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A NOTE ON DISCOUNTED FUTURE TWO-ARMED BANDITS

BY RicHARD KAKIGI

California State University at Hayward

This paper is concerned with the problem of finding Bayes sequential
designs for successively choosing between two given Bernoulli variables so as
to maximize the total discounted expected sum. Simple hypotheses concerning
the success probabilities are assumed and dynamic programming methods are
used to characterize optimal designs. Explicit solutions are described for
certain special cases.

1. Introduction. An important prototype for sequential design problems is the two-
armed bandit: Let X and Y be two Bernoulli variables with success probabilities x =
P[X=1]=1-P[X=0]andy = P[Y = 1] =1 — P[Y = 0]. Periodically, say once a day,
you must choose either X or Y and then are paid the outcome of the chosen variable. X
and Y can be viewed as the left and right arms of a two-armed slot machine and the
problem of how to choose between X and Y so as to maximize our total expected payoff is
known as the two-armed bandit problem. It is assumed that the daily outcomes are
independent conditional on the unknown probabilities x and y, so that the choices of X
and Y are exchangeable rather than independent.

The two-armed bandit problem has received considerable attention in the literature.
Robbins (1952) considers the problem in the absence of prior information and finds designs
which maximize, with probability one, the relative frequency of positive payoffs when x
and y are unknown. In most of the literature concerning the two-armed bandit a prior
distribution for the values of x and y is assumed. Bradt, Johnson and Karlin (1956) consider
the problem of maximizing the total payoff for a fixed number of days of play, and
characterize the optimal design for the case (known as the one-armed bandit) when the
value of y is known and x has a prior density. Feldman (1962) assumes a prior distribution
for x and y which concentrates mass on two pairs of probabilities: x = xo, y = y, versus x
= ¥, ¥ = X9, where xy > y; are known probabilities. Feldman shows that the design which
chooses X whenever P[x = xo, ¥y = y] > % is optimal. Fabius and van Zwet (1970)
characterize optimal designs for general prior distributions for x and y, derive expressions
for the resulting Bayes risk, and show there is a symmetric, minimax-risk, admissible
design. Berry (1972) assumes that a prior distribution under which x and y are independent,
and derives sufficient conditions for choosing X. Also the “stay on a winner” rule is shown
to be a property of an optimal design. Berry and Fristedt (1979) have considered arbitrary
rather than geometric discounting and assume that one probability of positive payoff is
known with probability 1. Kelly (1974) finds sufficient conditions for the optimality of the
myopic design: choose between X and Y as if only one play were remaining. Gittins (1979)
discusses discounted future Markov decision processes with important results which apply
to multiarmed bandit problems. A distinction which should be noted is that in Gittins
(1979) the distributions for success probabilties are assumed to be independent, whereas
the distribution for x and y are dependent.

In this paper we consider an unlimited number of days of play and introduce a discount
factor, 8, 0 < 8 < 1, so that a payoff of 1 on the nth day is worth only 8"~". This approach
may be appropriate when the future is indefinite and the number of days of play cannot be
fixed. Another interpretation of discounting is the following: the number of days of play is
a random variable with a geometric distribution where (1 — B) is the probability of
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stopping on any given day of play, and the total payoff is proportional to the sum of the
payoffs up until stopping. We investigate Bayes designs for prior distributions which
concentrate on two simple hypotheses for x and y, namely Hy: x = xo >y = y, and H;: x
= x1 <)y = yi1, where xo, yo, X1, ¥1 are known probabilities.

In this setting a prior distribution is specified by s = P[H, is true] = 1 — P[H, is true],
and given s, the aim is to find a design which maximizes the total discounted expected
payoff. Let D(s*) denote the design which selects Y when and only when the current
posterior probability that Hj is true falls below s*. D(s*) is shown to be optimal for some
s* in Section 3 and the s* is calculated for certain special cases in Section 4.

2. Preliminaries. The discounted future two-armed bandit problem is a discounted
dynamic programming problem as described in Blackwell (1965). The set of actions, A =
{X, Y}, consist of the available daily choices; the set of states, S = {s:0 < s < 1}, consist
of the possible (posterior) probabilities that H, is true; and the law of motion, g, is the
conditional distribution, given by Bayes rule, of the new posterior probability of H, given
the action selected and the current posterior probability. Given a reward function r, the
objective is to find designs (plans) with returns (incomes) which are optimal. For functions
fon S, let T*f(T*f) denote the expected payoff from choosing X(Y) and receiving the sum
of the outcome for the first day and Bf as a function of the new posterior probability. That
is, fors € S

(T*f)(s) = (sx0 + 5x1)+ Xs Bf(s')q (s’ | X, s);
and
(TYF)(s) = (syo + 5y1) + X Bf(s')q(s'| Y, s).

Finally, let Uf = max{T*f, T*f}. Some results of Blackwell (1965) applied to the present
problem yield the following theorem.

THEOREM 1. (a) If the function f on S satisfies f = T°f for all actions a, then f is an
upper bound on returns. (Blackwell, 1965, Theorem 6(d)). (b) U is a contraction with
modulus B and has a unique fixed point: v = Uv. (Blackwell, 1965, Theorem 5). (c) A
design is optimal if and only if its return is the fixed point of U. (Blackwell, 1965,
Theorem 6(f)). (d) The return of the design D(s*) is the unique solution to the equation:

_[T% if s=s*,
1TV if s<s*

(Blackwell, 1965, Theorem 3(c)).

The following notation will be used. Let v denote the fixed point of U, and for any real
number ¢, let £ = 1 — ¢. For a real-valued function fdefined on S, let E°[ f] be the expected
value of f with respect to the distribution ¢(- | a, s) where a € A. Note the dependence of
E“[f] on the initial state s. Let 7* denote the expected value of r(s, X, .) with respect to
q(-|X, s), where

1 if s'=sxo/(sxo+5x:) and 0<s<l,
xo if s"=s=1,

x; if s-=s=0,

0 otherwise.

r(s,X,s’) =

Define r” similarly. Note that with this notation

r*(s) = sxo + 551, T*f=r*+ BEXf].
Finally, note that D(s*) is, in the language of Blackwell (1965), the stationary plan d,
where

X if s=s*

d(s)={Y if s<s*
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Letting IT = (d, d, d, ---), Theorem 1(d) is a restatement of Theorem 3(c), Blackwell
(1965). Moreover, uniqueness follows since the operator T associated with d is a contraction
with modulus S.

3. General form of optimal design. Intuitively, if an optimal design chooses X at
the posterior probability s, then X should be chosen at any posterior s’ > s. This property
holds for the designs D(s) and the following theorem states that such a design is optimal.

THEOREM 2. There exists an s* € S such that D(s*) is an optimal design. Moreover,
s* is any solution of the equation T*v = T"v.

For the proof of Theorem 2 we will need:

LEmMa 1. For any real-valued function f on S, if T*f — T"f is a non-decreasing
function of s then so is T*(Uf)— TY(Uf).

PRrROOF. Since
3.1) TX(Uf) — TY(Uf) = [TX(Uf) — T(T"N] + [TV (T*f) = T"(U)]
+ [TX(TYf) — TY(T*)]

it is enough to show that each of the summands in (3.1) is non-decreasing.
Since T*f — T*f is non-decreasing, there is an s’ such that

_ (T*f)(s) if s=s’,
(Uf)(s)_{(TYf)(s) if s<s.

Define g by

8(s) = if s<s’.

(T*f)(s) — (TYf)(s) if s=s,

0
Then the first summand in (3.1) can be expressed as E*[ g]. To see that E*[ g] is non-
decreasing, it is enough to notice, g being non-decreasing, that a variable with distribution
q(.| X, s) is stochastically larger than a variable with distribution g(.| X, s”) whenever s
> s”. A similar argument shows that the second summand in (3.1) is non-decreasing. Given
the initial state s, the distribution of the new state after observing both X and Y is
independent of the order in which they are observed by exchangeability. Therefore,
EX(EY[f]) = EY(E*[f]) and the third summand in (3.1) depends only on the first two
plays. Easy calculation shows that the third summand equals (+* — r¥) 8 which is monotone
increasing since xo > yo and y; > xo.0

PROOF OF THEOREM 2. Let vo=0and forn =0, 1,2, .-, define v,+; = Uv,. Since
(T*vy) — (TYvo) = r¥ — rY is non-decreasing, Lemma 1 implies that forn =0, 1,2, ---,
T*v, — TYv, is non-decreasing. Since v, the fixed point of U, is the limit of the v,’s with
respect to supremum norm, it follows that 7%v — TYv is non-decreasing. If s’ is any
solution of T%v = T'*v, then

(T*v)(s) if s=s*,
(TYv)(s) if s<s*,

which by Theorem 1(d) is the return of D(s*). The optimality of D(s*) follows from
Theorem 1(c). 0

v(s) = (Uv)(s) = {

4. Applications. This section gives conditions on the break-even value s* for some
special cases. When xo = y1 > x1 = yo, it is immediate from the symmetry of the roles of X
and Y that the optimality of D(s*) implies the optimality of D(5*). The following theorem
is the result of Feldman (1962) for the discounted future setting.
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THEOREM 3. If xo = y1 > x1 = y, then the design D(%) is optimal.

Fix s’ € S and let v’ be the return of the design D(s’). If D(s’) is optimal then
(4.1) TXv'(s’) = TYv'(s").
If there is only one such s’ which satisfies (4.1) then by theorem 2 D(s’) must be an optimal

design. If x; = yo = 0 then there is a unique s’ satisfying (4.1).

THEOREM 4. If x; =y, = 0 then the design D(s*) is optimal with

* _ y1(1 — y18)
71 =518) + x0(1 — %oB)

Proor. Fix s’ and let v’ denote the return of D(s’). Noting that whenever a payoff of
1 is received the true hypothesis is known with certainty. It follows that

T*v'(s') = s'x0{1 + %0B)/B} + % (B + (:8°)/B)}
+ (s'%0 + 8'71)[ B0’ {(8'%0) / (s'%o + §'71)}],
and
T"'(s') = 5y {1+ (nB)/B} + ' (B + (%8*)/B}
+ (8'% + §5)[ B0’ {(s'%0) / (s'%o + 5'71)}].
Thus, (4.1) holds if and only if s" = s*.0

If xo = y1 = 1 then whenever the payoff is 0 the true hypothesis is known with probability
one.

THEOREM 5. If xo =y; =1 then the design D(s*) is optimal with

,_ Z1(1=yB)
%11 = yoB) + Fo(1 — x:18)

The proof is similar to that for Theorem 4 and is omitted.
For the remainder of this paper the cases y; = 3, = 1 and y; = y, will be considered. The
latter case is discussed in Berry and Fristedt (1979). In these cases v is partially linear.

LEMMA 2. Assume y: = yo = 1 and define the linear function fon S by f(1) = Bxo/B
and f(0) = 1/B. Then v = f on the interval [0, s*] where D(s*) is an optimal design.

Proor. It is enough to note that selecting Y determines the true hypothesis with
probability one. .

THEOREM 6. Assume y, = yo = 1. Then the design D(s*) s optimal for some s* such
that s, < s* < sg where s, = X1 /(X1 + xo0) and sg = X1/ (X1 + Bxo).

Proor. Let u be the return of the design which always selects X. Define the linear
function g on S by g(1) = x,/8 and g(0) = x, + 8/B. Note that g is the return from initially
selecting X and then being told the true hypothesis. Let s;, and si be the solutions to the
equations f = g and f = u, respectively, where f is given in Lemma 2. Let D(s*) be an
optimal design. In the interval (sg, 1], f < « and so Y cannot be initially optimal. Therefore,
§* = sg. On the other hand, in the interval [0, s.), f > g and so X cannot be initially
optimal. Therefore, s* = s;,. 0

LeEmMMA 3. Assume yo = y, = y and define the linear function f on S by f(1) = f(0) =
y/B. Then v = f on the interval [0, s*] where D(s*) is an optimal design.
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Proor. If yo = yi = y then selecting Y does not change the prior probability that Hy
is true. Therefore, on [0, s*Jv= T v =f 0

THEOREM 7. Assume yo = y: =y. Then the design D(s*) is optimal for some s* such
that s;. < s* < sg where s, = (y — x1)/[(x0 — x1) + (B/8)(x0 — ¥)] and sg = (y — x1)/ (%0
- X1).

The proof is similar to that of Theorem 6 utilizing Lemma 3 instead of Lemma 2, and is
omitted.
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