an «affine dual foliation of .# such that each leaf of the §-foliation can be
described as the intersection between ® and a d-dimensional cone, all the cones having the
same top point, and similarly for the leaves of the 7-foliation.

The models corresponding to the gamma distributions, the von Mises-Fisher distribu-
tions in arbitrary dimensions, the hyperboloid distributions in arbitrary dimensions, and
Fisher’s gamma hyperbola all provide examples of exponential models with #-r-cone
foliations.

In the investigation of models with such foliations the mixed parametrisation (6, 72)
does not seem to be of relevance, in contrast to the study of models with #-parallel
foliations and r-parallel foliations that form the subject of Sections 4 and 5 below. We
desist here from further remarks concerning exponential models with #-7-cone foliations,
noting, however, that the models in the four examples mentioned above are all exponential
transformation models.

2. The Legendre transform. Let f be a real differentiable function defined on an
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open subset U of R* and define a new function fon U by
2.1) fa)y=x-y- f)

where
of
= D = oe—
¥y = (Df)(x) F (x)
is the gradient of f at x. We speak of f as the Legendre transform of f. If the gradient
mapping Df is a one-to-one function, one may think of f as a function of y, and we shall
then, for simplicity, write f(y) instead of f((Df)™'(y)). This is the case, in particular,
provided f has continuous partial derivatives of the second order and provided the Hessian
of f
%
2 =
(D) = axox*
is nonsingular throughout U. In these circumstances the Legendre transform of f( y) is
well defined and we have (Df)(y) = x and
fx) =y - x = f(3) = fx),
i.e. applying the Legendre transformation twice recovers the original function. Further-
more,

(%)

(D*f)(y) = (D) ()}

The classical areas of application of the Legendre transformation are certain types of
variational problems and (partial) differential equations, cf. Courant and Hilbert (1952,
1953) and Kamke (1930, 1974). More recently, the Legendre transformation has acquired
some prominence in convex analysis, Rockafellar (1970). In the study of exponential
families of probabilities distributions, the Legendre transform of the cumulant generating
function is a useful tool, with a simple statistical interpretation; this is discussed in
Barndorff-Nielsen (1978). The latter special instance of the transform also occurs naturally
in the present study, cf. Sections 3, 4, and 5.

We shall consider the extension of (2.1) to vector-valued functions. Suppose f takes
values in R and is defined on an open subset of R*. We assume that f is differentiable and
define the Legendre transform f of f as the function on U and with values in R? which is
given by

f(x) = x(Df)*(x) — f(x)
where (Df)* is the transpose of the d X & matrix Df = af */ax.
Later on we shall refer to the following elementary property of the Legendre transform.

LeEmMMA 2.1. Suppose f has continuous partial derivatives of the first order in the
open subset U of R* and that 0 € U. If the Legendre transform f of f is constant on U
then f is an affine function on U, i.e. f(x) = xA + B for some constant k X d matrix A and
some constant d-dimensional vector B.0O

ProOF. Let C be a constant vector of dimension d and suppose that flx) =Cforx €
U. There is no loss of generality in assuming that d = 1 and C = 0, and then we have

x - (Df)(x) = f(x).

At first, assume that the unit sphere is contained in U. In this case it is well-known that
the partial differential equation for f has a solution of the form f(x) = | x| f(e(x)) where
e(x) denotes the unit vector in the direction of x. Since f is differentiable also at the origin,
we therefore have f(te) = tf(e) for any k-dimensional unit vector e and any scalar ¢ such
that te € U. Differentiating this equation with respect to ¢ and setting ¢ = 0, we obtain e
- (Df)(0) = f(e) whence te - (Df)(0) = f(te), i.e. f(x) = x - (Df)(0) for x € U. The proof is
now easily completed. 0
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3. Some elementary general results for exponential models. A variety of ele-
mentary general results for exponential families are presented in this section. These results
are prerequisites for the developments in Sections 4 and 5, but they are also of independent
interest.

Let @ = (61, 62) be a partition of § into components 8; and 6, of dimensions k; and kg,
respectively, and let ¢ = (41, £z) and 7 = (71, 72) denote similar partitions of ¢ and of the
mean value parameter 7 = Eyt, which is defined on int®, the interior of ®. The mixed
parameter (81, 72) plays an important role in the following discussion and the first three of
the results of the present section concern the mixed parametrisation. (Strictly speaking,
since we take int® as the domain of definition of 7, (6:, 72) provides a parametrisation only
for those probability measures (1.1) for which § € int®.)

The first lemma is an extension of Theorem 8.4 in Barndorff-Nielsen (1978) from regular
to steep exponential models.

LeEmMMA 3.1. Suppose that the full exponential model (1.1) is steep. Let @, denote the
possible values of the component 0., i.e. ©, = {0: | there exist a 0, such that (6., 6;) € 0},
and let Cs denote the closed convex hull of the support of the marginal distribution of t;.
Then

(8, 72)(int®) = int®, X intCs,
i.e. the components 6, and 7, of the mixed parameter (01, 12) are variation independent.[]
PrOOF. Suppose 8o = (6o, bo2) € int O and let .#(6o1) denote the submodel of .# whose

parameter domain is determined by ©(fo:) = {# € © |8 = (601, 62)} . Clearly #(00) is a full
and steep exponential model of order %; with minimal representation

p(x; (001 ) 02 )) — a(001 ’ 02) e(”z_ooz)' t,(x)
plx; (o1, Go2)) a(fo1, oz) ’

q(x; (B, 62)) =

If ©2(fo1) denotes the set {f: (o1, 62) € O}, it follows from Theorem 9.2 in Barndorff-
Nielsen (1978), that 72(int®:(f:)) = int C: independently of the value of 6y;.0

The next lemma presents the Jacobian matrix for the mapping taking the mixed
parameter (61, 72) into the mixed parameter (1, 62). In order to formulate this result recall
that if x denotes the cumulant transform of (1.1), i.e.

k(8) = —In a(6),
then 7 = (Dk)(0) and = = (D%)(#) is the variance matrix of t. Let A = 37! and let

E11 212 A11 A12
31 3= =
@1 | [221 222] ;& [A21 Azz]
be the partitions of = and A such that Z;; and Ay are k1 X ki matrices.

LEMMA 3.2.. The Jacobian matrix for the mapping taking (61, 72) into (t1, 02) is

a(t1, 62)*
J(n,oz)(ol, T2) =‘a—01-2—'
(3.2) (61, 72)
— S — 2102 S S _ A —Ai A
—355 2o S A ATE Agp — AuiAif A |

ProorF. Using the well-known result that

Zp =
J(n,m(01, 6,) = I:E; 2:]
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it follows that

-1
_ I, 0 1 0
3.3 Jon0 (01, 72) = TG,y (61, 02) = | =™ ,
( ) (@ ,9)( 1 72) (61, 2)( 1 2) [221 222:| [_22—21221 22—21

where I, denotes the %; X k; identity matrix. An application of the chain rule implies that
S 1,00 (01, T2) = Jir,,0,) (01, O2)J (6,6, (61, T2)

_|[Zn 2 I, 0 _ | Zu— 2 % Zu S 3%
0 I ||-3% 30 = - 3% 25 S ’

The last equality in (3.2) expresses standard formulae for inverses of partitioned mat-
rices. 0

We may apply (3.2) to obtain

¥ (01, T2) 36% (61, T2)
L T T o

r aTl (01, T2)
a0, ! 36, =

T1 —
ars

i.e., in an obvious notation,
Ok (0, T2)

o —71(72| 61).

(3.4)
The following two lemmas are concerned, respectively, with the expected (or Fisherian)
information for the mixed parameter (#;, 72) and with the observed profile information for

..
LEMMA 3.3. The expected information for (61, 72) is

A 0

Eu—-32Z2n3Za 0 _
0 Ap—ApAi Az |°

i(aly 72)= [ 0 22—21

PROOF. Since
8(6y, 62) 3(61, 62)*

3(6:, ) * 161, 6a) 3(0,, 72)

the result follows from (3.3) and the fact that i (6, 6:) = =.0

(61, 72) =

The log-likelihood function ¢ for 8 corresponding to the observed value ¢ of the canonical
statistic of (1.1) is

(3.5) £0;t) =0-t —k(0)
and hence the log-likelihood function 4 for (61, 72) is
(3.6) %((01, 72); t) = £(0(01, 72); 2)

and the observed information is

_ 3%*4((61, 72); t)
3(01, 12)a(01, 2) *°

J((01, 72); 8) =

Let % be the profile (or partially maximised) log-likelihood function for 6y, i.e.
%0(03; (t1, £2)) = sup,,% (01, 72); (1, &) = 6((61, &); (8, &),

v~vhere the last equality presupposes ¢ € intC. The information function corresponding to
4% will be denoted by )
_%(6:; (11, )

Jls; (4, &) = 90,907
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Finally, let ji; (81, 72) and i11(6:, 72) stand for the (1, 1)-bloc element of j(#:, 72) and
i(0y, 72), respectively. Thus, by Lemma 3.3, i11(61, 72) = A1l . With these notations one has:

LEMMA 3.4. The observed information function 7 based on the profile log-likelihood
function for 0, depends, considered as a function of (61, t1, t2) on (int®;) X intC, on (61, t2)
only and equals ji1(61, t2) and also i1 (01, t2), i.e.

J0s; (11, &) =] O1; &) =ju (01, &) = i1 (01, ). o

Proor. Let b and x be vectors of dimension r and s, respectively, and let M = M (x)
be a r X s matrix differentiable with respect to x = (x1, ---, x;). We then define the
product b X aM/ax* to be the s X s matrix given by

oM

b—
axl

oM
9xs

b

Differentiating (3.6) twice with respect to (6;, 72) we find

H(Br, 72); (B ) = §Br, 72) — (£ = 7) X ("“’"02))

(01, 72)* \ 9(01, T2)
. a _ _
=i(0, 2) — (. — 72) Xm [- =% 22, 22]
from which we obtain, using (3.3) and ¢ € intC, that
3.7) J (6, ); (41, &) = i(0s, ).

It is well known that, whether the model is exponential or not, the observed formation
function (i.e. the inverse of the observed information function) calculated from a profile
likelihood equals the relevant part of the observed formation function from the full
likelihood (Richards, 1961, Patefield, 1977), i.e. in mathematical terms

77H0:) =716y, ),

where j'!(6;, tz) denotes the (1, 1)-bloc element of the inverse of the matrix j(6:; ¢2).
Lemma 3.4 follows from this result in conjunction with (3.7) and Lemma 3.3. 0

The first conclusion of Lemma 3.4 may be formulated as saying that the estimated
observed formation function for 6; does not depend on ¢;. This may be compared to the
well known result that the full observed information j(8) for # does not depend on ¢, as it
equals the expected information function i(6).

We shall repeatedly use the fact if Ps denotes the probability measure given by (1.1), if
u is a statistic and if p (u; 0) is the density of the lifted measure uP, with respect to some
o-finite measure dominating the class {uPy:0 € ©} of marginal distributions of u then, for
any elements 6, and @ of ©, we have

dP,

P, u}p(u; o),

(3.8) pw; 0) = Eoo{

cf. Barndorff-Nielsen (1978), Section 8.2 (iii).
Quite generally, we shall use the notation

x ~EM(t(x); 9)
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to indicate that a random variate x follows an exponential model with ¢(x) as the canonical
statistic and @ as the associated canonical parameter.

Under the exponential model (1.1) it may happen that the marginal distributions of a
component ¢, say, of the minimal canonical statistic ¢ constitute an exponential model.
The final lemma in this section is concerned with the particularly simple case in which
t; ~ EM((H(tz), t2); 8) where H is some k;-dimensional vector function. We use the symbol
1 to indicate stochastic independence between random variates.

LEmMmA 35. Under the exponential model (1.1), let t = (¢, t;) be a partition of the
canonical statistic and consider a ki-dimensional statistic of the form H(t;) for some
function H. Then

L~EM(H(),L),0)=tt—H{t) Lot —H)~EM@HG — H), 0).
In this case the distribution of t — H(t:) depends on 0, only, and, with
p(tZ; 0} = ao(a)eo-(H(k),tg)

as an exponential representation of the model for t;, the Laplace transform of t, — H (t;)
may be expressed as
ao (6 + (A, 0)) a(d)

A (h—H(t)) —
Ene %@  al@+ o)’

where the right hand side, in fact, depends on 6, only. O

This lemma is identical to Theorem 2.1 of Barndorff-Nielsen and Blesild (1983) and
the proof is given in that paper. (Note also the reference there to Bar-Lev, 1983.)

We conclude this section by pointing out an important duality between the maximised
log-likelihood function and the cumulant transform of the exponential model (1.1). This
duality, which will be used in Section 5, is established via the Legendre transformation,
discussed in Section 2.

Letting ¢denote the maximised log-likelihood function

£(t) = supe£(6; t)
we have, using (3.5), that
(3.9 %0) = ¢()

for € int® and 7 = 7 () € 7= 7(int®). Conversely, the Legendre transform of 2(7) equals
k(@). Furthermore, again for § € int® and T = 7(0) € 7, we have the duality relations

K o
(3.10) im == ]
8% 8% .
@11) Woo* > e >

In particular, the gradient of ¢ provides the inverse of the mean value mapping 7(6). (For
further discussion, see Barndorff-Nielsen, 1978, Section 9.1).

4. Models with #-parallel foliations. In the discussion of these models we may
without loss of generality assume that the foliation of int® is of the form {ri®(6,):0, €
int®; }, where ri®(#,) denotes the relative interior of the set of parameter values § =
(0., 02) with fixed 6,. Let (6:) = 7(ri®(6:)). Since the model is assumed to be §-parallel
F(6,) is the intersection of a k;-dimensional affine subspace and 7= 7 (int®). Consequently,
there exists a 2 X k; matrix d(6;) and a 1 X k; vector e(6;) such that

(4~1) '9_(01) = {7' S gv-Td(al) + e(91) = 0}, 6, e int@l.
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By assumption, the rank of d(6) is k; for every #; € int®;. If

_ [0
¢(6) = [dz(al)]

denotes a partition of d(6;) such that d1(0,) is a k1 X k; matrix one has
7d(6,) + e(01) = 71d1(61) + 12d2(6:) + e(6y).

The matrix d; (6;) must be regular. In fact, if this was not so then for §; € int®, and some
non-null 1 X k; vector ¢ = ¢(#:) one would have d;(0:)¢* = 0 whence, setting ¢35 =
d2(01)¢* and ¢o = e(61)¢*, it follows that

(4.2) Toedpe+ o =0 forany 7€ %,

where Z; denotes the set of the possible values of 72; according to Lemma 3.1, % is the
same as the set 7(0;)2 = {12:72 = 72(0), § € ©(6,)}. Furthermore, since d(6,) has rank %,
and d;(6:)¢* = 0 the vector ¢, is different from 0. Relation (4.2) now yields a contradiction,
for % is an open subset of R*. Thus, letting A(6:) = d2(0:)di(6:)™" and k(6:) =
—e(01)d1(6,) " we may rewrite (4.1) as

T(0) = {1 € Ti11 = —1h(6:) + k(6:)}, 6: € intO,.
This shows that 7, considered as a function of the mixed parameter (6:, 72), is of the form
4.3) 11(61, T2) = —T2h(61) + E(0:).
We are now set to show:
THEOREM 4.1. Consider the exponential model # with exponential representation
(1.1). The following five statements are equivalent.
(i) A has a 0-parallel foliation, given (without loss of generality) by {ri®(6,):6: €

int@l } .
(ii) 71 (01, 72) is of the form

(4.4) 71(01, T2) = —72h(01) + k(6,).
(iii) 05(61, T2) is of the form
(4.5) 0>(01, 72) = H(6:) + m(72).
(iv) « (01, 12) is of the form
(4.6) k(6, m2) = K(61) + M(r2).
(v) t2 is a proper cut of size ks in @ = {Py:0 € int®}, i.e. t; is S-sufficient for r, and S-
ancillary for 6,.0

REMARK. A number of examples of exponential models with proper cuts may be found
in Barndorff-Nielsen (1978).

Proor. The implication (i) = (ii) has already been established and the converse is
trivial.
From (3.2) one obtains
a0

_ a7y
6_01 (91, ‘1'2) = 2221 g =— E (91, 72)

4.7)

from which the equivalence of (ii) and (iii) follows. Specifically, (4.4) and (4.7) imply that

003
a—;wl, 72) = h(6:)
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and letting H be a function of §; with values in R* such that aH*/80, = h we obtain
formula (4.5) for some vector function m. To prove the converse implication (iii) = (ii)
note that (4.5) and (4.7) imply

37‘1

G = - & 4y = -ne)
1

from which we obtain formula (4.4) for some vector function k.
To prove (iii) = (iv) we observe, using (4.4) and (4.5), that

d
== (B, 1) = wl, 6:) + wl, 02> wl, ™)
06,

= 71 + 72h(6:) = k(6,)
and hence
Kk (61, 2) = K(61) + L(s),
where K and L are real valued functions of §; and 72, respectively, and where dK/36, = k.
Now,

—( ) = o (6, m) = o B 6 5 ‘wz = 61,7 = 2

(72)
T

which implies that
L(r2) = m2-m(r2) — M(r5) = M(s),

where M is an indefinite integral of m. This shows that (iii) = (iv).
The equivalence of (iii) and (v) follows from Theorem 10.4 of Barndorff-Nielsen (1978).
The proof of Theorem 4.1 is now completed by showing that (iv) = (ii). Differentiating
(4.6) with respect to 6; and using (3.4) we find

""71(1'2 | 0) = k(”l)-

There is no loss of generality in assuming 0 € % and Lemma 2.1 then implies that ; is of
the form (4.4). 0

It may be noted that when (iii) and (iv) hold then the representation (1.1) may be
rewritten as

D(x; 01, 73) = b(x)exp(—M(r;) + m(rs)-t,)exp(—K(6:) + 01 -t + H(6:) 1)

Using Theorem (4.1) and formula (3.2), the following two alternative characterisations
of @-parallelism are easily established.

THEOREM 4.2. Let ./ be the exponential model with representation (1.1). Then the
following three conditions are equivalent.

(i) A has a 6-parallel foliation of the form considered in Theorem 4.1.

(ii) 2122%" considered as a function of (01, T2) depends on 6, only.

(iii) The (2, 2)-bloc element in the partition of i(01, T2), i.e. i2(6:, T2) = %', depends on
T2 only. O

5. Models with r-parallel foliations. Because of the duality between int® and J; as
embodied in the two convex functions k(f) and ¢(7) and the relations (3.10) and (3.11), we
may without further proof assert the equivalence of the dual versions of the statements
(i)-(@iv) in Theorem 4.1. This is done in Theorem 5.1.

More interesting, however, is the problem of finding the appropriate dual statement to
that of (v) in Theorem 4.1 since (v), essentially, states that #; and 7, are likelihood
independent, in the sense of Barndorff-Nielsen (1978), and this represents the statistical
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content of the concept of #-parallelism. From the duality viewpoint, it seems natural to
mvestlgate whether the exponential models with r-parallel fohatlons are those in which
6, and 7, are stochastically independent. (It may be noted that 8, and #, are always
asymptotically independent, cf. Lemma 3.3.) We are able to prove that the independence,
under mild conditions, implies 7-parallelism, whereas at present we can prove the converse
only in the special cases discussed at the end of this section.

However, before taking up this problem, we shall present an alternative statistical
characterisation of r-parallelism in terms of the observed profile information for 6,. This
description is based on still another characterisation, given in Theorem 5.2.

THEOREM 5.1. Consider the exponential model ./ with exponential representation
(1.1). Then the following four statements are equivalent.
(i) # has a t-parallel foliation, given (without loss of generality) by {ri T(rs): 712 €

T3}
(ii) 02(601, 72) is of the form

(5.1) 00y, 2) = —01h(12) + k(r2).
(iii) 71(01, 72) is of the form

(5.2) 7101, ) = m(6y) + H(ra).
(iv) 261, ) is of the form

(5.3) 261, ) = M(6) + K(r2).

Furthermore, if one of the conditions (i)-(iv) is fulfilled (1.1) may be rewritten as
(54) p(x; 601, m2) = b(x)exp(01-ﬁ(72) - I?(Tz) — M(6,))exp(6s-{t1 — Lh*(12)} + k(12)-1).0
Proor. Because of the remark made above, only formula (5;4) needs to be proved, As
mentioned in Section 3, k() equals the Legendre transform of #(7), i.e.
k(0) = 7.0 — 2(8)
and from (5.1)-(5.3) one finds

k(0:, 7o) = 01-{m(0y) + H(73)} + {—01h(72) + k(72)} -T2 — M(Ol) — K(72)
(5.5)
= —6,-H(rs) + K(72) + M(6)).

Inserting this and (5.1) into (1.1) the proof is completed. 0
The following corollary is an immediate consequence of (5.4).

CoROLLARY 5.1. Suppose # has a t-parallel foliation of the form considered in
Theorem 5.1. Then the Laplace transform of the quantity

p=t— tzh*(rs) + H(r)
is given by
Ey{exp(A-p)} = exp(M (6, + A) — M(61)).

Consequently, the distribution of p depends on 6, only, i.e. p is a pivot provided 60, is
known. [

Quite similar to Theorem 4.2 we have:

THEOREM 5.2. Let ./ be the exponential model with representation (1.1). Then the
following three conditions are equivalent.



AFFINELY FOLIATED EXPONENTIAL MODELS 763

(i) # has a T-parallel foliation of the form considered in Theorem 5.1.

(ii) =235 considered as a function of (61, T2) depends on T; only.

(iii) The (1, 1)-bloc element in the partition of i(6:, 72), i.e. i11(61, 72) = Ail’, depends on
6, only. O

As noted in Section 3, the observed profile information j(8,) for ; in general depends
on the observation (¢, £2) only through ¢,. Thus we have the following characterisation in
statistical terms of the concept of r-parallelism.

COROLLARY 5.2. Consider the exponential model .# with representation (1.1) and
suppose t(X) = intC, where t(X) denotes the range of t. Then ./ has a t-parallel foliation
of the form considered in Theorem 5.1 if and only if the observed profile information j(6;)
does not depend on t; (and hence not on t). 0

PRrooOF. Since for every 7. € % there exists a x € X such that 7. = £, = £(x), the
statement that;(ﬂl; t) does not depend on ¢ is equivalent, according to Lemmas 3.3 and
3.4, to the statement that Ai;* considered as a function of (6, 72) does not depend on 7. An
application of Theorem 5.2 completes the proof. 0

The function ¢!, defined by
0 =10-2(1)

can, because of (3.5) and (3.9), be considered as the dual of the log-likelihood function ¢4
and a characterisation of #-parallelism similar to that of 7-parallelism in Corollary 5.2 can
be given in terms of ¢'. If j1(rs; 8) denotes the observed profile “information” on
calculated from ¢%, it can be shown that ; t(rg; 0) = 2{21(91, 72) and the dual version of
Corollary 5.2 now follows from Theorem 4.2.

Before we discuss the relation between independence of é; and #, and r-parallelism, we
give in Theorem 5.3 three conditions which separately are equivalent to the former
condition provided one has r-parallelism.

For a sample x;, - - - , X», n = 1, of independent observations from the distribution (1.1)
we denote the corresponding model by .#,. A minimal sufficient statistic of .4, is t =
(t1, &) = ((1/n) Y ta(x:), (1/n) Y t2(x:)) and the corresponding canonical parameter is 6,
= nd. It follows from (5.2) that if .# has a t-parallel foliation then so does .#, and, with
obvious notation, one has H, = H, m, = m(n™'.) and %, = nk.

THEOREM 5.3. Assume that the exponential model (1.1) has a t-parallel foliation of
the form considered in Theorem 5.1. If, in addition, the maximum likelihood estimate 0
of 0 exists with probability 1 (i.e. t € intC with probability 1) then the following four
conditions are equivalent

(i) b, L 7

(i) t-H®) L&

(i) 2 = t2 ~ EM((H (%), t.); nf) B

(iv) m(0:) = & — H(t,) ~ EM(t, — H(%); nb:).

Furthermore, if the conditions (i)-(iv) are fulfilled then
(v) the distribution of the quantity

(5.6) g =H(t) — H(rz) + (2 — &)h*(72)
depends only on 6,.0

Proor. It follows immediately from (5.2) that m is a one-tq-one_funct_ion of 6, and
hence, since the maximum likelihood estimate of @ satisfies 7(d) = ¢ for ¢ € intC, the
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equivalence of (i) and (ii) is proved. The equivalence of these and (iii) and (iv) follow from
Lemma 3.5.
To prove (v) let

P =t — t:h*(1s) + H(ro).
Since 6, and q are independent (due to (i)) and since
p—m@) = (- &h*(r) + H(r) — (. — H(®) = g,
it follows from Corollary 5.1 that '
Ey{exp(A-q)} = (Eo{exp(n~"\-p)})"/Es{exp(X-m(61))}
= exp{n(M(6, + n”'\) — M(6))}/Es{exp(\-m(6:))}

and using (iv) the proof of (v) is completed. [

To prove that the independence of 6, and #» implies tflat the model considered has a
7-parallel foliation, we need the following lemma.

LEmmMmA 5.1. Consider the exponential model /4 with representation (1.1). Suppose
there exists two stochastically independent statistics s, and s, such that the correspond-
ence between t and (s1, s2) is one-to-one, and such that neither s, nor s; is a sufficient
statistic. Then 4/ has an exponential representation of the form

a1(61) az(G2)exp(By- { (s1(x)) + &1(s2(x))} + O2-Fo(s2(x))), %€ X,

where

(i) f is one-to-one considered as a function of si,

(ii) & = (&1, &2) is one-to-one considered as a function of s;
and

(iii) &, parametrises the class of marginal distributions of s, i.e. the marginal
distribution of s, depends on 0 through 6, alone, and different values of b, give different
distributions of s;. 0

Proor. Without loss of generality we assume that 0 € ©. Using (3.8) we obtain that

. _ d(sl, Sz)Py _ . .
p(s, 825 0) = d. 5P 2(s1; )w(sz; 6)

for some functions z and w. It follows that

P(s1, 825 0) _ p(si, s 0)
P(so1, $230)  p(so1, so2; )’

(5.7) e 0,
for all sy, so1, 52 and soz. Simultaneous application of (5.7) to a set of linearly independent
values 0y, - - -, 0 of § implies that

t(s1, 82) = t(s1, So2) + t(so01, S2) + t(So1, Soz)

(5.8) = f(s1) + g(s2).

Let d denote the dimension of the smallest affine subspace containing f(s:(X)). Since
neither s; nor s, is minimal sufficient, it follows from (5.8) that 0 < d < k.

Now, let vg, vy, - - - , s be linearly independent vectors such that {v, - - -, vz} is a basis
of R* and such that

f(s1(X)) C vo + span{vy, ---, va}.

If vo = 3% cv; one has, with obvious notation,
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0-t=0-(f(s1) + g(s2))
(5.9) =0-(TL: (fls) + 8i(s2) + vy + Yo uur (8i(sy) + c)vy)
=01 (F(s1) + &r(52)} + Bo-a(sa),

where
6, = O[vt, .-+, v, Go=0[vis, ---,vE],
fls)) = (fils1), « -+, fals0),
£i1(s2) = (gi1(s2) + c1, ++ -, 8a(s2) + ca)
and

&2(s2) = (8a+1(s2) + Car1, =+ +, (s2) + c2).
Using (5.9), the proof of Lemma 5.1 is easily completed. [
THEOREM 5.4. Consider the exponential model ./ with representation (1.1). If t(X)

= intC and 6, and 7, are stochastically independent then ./ has a t-parallel foliation, of
the form discussed in Theorem 5.1.0

ProOF. From Lemma 5.1 with (si, s2) = (1, %) = (81, t2), it follows that .# has
representation :

a1(B)ax(Bo)exp(®: - & + b - 1),
where

t=F0) + gita), b= 8(t).

According to Lemma 8.1 in Barndorff-Nielsen (1978), there exists a 2 X 2 matrix A and a
1 X k vector B such that

t=£{A + B.

All AIZ
A=
[AZI AZZ]
be a partition of A such that A;; is a d X k; matrix, and writing B = (B;, B;) where B; is

a 1 X k; vector, one finds

t = (fb) + g1(t2)) A1 + g(t:) Az + By = m(:) + H(t,).

Letting

The assumption #(X) = intC now implies that
71 =m(6:) + H(rz)

which, according to Theorem 5.1, completes the proof. [
Using Theorems 5.3 and 5.4, we obtain the following corollary.

CoROLLARY 5.3. Consider the exponential model # uiith representation (1.1). Under
the assumption t(X) = intC, stochastic independence of 6: and 7. implies that 7, = t; ~
EM((H(t;), t2); 8) for some ki-dimensional function H.[

In the discussion of whether 7-parallelism implies independence of 6, and 72, we take
formula (5.1) as a basis and consider in succession the three cases corresponding, respec-
tively, to h(r2) constant, £(72) constant, and both A(r;) and &(72) non-constant.

Constancy of A(rz) occurs if and only if the r-parallel foliation given by (5.1) is also 6-
parallel, as follows from Theorem 4.1 (iii). In this case we have:
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THEOREM 5.5. If the r-parallel foliation given by (5.1) is also a 6-parallel foliation
then h is constant,

t1 — bh* Lt
and the distribution of t; — t:h* depends on 6, only while the distribution of t, depends
on 6>+ 0,h only. O

Proor. In order to prove the independence it suffices, cf. Section 9.2 in Barndorff-
Nielsen (1978), to prove that #; — zh* and ¢, are uncorrelated. From (3.2) and (5.1) it
follows that

cov(ty — bh*, ts) = cov(ts — 232 D1, £r) = 1z — B122 Be2 = 0.
The proof is completed by noting that
0't=01-(tl—tzh*)+(02+01h)-t2. D
If k(r2) is constant, we may without loss of generality assume that k(2) = 0. For this
case, which is characterised by the following theorem, we have

oh
ok = —@, X —
22 1 arF

as is seen from (3.2) and (5.1).

THEOREM 5.6. Suppose ./ has a t-parallel foliation of the form discussed in Theorem
5.1, i.e. 62(01, 72) = —6:h(12) + k(72). Furthermore, suppose c int® C int® for every scalar
¢ > 1 and let D(0) denote the distribution of t.. Then the following two statements are
equivalent.

(i) k(r2) =0 for every 72 € 7,

(ii) The distribution of t; is D(nf).

Furthermore, if (i) is fulfilled the function h is one-to-one.O

ProoF. Suppose (i) holds, i.e.

(5.10) 02(01, T2) = —0:h(72).
Since 6; and 7, are variation independent (cf. Lemma 3.1), formula (5.10) implies that
h(12) = h(72) = 02(0,, 72) = 02(6,, T2)
= (61, 02(61, 72)) = (01, 62(61, T2))

= (01, 72) = (01, T) = T2 =T

and consequently % is one-to-one.
The formula

(5.11) T2(c0) = 12(6), c¢>1,

is the basis for the proof of the implication (i) = (ii). To prove this formula, let 7 = 72(cf)
and 72 = 12(f). Using (5.10) we have

cly = —cO1h(72) = Oy = —0,1 (o) = (61, 02(01, T2)) = (01, 02(61, T2)) = T2 = Ta.
From (5.5) it follows that the cumulant transform of & is
Kke,(A; 8) = k(61, 02 + N) — (61, 62)
= =6, - {H(72(61, 62 + N)) — H(2(61, 62))}.
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The cumulant transform of ¢, is, using (5.11),
g, (A; 0) = nky,(n7'A; 9)
= —nb; - {H(75(01, 62 + n7'\)) — H(r2(6y, 62))}
= —nb, - {H(r,(nb, nd, + \)) — H(rs(nby, né,))}
= ke,(A; 1)

and so ?, has distribution D(n8).
To prove the converse implication, note that (ii) implies that
72(nd) = 72(0) = 7>.
Inserting this into (5.1) we find
0> = —0.h(r2) + k(72)
and
nfs = —nb h(rs) + k(72).
Consequently, k(rz) = 0 and the proof of Theorem 5.6 is completed. O

We conclude the discussion of exponential models with 7-parallel foliation for which the
function % is constant by considering the situation where the component #(x) of the
minimal canonical statistic #(x) is in one-to-one correspondence with x. It then causes no
loss of generality to assume that #;(x) = x. Collecting results from above we have:

CoROLLARY 5.4. Suppose t:(x) = x, i.e. the exponential model ./ is of the form

%i—a (x) = a()b(x)exp(f: - u(x) + 6 - x),

and assume moreover that
0:(01, m2) = —01h(1s).

If, in addition, t € intC with probability 1, ¢ int® C int® for every scalar ¢ > 1, and u is
continuous then one has
(i) X ~ Pry
(ii) ’}(7'2) = du*(rz)/are
(iii) 6, 1 T2, or equivalently, i — u(x) 1 x
@iv) m(6)) = & — u(x) ~ EM(i — u(x); nb,)

A

and the Laplace transform of i — u(x) = m(6,) is
Es, {exp(\ - m(6)))}

(5.12)

= exp(—{M(nb: + \) — M(nb:)} + n{M(6, + n™*\) — M(6:)})

for 6; € int®;.
(v) The distribution of the quantity

q = u(x) — u(r2) + (12 — X)h*(r2)

depends only on 6,.0

ProoF. Theorem 5.6 implies that (i) is true. From (i) it follows, using Lemma 3.5, that
% — u(x) L x and that & — u(¥) ~ EM(& — u(x); n6:). Using the continuity of « one has

u— u(f) - 7T — u(Tz) = m(01) + H(Tz) - u('rg) a.s.
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as n — . Since the distribution of # — u(x¥) depends on 8, only H(r2) — u(72) must be
constant. Assertion (ii) is now immediate and (iii), (iv) and (v) follow from Theorem 5.3.
It remains to prove formula (5.12). From (i) and (iii) in conjunction with Lemma 3.5 we

find
a(nd + (A, 0)) a@)”
a(nf) a@ + (n7'A, 0)*°

(5.13) Eo{exp(A - m(6,))} =

According to (5.5) we have
a(6) = exp(6 - H(r:) — M(6,))
and inserting this in (5.13) and using (5.11) we obtain (5.12).0
Finally, we present an example where neither A(72) nor k(rz) of (?.1) is constant. For
this case we have not been able to establish the independence of 6; and 7. in general.

However, we do not know of any counterexamples. In special cases it is often easy to
establish the independence as in: '

ExaMPLE 5.1. Let u and v be positive variates such that the distribution of u is the
inverse Gaussian distribution N~ (x, ¥) with probability density function

=
XX exp(Vxd)u ¥ 2exp(—(xu ™" + Yu)/2)

2n .
and such that the distribution of v given u is the I'-distribution with probability density
function

vPupPlexp(—pv).

1
T'(Bu)
It follows that the distribution of (, v) has probability density function

(5.14) % exp(Vxy)u~ 2B F (;iu) BP exp(—Yexu ™" — au — )
where

a ="y — B In(@/p).
For B fixed (5.14) is of the form (1.1) with

tu,v) = (™, u,v)
and

0= (—Y%x, —a, —p).
Since

7= (U/x + W/x x/b Nx/b B/Y)
_ one has
71 =m(0:) + H(ra1, 722),
where \
m(6,) = %01

and

H(7y1, T22) = a1
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This shows that the family of distributions of (u, v) for fixed 8 has a r-parallel foliation.
In the present case the function % of (5.1) is not constant. In fact,

k('TZl, 722) = olh(‘l'zh 722) + (021, 022) = 01(_7512, 0) + (021y 022)
= (B In(r21/722), — BT21/T22).
However, the following argument shows that 8, and 7, are independent in this case. From
(5.14) one finds the cumulant transform for (x, v) to be
kwu($ M) = V2x(a + B In(/B)) — V2x(a — ¢ + B In((» — 1)/B)).

If[N~, I'l(x, a, v; B) denotes the distribution (5.14) it follows that the distribution of (z, D),
corresponding to n independent observations, is [N, I'l(nx, na, nv; n8) which implies
that (&, 0) ~ EM((z7", @,0); nf). The independence now follows from Theorem 5.3. 0

For further examples illustrating the theory in this section, including the normal
distribution, the inverse Gaussian distribution, the gamma distribution and several distri-
butions obtained by combining these three distributions, we refer to Bar-Lev and Reiser
(1982) and Barndorff-Nielsen and Blasild (1983). Still other examples are provided by the
Wishart distribution, the p-dimensional normal distribution and a large class of submodels
of this distribution including, for instance, the model for multivariate two-way analysis of
variance.

Acknowledgment. We are indebted to A. Holst Andersen for a critical reading of
the manuscript.

REFERENCES

Bar-LEv, S. K. (1983). A characterization of certain statistics in exponential models whose distribu-
tions depend on a sub-vector of parameters only. Ann. Statist. 11 746-752.

BAR-LEV, S. K. and REISER, B. (1982). An exponential subfamily which admits UMPU tests based on
a single test statistic. Ann. Statist. 10 979-989.

BARNDORFF-NIELSEN, O. (1978). Information and Exponential Families. Wiley, Chichester.

BARNDORFF-NIELSEN, O. and BL&SILD, P. (1983). Reproductive exponential families. Ann. Statist.
11 770-782.

CouraNT, R. and HILBERT, D. (1952). Methods of Mathematical Physics. Vol. L. Interscience, New
York.

CouranT, R. and HILBERT, D. (1953). Methods of Mathematical Physics. Vol. II. Interscience, New
York.

KaMKE, E. (1930). Differentialgleichungen Reeller Funktionen. Akademische Verlagsgesellschaft,
Leipzig.

KAMKE, E. (1974). Differentialgleichungen. Losungsmetoden und Losungen. Chelsea, Bronx.

PATEFIELD, W. M. (1977). On the maximized likelihood function. Sankhya Ser. B. 39 92-96.

RicHARDS, F. S. G. (1961). A method of maximum likelihood estimation. /. Roy. Statist. Soc. Ser. B
23 469-475.

ROCKAFELLAR, R. T. (1970). Convex Analysis. Princeton University Press, New Jersey

AFDELING FOR TEORETISK STATISTIK
MATEMATISK INSTITUT

AARHUS UNIVERSITET

DK-8000 AARHUS C

DENMARK



