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ESTIMATION VIA LINEARLY COMBINING TWO GIVEN STATISTICS

By J. K. BAKSALARY AND R. KaLA

Academy of Agriculture, Poznan, Poland

We consider the problems of (i) covariance adjustment of an unbiased
estimator, (ii) combining two unbiased estimators, and (iii) improving upon
an unbiased estimator. All these problems consist in determining a minimum
dispersion linear unbiased combination of given two statistics, one of which is
an unbiased estimator of a vector parameter # € #, and the expectation of the
other is a zero vector in the problem of covariance adjustment, is equal to @
in the problem of combining, and is equal to a subvector of # in the problem
of improving. The solutions obtained are substantial generalizations of known
results, in the sense that they are valid for an arbitrary joint dispersion matrix
of the given statistics as well as for the parameter space s#being an arbitrary
subspace of #*.

1. Introduction. When estimating a k-vector parameter 8 € #, there are cases in
which two linear statistics are available and the problem then arising is how to combine
most profitably the whole information at disposal. Three such cases are discussed in the
present paper. In each of them, the problem is specified as that of determining a best
estimator of @ within the class of all unbiased estimators of # obtainable via linearly
combining the available two statistics, the term “best” being used in the usual sense of the
nonnegative definite partial ordering between the dispersion matrices of estimators.
Furthermore, it is commonly assumed that one of the statistics is an unbiased estimator of
@ and that the joint dispersion matrix of the two statistics is known apart only from a
positive scalar multiplier. The cases differ, however, in the expectation of the second of the
available statistics. If this expectation is a zero vector, the problem is labelled as covariance
adjustment of an unbiased estimator; if the second statistic is an unbiased estimator of
8, the problem is labelled as combining two unbiased estimators; and if the second statistic
is an unbiased estimator of a subvector of 8, the problem is labelled as improving upon an
unbiased estimator.

The problem of covariance adjustment of an unbiased estimator and the problem of
combining two unbiased estimators have hitherto been solved in the literature (Rao, 1967,
Lewis and Odell, 1971, Sections 3.9 and 8.3; Baksalary and Kala, 1979) under certain
additional, considerably restrictive, conditions on the joint dispersion matrix of the given
two statistics. Solutions obtained in the present paper, however, are valid for an arbitrary
dispersion matrix as well as for the parameter space # being an arbitrary, proper or
improper, subspace of #*. The same level of generality is maintained when solving the
problem of improving upon an unbiased estimator, which, according to the authors’
knowledge, has not yet been discussed in the literature.

2. Preliminaries. Throughout this paper, .#,,, will denote the set of all m X n real
matrices. We write A € ./, if A € M, , and is symmetric, A € #; if A € /4, and is
nonnegative definite, and A € .#,; if A € .4, and is nonsingular. Given A € .#,,,, the
symbols 4(A), A’, and A™" will denote the column space, transpose, and inverse, respec-
tively, of A, whereas A~ will stand for a generalized inverse of A, that is, for any solution
to the matrix equation AAA = A. E(-) and D(-) will denote the expectation and
dispersion matrix of a random vector argument.
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The main results of this paper will be proved by making use of the following three
lemmas.

LEmMMA 1. Let {Y, X8, V} denote a general Gauss-Markoff model and let CB be a
set of parametric functions estimable therein. Then AY is a minimum dispersion linear
unbiased estimator (MDLUE) of CB if and only if

(2.1) AG=CX'GX)X, where G = V + XZX’,

with Z being any nonnegative definite matrix for which 4(X) C 4(G). Moreover, the
dispersion matrix of the MDLUE is

D(AY)= CX'GX)C’' — CZC".

LEmMMA 2. Let A € My and B € 4, be such that

(2.2) ¥(A) C €(B).
Then, for any nonsingular ¥ € M, ,, and for any generalized inverses B~ and (FBF’)",
(2.3) A’'B"A = A’F'(FBF') FA.

LEMMA 3. Let A € M5+ be partitioned as

A11 A12
A= .
(AZI A22)
Then A € M7+ if and only if Az € MF, €(Az1) C Y(As), and
A, =A; — ApAnA, €47
If this is the case, one of the generalized inverses of A is
A= A —ALARAR
—ARAA, A — ARAALARAL )

Lemma 1 follows by similar arguments as those used by Rao (1978) in the proof of his
Theorem 1. Lemma 2 is a consequence of the fact that (F’) "B F ~'is a generalized inverse
of FBF’ and that the condition (2.2) assures the invariance of the two sides of (2.3) with
respect to the choices of the generalized inverses involved; cf. Rao and Mitra (1971, page

43) and Hall and Meyer (1975, page 433). Lemma 3 follows by combining Theorem 1 in
Albert (1969) with the theorem in Marsaglia and Styan (1974).

3. Covariance adjustment of an unbiased estimator. The main result of this
section is the following.

THEOREM 1. Let T) € #* and T: € %’ be given statistics such that E(T,) = 6
€ #, E(T;) =0, and

T\ _(Vu Vi _ =
(3.1) D(n) = (Vm vm) =V EMis

where 0 is an unknown parameter, the parameter space #'is a given subspace of #*, and
V is known apart from a positive scalar multiplier. Then a best estimator of 0 in the
class

9—,7{’= {T = K1T1 + K2T2:K1 (S Mk,k, K2 Eﬂk,t’, E(T) = 0 A 0 E.}f}
is expressible in the form

T%=HMHQH) HQ (T, — Vi,VxTy),
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where H is any matrix such that ¥H) = #, and
Q=HZH' + V;; — V2V Vyy,

with Z being any nonnegative definite matrix for which ¥(H) C 4(Q). The dispersion
matrix of T% is

D(T%» =HMH'QH)"H' - HZH'.

ProoF. Itis clear that the assumptions of the theorem lead to a Gauss-Markoff model
of the form

’ T, H Vi Vi
o2 (@) (o) v2)}

where 7 is a new parameter, related to the original one by the equality § = Hr. Conse-
quently, the result of the theorem follows by verifying, with the aid of Lemma 3, that the
condition (2.1) of Lemma 1 is fulfilled for the model (3.2) in the case of C = H and

A=HHQH) HQ (I:-V:Vz). O

To reveal the extent to which Theorem 1 generalizes results known in the literature, let
us consider two particular cases. First observe that if V in (3.1) is positive definite, then so
is the Schur complement

3.3) Vo=Vu— VVxV,,

and thus the zero matrix may be used as Z in Theorem 1. This leads to the following.

COROLLARY 1.1. Ifin Theorem 1V € M %+, then the best estimator of 8 € #in the
class Ty is

Y=HMH'V;'H) H'V; (T, — Vi.V&T,),
where V, is as given in (3.3). The dispersion matrix of T is
D(T%) = HH'V;'H) 'H".
Next observe that if the parameter space equals %2* then, irrespective of the rank of V,
the identity matrix may be used as H in Theorem 1. According to the definition, Z may

then be chosen as any element of .#}; such that Z + Vi, — V12V V2 € 4%, This results
in

COROLLARY 1.2. If in Theorem 1 the parameter space # equals R*, then a best
estimator of 0 in the class I, is expressible in the form

T* =T — V2V 2.To.
The dispersion matrix of T* is
D(T*) = Vi1 — V12V Vo

The result given in Corollary 1.1 has actually been obtained in Baksalary and Kala
(1979), but not stated there in an explicit form. On the other hand, Corollaries 1.1 and 1.2
both cover a result established by Rao (1967) for the case wherein simultaneously # =
R* and V € 47, Rao’s formulae for the best estimator of # and its dispersion matrix
follow from Corollary 1.1 by setting H = I while from Corollary 1.2 by replacing V 3 by
\

4. Combining two unbiased estimators. Similarly as in the previous section, we
begin with providing a general solution to the problem.
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THEOREM 2. Let U, Uz € #* be given statistics such that E(U,) = E(Uy) = 0 € #,

and
' Ul 211 E12 =
D = = ks
(U2> (221 3,) SEE A0
where 0 is an unknown parameter, the parameter space #'is a given subspace of #*, and

X is known apart from a positive scalar multiplier. Moreover, let H be any matrix such
that ¥ (H) = #, and let

R=HZH' + Z;; — (Z; — Zp) X, (2 — Za1),
where Z is any nonnegative definite matrix for which ¥(H) C 4(R), and
(4.1) 3, =3 — 3 — oy + 2o,

Then a best estimator of 0 in the class
Uy ={U=LU; + LoU;: Ly, Ly € M2, E(U) =0V 0 € 3¢}
is expressible in the form
U%=HMHRH) " HRU*,
with
4.2) U* =[I— (1 — Zp)Z U + (By; — Zp) 2, U,
The dispersion matrix of U% is
DU%) =HMHRH) H' — HZH'.

Proor. It is clear that the problem consists in determining a MDLUE of § = Hr in a
Gauss-Markoff model of the form

U1 H T 211 212
U ) \H) " \Zo1 22/ [
The proof follows similarly as in the case of Theorem 1 apart from the fact that Lemma 2,

with

I O

(4.3) F= (I -—I) € Mar2r,

is used to calculate the product of the form X'G™X involved in (2.1). O

Analogues to Corollaries 1.1 and 1.2 for the problem of combining two unbiased
estimators are the following.

COROLLARY 2.1. If in Theorem 2 X € M5, then the best estimator of 8 € # in the
class Uy is

U%=HMHZ;'H) HZ=;"U°,

where

=3 — (B — ) (En — )
and
(4.4) U’ = (B — ) Z;'Ur + (B — Z) ES'0,,

with T, as defined in (4.1). The dispersion matrix of U% is

D(UY%) = HH'E;'H)H".
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COROLLARY 2.2. Ifin Theorem 2 the parameter space equals R*, then a best estimator
of 0 in the class U 4+ is U* as defined in (4.2). The dispersion matrix of U* is

DU*) =21 — (B — Zp) T i1 — Zan),
with X, as defined in (4.1).

According to the authors’ knowledge, the problem of combining two unbiased estimators
of a vector parameter has not hitherto been considered in the literature under such general
frameworks as those adopted in Theorem 2 and Corollaries 2.1 and 2.2. A solution of this
problem given by Lewis and Odell (1971, page 69) is valid for the case wherein #'= #* and
2, € A% . It can be noticed that their formula for the best estimator of @ is identical with
the formula (4.4) of the present paper.

To conclude this section note that the nonsingularity of X, enabled us to transform the
statistic U* defined in (4.2) to a symmetric form revealed in (4.4). It seems interesting to
ask whether such a form is available also in the case of a singular X, . But it would be so
if and only if

I - (3 —Zp)Z, = (B — Zp)X5,
or, on account of the definition of X, if and only if £,27, = I, thus implying the negative

answer to the question.

5. Improving upon an unbiased estimator. This section can be viewed as an
extension of Section 4 in the sense that the second of the available two statistics is now
assumed to be an unbiased estimator of a part of the vector parameter 8. Obviously, there
is no loss of generality in specifying this part as 8. when 8 is decomposed as 8 = (6; : 62)’.

THEOREM 3. Let W, € #* and W2 € #*:, where k = k, + ks, be given statistics such
that

)
E(W) = E(w iz;) = (g;) =s0ex E(W,) = 0,,

and
1 1,1 1,2 1,2
w Si? Sir? si?
2 2,1 2,2 2,2, —_ >
D{W@ | =[SE" SE? SE?|=Se Mz,
2,1 2,2 2,2,
W, SEY SE? S§?

where 0 is an unknown parameter, the parameter space #'is a given subspace of %, and
S is known apart from a positive scalar multiplier. Moreover, let H = (H;: H3)’ be any
matrix such that € (H) = #, and let

H, & s§? Si? — Si? @1 @1 Q22 22

’: ’ - 3 5 1) 3 > 3

P= H ZH1:H?) + sen gea) = |gea _g@» Sy (Sir ' — 8 ' :8ir” — Sar”),
2 11 11 11 12

where Z is any nonnegative definite matrix for which ¥(H) C ¢ (P), and
S, =SB - 8B — SB7 + S5,
Then a best estimator of 0 in the class
Wy ={W =MW+ MWo: M, € #p2,M2 €E Mp1,, E(W) =0V 0 € ¥}
is expressible in the form
Wi =HMHPH) HP W
with

wo S _ g2\
(5.1) W* = (W(izb) - (Sizi,m _ Sizi,z;) Sy (WP —W,).
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The dispersion matrix of W % is

D(W%) =HMHPH)'H — HZH'.

Proor. The proof follows similarly as that of Theorem 2, apart only from the fact that

I 0 o0
F={0 I 0
0 I -I

is used instead of F specified in (4.3). 0O

The simplifications of Theorem 3 to the case of S € Mz. 1, and to the case of #'= R* are
obtainable similarly as the corollaries in Sections 2 and 3, and thus are not stated explicitly
here. On the other hand, it can be observed that an equivalent form of (5.1) is

wr = (W' = (8r” — 8i*)S, (Wi — W)
I - SHE” - SEMS WP + (S{? — SE”)S.W,)’

wherefrom it is seen that the first component of W* is actually a covariance adjustment
of W by W — W,, while its second component is a best linear combination of two
unbiased estimators of 6., W and W..
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