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SYMMETRIC STATISTICS, POISSON POINT PROCESSES, AND
MULTIPLE WIENER INTEGRALS

By E. B. DYNKIN! AND A. MANDELBAUM?

Cornell University

The asymptotic behaviour of symmetric statistics of arbitrary order is
studied. As an application we describe all limit distributions of squate inte-
grable U-statistics. We use as a tool a randomization of the sample size. A
sample of Poisson size N\ with EN, = A can be interpreted as a Poisson point
process with intensity A, and randomized symmetric statistics are its function-
als. As A — oo, the probability distribution of these functionals tend to the
distribution of multiple Wiener integrals. This can be considered as a stronger
form of the following well-known fact: properly normalized, a Poisson point
process with intensity A approaches a Gaussian random measure, as A — .

.

1. Outline of results.

1.1 LetX;, X;, .- be independent and identically distributed observations with values
in an arbitrary measurable space (3, #). To every symmetric function A(xy, - - -, xz) there
corresponds a statistic

(1.1) 03 (h) = Yh(X,, -+, Xs,)

where the sum is taken over all 1 < s; < --- < s, < n; we put o = 0 for 2 > n. Every
integrable symmetric statistic has a unique representation of the form

(1.2) S(Xi, +++, Xn) = Y70 0k (h)

where Ax(xi, - -+, xz) are symmetric functions subject to the condition
(1.3) Eh(xi, + -+, Xp-1, Xp) = j A(x1, -, X1, Y)(dy) =0
X

where v is the probability distribution of X,. We call such A; canonical. (Formula (1.2) is
proved in [4] (cf. [1], [8]). For the convenience of the reader we give a short proof in
subsection 0.1 of the Appendix.) If only a finite number of the 4 do not vanish, then S is
a statistic of finite order. There exists an extensive literature on the limit behaviour of
such statistics. In this paper, symmetric statistics of infinite order are investigated. This
leads not only to a generalization of the theory but also to its simplification: a class of
statistics which are the easiest to investigate have infinite order; they correspond to

(1-4) | h‘(’)’:ly hz(xly "',xk)=¢(xl) "'¢(xk)) k=1) 2; e

with a fixed function ¢; the general case can be reduced to this particular one.

1.2 The systematic investigation of symmetric statistics of finite order has been
initiated by Von Mises [10] and Hoeffding [3], and further references can be found in
Serfling [9]. The most complete results are due to Rubin and Vitale [8]. They have proved
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740 E. B. DYNKIN AND A. MANDELBAUM

that, for every canonical square integrable Ay, - - -, An,
Yio n "6} (hy)

converges in distribution as n — o, and they have described the limit distribution in terms
of infinite series of products of Hermite polynomials of normal random variables. (This is
a special case of the situation studied by Rubin and Vitale who considered, in fact, a
triangular array Az n, Xpn,n =1,2, ..., k=1,...,n)

1.3 We shall use the abbreviation »(¢) for the integral of a function ¢ (x) with respect
to the measure ». Hence E¢(X:) = v(¢).

Let H stand for the set of all sequences & = (ho, h1(x1), +++, Br(x1, + -+, X), -+ +) Where
hi. are canonical and

1
N2l = 27:=0EE’“2¢(X1» coe, Xp) < oo,

Let
(1.5) Yo (h) = Y- n 720} ().
To describe the limiting distribution of Y,(#) we use a Gaussian family I;(¢), v(¢?) <
o with moments
EL(¢) =0, EL(¢)L(Y) =r(py).

(The Gaussian family I;(¢) is defined on a different probability space than the one on
which the observations Xj, - - ., X}, - .- are defined. For typographical convenience we use
the same letter E for expectations in both spaces.)

The random variable I;(¢) is called the Wiener integral of the function ¢. We also use
multiple Wiener integrals. The multiple Wiener integral of order % is a linear mapping
I,.(hs) from the space of symmetric functions A, subject to the condition EAZ(Xy, - -+, Xz)
< oo, to the space of random variables which are functionals of the Gaussian family I;(¢).
It is defined uniquely by the following two conditions:

1.3.A For functions of the form (1.4) with »(¢% = 1,
I(h?) = Hy(I1i(9))

where H}, is the Hermite polynomial of degree % with leading coefficient 1.

1.3.B EI.(h:)* = R\Eh}.

We give a construction of I;(h;) in subsection 2.2. It is rather close to the construction
in [7]. A different approach is used in [5].
Our main result is

THEOREM 1. For h € H, the sequence of random variables Y,(h) converges in
distribution, as n — «, to

(16) Wi(h) = zz;o% ().

To get Theorem 1, we consider first a sample of the size N, where N, has a Poisson
distribution with mean A and is independent of the X;, X,, - - -

THEOREM 2. For h € H, the random variables
(1.7) Z\(h) = Y50 N ¥ 20 (h)
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converge in distribution, as A — «, to W (h) described by (1.6). For every h, g € H.
(1.8) EZ\(h)Z\(g) = EW(R) W(g).

We prove Theorem 2 in subsections 2.2 and 2.3. We get Theorem 1 by showing that
Y.(h) — Z.(h) — 0 in the mean square as n — o (subsection 2.4).

A measurable function ¢(x) is called elementary if it takes a finite number of values and
if »(¢) = 0. Let @ stand for the set of all elementary functions. The proof of Theorem 2 is
based on the following lemma (proved in subsection 2.1).

LEmMA 1. For every ¢,y € @,
(1.9) , EZ\(h*)Z\(h*) = Ee($)e(¥)

where

8(¢) —_ e11(¢)—(1/2)v(¢2)‘

For every ¢i1, --- , ¢ € ®, the joint probability distribution of (Z(h*), - .-, Zx(h*"))
converges to that of (e(¢1), « - - , e(Ppm)), as A — o,

Since e(¢) = W(h?), (1.9) is a special case of (1.8) which, in fact, implies (1.8). Once this
is established, Theorem 2 follows easily.

1.4 A special type of symmetric statistics are the U-statistics introduced by Hoeffding
[3]. The U-statistic of order m that corresponds to a symmetric function A(x1, - -« , X») is
defined by

Un(h) =

om(h), n=m=1.

It follows from (1.2) that
Un(h) = Yi-o Uk(hx)
where Ay, - - - , hn are canonical. (This was first proved in [4]. We give a proof in subsection
0.2 of the Appendix.) Let ¢ = 1 be the first integer for which A, # 0. We have
1.4.A The statistic U5,(h) has the asymptotic expansion
Un(h) ~ ho + n=L(he) + +++ + n7™*Ly(hn).

1.4.B The normalized U-statistic
n?(Un(h) — ho)

converges in distribution to I.(k.), as n — oo.

The statements 1.4.A, B are closely related to von Mises’ Taylor expansion of differ-
entiable statistics. The case ¢ = 1, in which the limiting distribution is normal, is the one
considered in [3]. The case ¢ = 2 is treated by a different method in [9], where examples
and further references are given. The form of the limiting distribution in [9] follows from
1.4.B by using a special representation of multiple Wiener integrals of order 2. A canonical
square integrable function Ax(x1, x2) can be decomposed as

ha(x1, x2) = Y 5=1 Aropr(x1)Pr(x2)

where v(¢z) =0, 7(63) = 1, v(drd,) = 0if k%~ 4 Y 5-1 A% < = (see, for example, Proposition
6.18 in [7]). Since H,(z) = z® — 1, we have L(hy) = Y51 Ax(Z3% — 1), where Z;, = L1(¢r).
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Hence:

1.4.C The random variables (1/n)o%(hs) converge in distribution, as n — =, to
Yi-1AkZ5 - 1)

where Z,, Z,, - - - are independent standard normal, and Y %-1 A2 < o,

1.5 The Wiener integral I;(¢) can be interpreted as a stochastic integral [x ¢ (x) W(dx)
with respect to the Gaussian random measure W(B) = I1(1z), B € % (15(x) is the indicator
function of the set B).

A sample Xj, .-, Xn, can be viewed as a Poisson point process. Let o) (B), B € 4 be
the number of elements in the sample which belong to the set B. For large A, the random
measure o, (B) (normalized in a proper way) is close to the Gaussian random measure
W(B). Theorem 2 can be considered as a stronger form of this well-known fact: a wide
class of functionals of W (given by (1.6)) is approximated, preserving the covariance
structure, by functionals (1.7) of the Poisson point process.

All square integrable functionals of W can be represented in the form (1.6) if we drop
the condition (1.3) from the definition of H. Theorem 1 and 2 remain valid if we replace

the statistics (1.1) by

(L]-O) 2 le e Bshh(Xsly ctty Xs;,)

where 81, -+, Bn, - - - are random variables téking the values +£1 with equal probabilities,
mutually independent and independent of X, ---, X, --- and N, (see the remark at the
end of subsection 2.2).

1.6 Poisson randomization of the sample size has been used as early as 1949 by Kac
[6] to investigate the limit behavior of the empirical distribution function. Multiple
stochastic integrals with respect to the Brownian bridge appear in Filippova’s paper [2] to
describe the limiting distribution of Von Mises statistics. The functionals h?* and e(¢) arise
in a natural way as exponential elements in the symmetric tensor algebras related to
Poisson point processes and to Gaussian random measures W. The idea to use these
elements as generators is due to Neveu [7].

1.7 The authors are indebted to R. Farrell for very helpful discussions.
2. Proofs.

2.1 The proof of Lemma 1 is based on the relation
2.1) Ee($)e(y) = eV,

and the following representation

(2.2) Zy(h?) = T2 (1 + “X")).

VA
If v(¢) = v(¥) = 0 and ¢, ¢ are square integrable, then

EZ\(RZ(h) = S5m0 e o T E(l + ?‘3—@)(1 + ‘“X"))
n! \/X JX

(2.3)

n! A

It follows from (2.1) and (2.3) that (1.9) holds for all elementary functions ¢, i.e. the
mapping Z, (h?*) — &(¢) is an isometry.
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Now we show that for ¢y, - - - , ¢ € ®, the distribution of (log Zx (h*), - - - , log Z) (h*"))
converges to that of (Ii(¢1) — % (¢3), « -+, Lildm) — Yop(p2)), as A — oo, First we note that
Ny/A = 1 in probability, as A — «. From Taylor’s expansion of log (1 + x) and the
representation (2.2) we get

log Z)\(h*) = A} — B} + €&

where A} = A2 6 (¢1), Br = (2A) 02 (¢3) and e} — 0 in probability, as A — «. By the
central limit theorem, the distribution of (A}, -- ., A}) converges to that of (Ii(¢1), - -,
Ii(¢m)), as A — o. By the law of large numbers, B} converges in probability to »(¢3), & =
1, - -+, m. This completes the proof of Lemma 1.

2.2 Now we prove Theorem 2 (the multiple Wiener integral will be constructed in the
process). The isometry Z, (k%) — &(¢) can be extended to an isometry I from the minimal
Hilbert space V) which contains {Z, (h?), $ € ®} onto the minimal Hilbert space G which
contains {e(¢), ¢ € ®}. For every real number ¢ we have

1(Z) = e(td).

The function e(¢¢) is infinitely differentiable in ¢ in the mean square, hence so is Z ¢ and
k
5 Sy elte)
attt

t=0

k
RIA 20} (hY) = %,,— zp

t=0

In particular, cY\(h?) € V) for every ¢ € ®. We deduce from here that % (k) € V) for
every square integrable canonical 4. It suffices to show that if

(2.4) Eot hx)o*(h3) =0
for all ¢ € @, then A, = 0 a.e. To this end we note that for any canonical A and gz, Ehx(X;,
X )8 Xry o0, Xp) = 0if {81, -+, s} # {r1, --+, 74}, hence

}\k
(2.5) Eo} hy)ot (&) = =1 Ehag,

so (2.4) implies that Ehzht = 0 for all ¢ € @. Using polarization and taking into account
the symmetry of h:, we conclude that
(2.6) Ehypi(X1) -+ ¢p(Xp) =0 forall ¢, ---, ¢ € D.

By (1.3), formula (2.6) holds for all simple ¢1, - - -, ¢». This implies that 4, = 0 a.e.
We observe that the random variables

L) = I(RIA ™26 ()

depend linearly on 4, and have the following properties:

22.A ELL(hy) =0, k=1.
2.2.B ELL.(he)1x(gr) = R'Ehp8k.
2.2.C ELL(h)I(g) =0if k# 4

This follows from analogous relations for 2!\ ~*%}* (h;) and the fact that I is an isometry.
Now we see that, for every & € H, Z\(h) € Vy, I(Zx(h)) = W(h) and EZ,(h)? = EW (h)?
= || h|P. It is easy to check that V\ = {Zx(h), h € H}, G= {W(h), h € H}.

Finally we show that (%) satisfies the requirements of the axiomatic definition of the
multiple Wiener integral given in subsection 1.3. Property 1.3.B is a particular case of
2.2.B. To check 1.3.A we use the relation

t*
— 2 (2] )
e(tp) = eth(@)—(1/2)t%(4?) — 2k=OEIk(h:);
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and the fact that e(¢¢) is the generating function of the Hermite polynomials, namely
tk

e(tdp) = Yi-o 7 Hi(Ii(¢))

when »(¢?) = 1.

REMARK. To prove the statement at the end of 1.5, it is sufficient to note that: (i) if

Zy\(h*) = [T (1 + Bi?(—)-(Q),

then (2.3) holds even if the condition »(¢) = »(¢) = 0 is violated; (ii) e(¢) with simple ¢ are
everywhere dense in the space of square integrable functionals of W. In this way Ix(h) can
be defined without the assumption (1.3).

2.3 To conclude the proof of Theorem 2 we show that: -

2.3.A For every h € H, EeitZ,p) converges to Ee®” ™ as A — o,
By Lemma 1, this is so for % of the form
@.7) h= Y0 tht,
Using (1.8) and the inequality | e” — 1| = | ¢|, we get
(2.8) | Ee*W® — Ee™V(® |2 < 2 E (W (h) — W(g))?
(2.9) | Eeitzy(h) — EeitZye) ?< E(W(h) — W(g))?

for every h, g € H. Since W(H) with h of the form (2.7) are dense in G and since 2.3.A.
holds for such &, we get 2.3.A. for an arbitrary A € H by (2.8), (2.9) and the triangle
inequality.

2.4 We deduce Theorem 1 from Theorem 2 by showing that, for 2 € H, E(Z.(h) —
Y.(h))? — 0 as n — . Since EZ,(h)? = || A |7, it is sufficient to prove

(2.10) EY.(h)?— k|2, as n— o,
2.11) EY.(h)Zn(h) —> | b}, as n— c.

If Ay is square integrable and canonical, then

Eo7(hx)o%(h,) = (” ’,: ”‘)Eh,% k=¢
(2.12)

=0 k#<

where n A m is the minimum of n and m. By (2.12)
2

Eh
EYn(h)? = Y50 n *Eo}(hs)* = zzf;o—k,-’f An

k
dominated convergence theorem.
Using (2.12) again we get

where a, . = (") n~*k!. Since a,r < 1 and @, — 1 as n — o, (2.10) follows from the

o —n n" © -k n m o Ehlze
EY.(R)Z,(h) = ¥r-o e poor} Yi-o n"Eci(hr)ok (hy) = Zk=07 bk

o ant(rAm\K . n" (nAm) [(m
bk = S0 € W( k )F‘EH" (m—k)!( k )/(k)

where
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Clearly b, < 1. We note also that for n = &,
bor=P{N,=n—k} + a,:P{N,=n + 1}

and by the central limit theorem, P{N, =n — k} - %asn— o, £=0,1, .-.. Hence
b, — 1 as n — o and (2.11) holds by the dominated convergence theorem.

APPENDIX

0.1 Let @:i(S) be the conditional expectation of S given (X1, -+, Xi—1, Xis1, + =+ , Xn).
Define

heXi, oo X)) =T — Q1) -+ (I — Qp)Qp+1 -+ Qu(S)
where I is the identity operator. Formula (1.2) follows from the relation
S=[IT-@)+ @] - [I—- Q)+ @S
and the fact that @, - - -, @, commute. )

0.2 Let " be the o-algebra of symmetric sets in (X", 4"). Then
Un(h) = E[RX,, -+, X, )| L")

Using (1.2), we represent h as

Lo ().
Taking conditional expectation with respect to ", we get Hoeffding’s decomposition with
hi = (7).
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