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ON THE ASYMPTOTIC RELATION BETWEEN L-ESTIMATORS AND
M-ESTIMATORS AND THEIR ASYMPTOTIC EFFICIENCY
RELATIVE TO THE CRAMER-RAO LOWER BOUND'

By CoNSTANCE vAN EEDEN

Université de Montreal

This paper gives conditions under which L- and M-estimators of a location
parameter have asymptotically the same distribution, conditions under which
they are asymptotically equivalent and conditions under which L-estimators
are asymptotically efficient relative to the Cramér-Rao lower bound. Our
results differ from analogous results of Jung (1955), Bickel (1965), Chernoff,
Gastwirth, Johns (1967), Jaeckel (1971) and Rivest (1978, 1982) in that we do
not require that the derivative of the density of the observations is absolutely
continuous nor that the function defining the M-estimator is absolutely

continuous.
1. Introduction. For each » =1, 2, ..., let X1, .-, X,, be a sample from a
distribution with density function f(x — 6,), where f (x) is symmetric around zero. Let Y,
< ... <Y, be the order statistics of X,1, - -+ , X, , let §,, be an M-estimator of 6, based

on the function ¢ and let i, = ¥/-1 @. Y., be an L-estimator of 6,.

In this paper conditions are given under which 0A,,n,, and fi,» have asymptotically the same
distribution, conditions under which they are asymptotically equivalent, as well as condi-
tions under which f,,, is asymptotically efficient relative to the Cramér-Rao lower bound.

Analogous results concerning the relation between ém.. and {L,. , under different regularity
conditions, were obtained by Bickel (1965), Jaeckel (1971) and Rivest (1978, 1982). Bickel
(1965) showed that, under certain regularity conditions on f, the M-estimator based on

Yx) = {

x if x| =A,
Asgnx if |x|>A,

has the same asymptotic distribution as an a-trimmed mean with « depending on A and f.
Jaeckel (1971) gave conditions under which 0?,,"" and {l,., have asymptotically the same
distribution, as well as conditions under which they are asymptotically equivalent. The
asymptotic equivalence of 9,,,,,, and fi.., can, under less restrictive regularity conditions than
those of Jaeckel (1971), be obtained as a special case of Corollary I1.4 of Rivest (1978); see
also Rivest (1982, page 230). Rivest (1978, 1982) needs, among other regularity conditions
he uses to prove the above mentioned result, that ¢ is absolutely continuous. Conditions
for the asymptotic efficiency of fi.. relative to the Cramér-Rao lower bound have, for
instance, been obtained by Jung (1955), by Chernoff, Gastwirth, Johns (1967) and by
Rivest (1978, 1982); these authors suppose, among other regularity conditions, that f’ is
absolutely continuous. The results in this paper hold when ¢ and f’ are not necessarily
absolutely continuous.

Section 2 contains the notation, definitions and assumptions. In Section 3 the main
results are given and Section 4 contains some examples. The proofs are based on results of
Shorack (1972) and on an asymptotic linearity theorem similar to the one of Jureckova
(1977); this asymptotic linearity theorem is stated and proved in Section 5.

In order to simplify the notation the index » will be omitted. Limits will be as » — o and
n, — oo with ».
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2. Notation, definitions and assumptions. Let X;, ..., X, be a sample from a
distribution F (x — ) with density function f(x — 6), where f(x) is assumed to satisfy

ConpITION A. (i) f(x) = f(—x), —0 < x < oo; (i) f is absolutely continuous; (iii)
[6 @r(u) du < o, where

f O<u<l.

{w(u) --r (F~(u))
F'(u) = inf{x| F(x) = u)

For the M-estimator, én, it will be assumed that the following conditions are satisfied.
Let .#be an open interval symmetric with respect to zero and such that S = {x|0< F(x)
<1} C 4 Let ¢ be a function defined on .# satisfying

ConpITioN B. (i) ¢ is left continuous, Y(x) = ¢ (x) + ¥2(x), where ¢, is nondecreasing,
Y, is non-increasing and [Z, ¢7 (x)f(x) dx < 0, i =1, 2; (ii) [ Z P(x)f (x) dx # 0; (iii) Y(x)
= —Y(—x) for all continuity points x of .
Note that A (iii) and B (i) imply that [*. | {(x)f'(x) | dx < oo; further, B (ii) and B (iii)
imply that ¢ is not constant.
A sequence of M-estimators, 6.=6, (X1, -+ -, X,), is now defined as a sequence satisfying

(2.1) m%@gwx—ﬁemqﬁD&@—MEMM®MM%mMMM
n

If ¢ is monotone nondecreasing and continuous and .# is the interval (—o0, ), then the
estimator

(22) by = ysup{8] Ti-i X, — 6) > 0} + (1 — )inf(f] T7mr UUX, — 6) < 0},

where 0 < y < 1, satisfies (2.1); this follows from the fact that, in this case, Py, [Y71=1 ¢(X,
-6, = 0] = 1 for all n and (see e.g. Huber, 1964) vn (6, — ) has, asymptotically, a
normal distribution. Some examples of estimators satisfying (2.1) when v is not monotone
or .#1is not the interval (—o, «) will be given in Section 5.2.

The above Condition B is a sufficient condition on the function Y to show that
vn(d, — @) and Vn(i, — 6) have the same asymptotic distribution; to show that
\/7—1(9,, — n) > p, 0, the following, stronger Condition B* is needed.

ConbpITioN B*. Condition B is satisfied and

J |¥(x) |'f(x) dx < o for some r>2.

The sequence of L-estimators, i, = i, (Xi, -+ , X,,), is taken as
. 1.,
(23) MBn = ;I, Zz=l Cm Yl + E}‘:l dj Y[npj]+1y
where k =0, di, -, di are nonzero constants and 0 < p; < ... < P« < 1. This estimator

is a special case of the estimators considered by Shorack (1972). He gives several sets of
conditions under which f{i, is asymptotically normal. The set of conditions used in this
paper is as follows (see Shorack, 1972, Assumptions 1, 2 and 4, page 413):
Foreachv=1,2, ..., let J,(¢) be defined on [0, 1] by
i—1
n

i
Chy <t=—,1=1,-.-,n,
n

(2.4) Ja(t) =

cn t=0.
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For fixed 81, 82, M > 0 and § > 0 let
B(t) =Mt (1 —¢t) "

(2.5) o<t<l.
D(t) = Mt’”'+671/2(1 _ t)/g.l+s—1/2

Let J(¢) be a fixed measurable function defined on (0, 1). It will be assumed that the
following Condition C is satisfied.

ConpITION C. (i) |[F7'(#)| =D (@), |J(t)|=<B(t) and, forall v = 1,2, - -+, |J,(¢) | =
B(t), 0 < t < 1; (ii) Except on a set of F~'-measure zero we have both o is continuous and
J, — J uniformly in some small neighbourhood of ¢ as v — oo; (iii) F~*(¢) has a derivative
att=p,j=1,---,k

Note that by Shorack (1972, Example 1, page 416-417) Condition C is satisfied if the
following Condition C’ is satisfied.

ConpITION C'. (i) &| Xi|” < o for some r > 2; (ii) ¢p, = J(tn), i =1, - - - , n, where, for
some a > 0, a min {i/n, 1 —i/n} <t, <1 —amin {i/n, 1 —i/n},i=1, -.., n; (iii)
maxi=.=n|tw — i/n|—,-« 0; (iv) J is continuous except at a finite number of points at
which F~! is continuous and

|JJ (@) | < M{t(1 —¢)} 2+ 0<t<1

for some 6 > 0; (v) Condition C(iii) is satisfied.

It will further be assumed that the following Condition D is satisfied.

ConbpITION D. (i) \/r—z(l/n Yt e — [0 J(2) dt) — 0 as v — oo; (ii) [ J(8) dt + a1 d,
=1; (iii) Cni = Caus1-0), L =1, -+ ,n,and, forj=1, -+, k,d, = dev1-,, 0, =1 — Pev1-,.

REMARK 2.1. In Section 3 it will be shown (see Remark 3.1 after the proof of Theorem
3.1) that, if the Conditions A(i), C’(i) — (iv) and D(iii) are satisfied, then the following
condition D’(i) (see Shorack, 1972, Example 1) is sufficient for D(i).

ConbDITION D’(i). (a) J’ exists and is continuous on (0, 1) with
|J/(t) | < M{t(l _ t)}4:3/2+l/r+6’ 0o<t< l,

(b) n maxi<,<n |t —i/n|=0(1) as v — oo,

3. The main results. The main results of this paper are given in the following
Theorems 3.1, 3.2 and 3.3; Theorem 3.1 gives conditions which are, if the Conditions A, B*,
C and D are satisfied, necessary and sufficient for «/;z—(é,, — &) and vn (fin — o) to be
asymptotically equivalent; Theorem 3.2 gives conditions which are, if the Conditions A, B,
C and D are satisfied, sufficient for \/r—z(é,, — 6) and \/ﬁ(ﬂn — 6) to have the same
asymptotic distribution; Theorem 3.3 gives conditions which are, if the Conditions A, C
and D are satisfied, necessary and sufficient for {1, to be asymptotically efficient relative to
the Cramér-Rao bound.

THEOREM 3.1. If the Conditions A, B*, C and D are satisfied then Jn (é,, — [in)—> P,
Oifand only if, forp,-1 < t=p,i=1, .-+, k+1,
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d, d,

K Fﬁl = }(1 jl
YISO = X = o~ T E )

(3.1) —f( J(s) dF~'(s)

1-0*

(1-0+*
+f J(s) dF~'(s)

where K is a nonzero constant, p, = 0 and p.., = 1.
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Proor. Leté, ---, & and U(t), 0 < ¢ < 1, be the uniform random variables and the
Brownian bridge defined by Shorack (1972, Section A.1). Then it is sufficient (see Shorack,

1972, Section A.2) to prove the result with X, ... , X, replaced by G~

where G(x) = F(x — 6), —0 < x < . Let

! d
T=—f J@U@) dG7H(t) — Y51 U(pj){ G™ (t)}
0

(3.2)

U(p),

1
— | J@OU®) dF™!
fo @U@ ) -3 lf(F ( )

G7'(%),

then it follows from Shorack (1972, Theorem 1 and Remark 2) that, if Condition C is

satisfied,
(33) ‘/;l-(,lzn - Tln) —)P,,” T9

where
1
nn=f G (&) (t) dt + Y51 d, G (p))
0

i/n

(3.4) =i ij G'(t)dt+ ¥5-1 d,G 7' (p)
(

1—=1)/n

/n
1
= 0()(; 2,"=1 Cny + 2;=1 dj) + E?:] ij F_l(t) dt + 2}‘:1 deil(pj).

(=1)/n

By the Conditions A (i), C(iii) and D(iii)

/n
(3.5) Y1 e j F¢) dt + Y51 d,F ' (p)) =0,

(=1)/n
and by Condition D(i)

1 1

(3.6) vn {Z Y e — f J(t) dt} —-0 as v— oo,

0

From (3.3), (3.4), (3.5), (3.6) and Cohdition D(ii) it then follows that, under the Conditions

A(), C and D,

(3.7) Vn(iin — 60) >p, T.
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Further note that, under the Conditions A(i), C(iii) and D(iii),

dj dx+ 1—;

(38) FE ) FEF (per)’

=1, ..,k

and that, under the Conditions C(ii) and D(iii), except on a set of F~'-measure zero,
(3.9) Jt)=J1—-1t), 0<t<l.

So if (see (3.1)), forp,-1 <t=p,i=1,---,k+1,

—f J(s) dF'(s) if t>l
(

2
d d 1-07*
3.10) A(t) =Y, ! — Yyl J
( ) (t) 21 f(F_](pj)) Zl lf(F_](Pj)) + o .
+ J J(s) dF~(s) if t=< 30
then
1 1
(3.11) T = éf U(t) d\(t)
0
and (3.7) becomes
1 1
(3.12) Vn(in — 60) “”’”vif U(t) dA(2).
0

Now consider 0, = 6,(G™'(&1), -+ -, G™'(£:)) and note that (see (5.1.1) and (2.1)), if the
Conditions A and B are satisfied, then

1
— Y WGTIE) — 60)
(3.13) n(b, — 6,) vn

- j Y(x)f'(x) dx

Also note that, if Y satisfies Condition B*, then it follows from Shorack (1972, Example 1)
that

1 1
1
(3.14) ——Zh¢@”@%ﬂw—J¢WIMMﬂa%—flﬂﬁ@@”m%
\/; 0 0
where, if Condition A(i) is also satisfied,
1
(3.15) j WF~(t)) dt = 0.
0
From (3.13), (3.14) and (3.15) it follows that, if the Conditions A and B* are satisfied, then

JUWMFW)
(3.16) Vn (6, — 6o) —p, =

L

j Y(x)f (x) dx
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From (3.12) and (3.186), it follows that, under the Conditions A, B*, C and D,

. ! YF(t)) 1
(3.17) V(s = ) —s, f Udd = 30
0 J’ Y(x)f (x) dx
Further note that
1 1
(3.18) f WFU(2)) dt =f At) dt=0
0 0

which implies that the righthandside of (3.17) is a normal random variable with mean zero
and variance given by

(3.19)

[ wrey
o _J = M0l g

f Y(x)f (x) dx
which is zero if and only if
YF(2))

(3.20) S
J Y(x)f'(x) dx

1
=§)\(t), o0<t<l.

That (3.20) is equivalent to (3.1) can be seen as follows. First note that
+o0 1
(3.21) 0 # j Y(x)f (x) dx = —J’ YEFE(8)pp(t) dt,
—o 0
so that, in order to prove that K # 0, it is sufficient to prove that
1
(3.22) J A(t)p,(¢) dt = —2.
4]
This can be seen as follows. First note that

Dy D, f’ Fl@)
J ety dt=—| S (F7() dt = —f () dy
(323) Pi-t Pi-1 F-l(p,_))

= f(F ' (p.-1)) — f(F(p),
which implies that

P

f:] d ;:z—fl—j_—
N R e TV S
1 —1 K d/
=Y {(fF(p-1)) = F(F(p))} me
d, ;
3.24 =Y {fF (p1)) = fF (D,
(3.24) = S iy S FE T (pe) = FE (P
d,

=Y FF (,)){f(F "(po)) = F(F ' (p))}

= - Z};I d,
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In the same way it can be shown that

D,
+ ' - d, K
(3.25) i p(t) dt 21=}m= =Y d,.

Py

Further, by using Condition A (i),

1 ¢
J’ Pp(t) dtf J(s) dF~'(s)
0 1—t

1 S py 1 y
=J’ J(s) dF~'(s) [—J r (F7'(¢)) dt+J’ r (F1(¢)) dt]
(3.26) o o [ o f

= —QJ J($)f (F'(s)) dF'(s) = —QJ' J(s) ds.

0

From (3.24), (3.25), (3.26) and Condition D(ii) it follows that (3.22) holds. O

REMARK 3.1. If the Conditions C’(i)-(iv) and D'(i) are satisfied, then (see Shorack,
1972, Example 1)

1 1
(3.27) &(f G (t)J, (t) dt_J G (t)J(¢) dt) —0 as v— oo,
0 0

which, if the Conditions A(i) and D(iii) are also satisfied, is equivalent to the Condition

D).

REMARK 3.2. For the special case when k = 0 the above result can, under less restrictive
regularity conditions, be obtained from Rivest (1978, Corollary II.4; 1982, Remark 8, page
230). Jureckova (1982) gives, without stating regularity conditions, the relation (3.1) for
the asymptotic equivalence between L- and M-estimators for the special case when k = 0
as well as for the special case when J(t) = 0,0 < ¢ < 1.

THEOREM 3.2. If the Conditions A, B, C and D are satisfied then Vn 6, — 6o) and
vn (&, — 6o) have, when (3.1) holds, the same asymptotic distribution.

Proor. First note that, by (3.7), (3.11) and (3.18), Vn (i — 6b) is, under the Conditions
A(i), C and D, asymptotically normal with mean zero and variance equal to

(3.28) EJ A%(t) dt.

Further, by (3.13), \/n(é" — ) is, under the Conditions A and B, asymptotically normal
with mean zero and variance equal to

+o 1
J’ YA (x)f (x) dx YHFEN?) dt

0

U tP(x)f’(x)dx}z { f xP(x)f’(x)dx}z

The result then follows from the fact that (3.1) is equivalent to (3.20) and that (3.20)
implies that (3.28) equals (3.29). 0

(3.29)

THEOREM 3.3. If the Conditions A, C and D are satisfied then the variance of the
asymptotic distribution of Vn (iin — 60) equals the Cramér-Rao lower bound if and only if,
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for almost allt € (0, 1), forp,.1<t=p,i=1, ---,k+1
_2(pF(t) — K (1—7 — =1 d’
T 2 FE ) ST E ()
er(t) dt
0
! 1
(3.30) - J J(s) dF7'(s) if ¢ >§
(1-n*

DO =

(1-0+
+J J(s) dF7'(s) if t=
t

Proor. Under the Conditions A(i), C and D, \/r_z(,li,, — @) is asymptotically normal
with mean zero and variance

1
, 1 ;
(3.31) o= —J A%(t) dt.
4 0
Further (see (3.22))
1
(3.32) J At (t) dt = —2
0
and from (3.32) one obtains
1 1 2 1 1 1
(3.33) 1=7 {J A(t)pp(t) dt} SZJ’ A2%(t) dtJ @ (t) dt
0 0 0
or
1 1
(3.34) o= Zj A%(t) dt = — ,
! j @o(t) dt
0
with equality if and only if, for some a # 0,
(3.35) A(t) = agp.(t) for almost all ¢ € (0, 1).
Further, (3.32) implies that
-2
a=—0-—-.:
j Qa(t) dt
0 ‘ O

REMARK 3.3. For the special case when k = 0, the fact that the variance of the
asymptotic distribution of v7 (i, — ) equals the Cramér-Rao lower bound when (3.30) is
satisfied has, under different regularity conditions than ours, e.g. been proved by Jung
(1955), Chernoff, Gastwirth, Johns (1967) and by Rivest (1978, 1982).

In the particular case when y/(x) satisfies
(3.36) YFH(E) = —gu(t), 0<t<],

the estimator 6, = 6, (F) is a maximum likelihood estimator in the sense that (see (2.1)) it
is an “asymptotic solution” to the likelihood equation for which \/r—LA{H,, (F') — 6} is bounded
in Py, — probability; further, under the Conditions A and B, vn {6,.(F) — 6y} is asymptot-
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ically normal with mean zero and variance {[§ ¢%(«) du}~'. From Theorem 3.1 it follows
that, if the Conditions A, B*, C and D are satisfied, then

Vn{8,(F) = jin} —p, 0

if and only if (3.30) is satisfied.
Now consider the particular case when

(3.37) flx)>0 forall x€S={x|0<F(x)<1};

then F~'(¢) is absolutely continuous on the interval [ti, ]if 0 <t < ¢ < 1; so the right
hand side of (3.1) has a finite number of discontinuities which occur at p,, - - - , p. and is,
when k = 0, absolutely continuous on [¢;, £,] if 0 < ¢, < #, < 1. This implies that, if (3.1) and
(3.37) are satisfied, then ¢ has a finite number of discontinuities which occur at F~'( D),
-+, F7Y(p,), ¢ is absolutely continuous when x = 0 and (3.1) is equivalent to

Ky (x) = —2J(F(x)) almost everywhere

(339 K[W((F ()} ") — §F(p))] = ——2% =1
Y y 4 'z D ]_f(Tl(p—,))’ =1, ...

Further, if (3.36) is satisfied then (3.38) is equivalent to

d%c <l;((;)) ) = —J(F(x)) JO @ (t) dt almost everywhere

(3.39) FUF (P} )= {F (p)}7) = —le &) dt, i=1,...
0

so that, in this case, f'(x) has a finite number of discontinuities which occur at F~'(p,),
<.+, F'(p,) and f’ is absolutely continuous when « = 0.

REMARK 34. If [§|J (t) | dt < o and Condition A is satisfied then (3.30) implies D(ii);
this follows from the fact that (see the proof of (3.22))

1 1
(3.40) J')\(t)q:F(t) dt=—2U J(t) dt+2,“=1d,}.
0

0

Further, if (3.37) is also satisfied, then (see (3.39))

1
1 =J J(t) dt+ 31 d,
0

__ -l T fd (F&)
J qu%(t) dt "7 '
+ 2=l (F ()} - f'({F’l(p/)}’)]} )

which is equivalent to

J ’ {d_z log f(x)}f(x) dx + Y5 (FUF ()} )= £ UF ()} )

dx?
(3.42) .

_ f(x) |2

= fw {f(x) }f(x) dx.

4. Examples.

EXAMPLE 1. Let, for p > 1,



RELATION BETWEEN L- AND M-ESTIMATORS 683

E_(l +x)?, -1=x=<0,
4.1) flx)=
p_; 1(1 —x)?, O0<x=1
Then
T i , —1l<x<0,
’ x
“2 );%(x)) B
x _
1 L4 , O<x=1,
- X
1 2
+
(4.3) J’ ‘P)z«"(t) dt =M
0 p—1

and it is easy to see that Condition A and (3.37) are satisfied. The maximum likelihood
estimator 6,(F) is obtained by taking y(x) equal to the left continuous version of

f'(x)/f(x), that is

(4.4) P(x) =

, O<x=1,
1—-x
which satisfies Condition B* with r — 2 < p — 1. The estimator 8, (F) is, by Theorem 3.1,
asymptotically equivalent to a linear combination of the order statistics i, if and only if
(3.39) is satisfied, that is if and only if k = 1, py = %, d\ = (p — 1)/p, and, for almost all ¢
€ (0, 1),

p—1

. 1
——(2t) VD) O<t=-
p(p+1)( ) 2’

(4.5) J(t) = . )
— (21— 2))¥PY Z<it<,
p(p+1) 2

provided the Conditions C and D are satisfied. To verify these conditions, first define o (¢)

on the whole interval (0, 1) by (4.5). Then note that Condition C(i) on F~! and J is

equivalent to

(1) 1— (26)VP*D < M- — HFTTI2 g<t<

>

(4.6)

| = DO =

-1
LT e <Mt -)F, 0<it==s,
pip+1) 2
for some B and some M > 0, § > 0. For the second part of Condition (4.6) to be satisfied it
is necessary that 8 = 2/(p + 1) and for the first part to be satisfied it is necessary that g8
+ 8 — % = 0. This implies that

(ii)

1 12 p—3
47 0<8§<--f=s-——_=_P"°
.7 2 2 p+1 2(p+1)
is necessary for (4.6); further (4.7) implies that p > 3 is necessary for (4.6).
It will now be shown that, if p > 5, then the Conditions C’ and D are satisfied with the
choice

(48) tm= ) i=1y""n'
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This implies that the Condition C is satisfied with

i i—1 i .
J <t=-—, 1=1,.--,n,
n+1 n n

J( ! ) t=o0.
n+1

In order to show that the Conditions C’ and D are satisfied if p > 5 and the ¢, are given by
(4.8) first note that C’(i), C’(iii), C’(v) and D(iii) are obviously satisfied; that D(ii) is
satisfied follows from Remark 3.4. Further, by choosing a € (0, 1), it is easily seen that
C'(ii) is satisfied for all n = a/(1 — a). For C’(iv) note that J (¢) is continuous for ¢ € (0, 1)
and satisfies

(4.10) |J(t) | = M{t(1—¢)) V2™, 0<t<l,
when r, §, M and p satisfy

a1 1 522 G Pl e
(4.11) (1)2 - 82p+1’ (11)M2p(p+1)2 s
where (i) is equivalent to 8§ < (p — 3)/2(p + 1) — 1/r and where, becausep >5,r=p+1
can be chosen such that (p — 3)/2(p + 1) — 1/r is positive. Now consider Condition D();
because Condition C’ is satisfied, it is (see Remark 3.1) sufficient to show that D’(i) is
satisfied. For this, first note that D’ (i) (b) is obviously satisfied. However, J’ does not satisfy
D’(i)(a) because J’(¢) is not continuous at ¢ = %. But, on the interval (0, 2] (on the interval
[%, 1)), the left continuous (right continuous) version of J’(t) does satisfy the Condition
D'(i)(a) with 8 = (p — 3)/2(p + 1) — 1/r and it can easily be seen from Shorack’s (1972)
proof that these conditions on JJ’ are sufficient for (3.27) and thus for D().

ExXAMPLE 2. Let

2
(412) f(x) =m,—w<x<w.
Then
f'(x) -2

4.13 =
(4.13) @) 4+ x| sgn(x),

1 , _ 1
(4.14) Jo () di =1

and it is easily seen that Condition A and (3.37) are satisfied. The maximum likelihood
estimator 6,(F) is obtained by taking y(x) equal to the left continuous version of

f'(x)/f(x), that is

2 x=0
4—x" T
(4.15) Wx) = )
gt x> 0.

This function ¢ is not monotone, but can be written as the sum of a nondecreasing function
Y1 (x) and a nonincreasing function ; (x) for instance by taking

Y(x), x<0,

Y1 (x) =
(4.16) Y(x) +1, x>0,
0, x=0,

‘P2(x) =

-1, x>0,
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and it is easily seen that with this choice of Y1 and y» the condition [*2 YZ(x)f(x) dx <
o, { = 1, 2 is satisfied. Further B* is satisfied because

J' | ¥(x)|"f(x) dx < oo forall r=0.

The estimator 4, (F) is then, by Theorem 3.1, asymptotically equivalent to a linear
combination of the order statistics if and only if (3.39) holds, that is if and only if ¥ = 1,
P =%, and

3 —6t2 t=<
(4.17) (i) d = 3 (ii) J(¢) =
—6(1—1¢)2% t=—,

for almost all ¢ € (0, 1), provided the Conditions C and D are satisfied. Note that in this
case the Condition C’ is not satisfied because &|X,|” does not exist for r = 1. Concerning
the Conditions C and D, first let J(¢) be defined by (4.17.2) forall t € (0, 1). The Conditions
C(iii) and D(ii) are satisfied. Now for i = 1, - .., n choose

—6 1—1 2 isn+1’
n 2

(4.18) Cn = 3

then D(iii) is satisfied. Further, (4.18) implies that

r_e{[ntr —1 }2’ i<l

n 2
(4.19) Ja(t) = < .

—6{——n_ [nt] }2, t>l,

L n 2

where [n¢]" is the smallest integer = nt. It is easily seen that, because | J(¢) | is increasing
on [0, 4] and decreasing on [, 1],

(4.20) |Jn(@)| = |J(t)], O=st=1.
Further note that

6(n—1
(4.21) IJ(t)—Jn(t)lsﬂnz—), 0<t=<1,

which proves that C(ii) and D(i) are satisfied. Finally, Condition C(i) is out, because of
(4.20), equivalent to

2 — 4t .
— = M{t(1 = )77 (i) 6= M{t(1— )}, 0=t= 5

ot

(4.22) (1)

for some 8 and some M > 0, § > 0. It is easily seen that (4.22) is satisfied with B =-2
d=1and M = 3/2.
Note that the L-estimator

R 1
(4.23) n = N Yt en Y+ di Yoz,

defined by (4.17) and (4.18), does not have a variance for any 7; this follows from the fact
that Y3 and £Y%_, do not exist and that c¢,; and ¢,._; are non-zero. An L-estimator with
the same asymptotic properties as the one defined by (4.17) and (4.18) but with a finite
variance for all , can be obtained by replacing c,2 and c,.—: by zero.
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5. Appendix

5.1. The asymptotic linearity of n~'* Y7, Y(X, — 6). In this section the following
theorem will be proved.

THEOREM 5.1.1. If the Conditions A, B(i) and B(iii) are satisfied then, for every
C>0,

Sup Jnje-6,|<C

1 1
— XWX = 0) = — X1 Y(X, — o)
(5.1.1) v v

—>p O.
L

— Vn(8 - 6o) J Y(x)f'(x) dx

Proor. The following proof is analogous to the proof given by Jureckova of her
asymptotic linearity theorem (1977, Theorem 4.1).

Without loss of generality it can be supposed that ¥ is monotone nondecreasing and
that 6, = 0. Further note that, with §, = 0, (5.1.1) is equivalent to

(512) Supg=c

—>p”0 0.

1 0 1 i
— Y \I/(X.——>—— =1 (X,)—0f x)f (x) d
\/’_12 N &Z ¥ wxlzxfx x

Because  is defined on the interval .# and S = {x|0 < F(x) <1} C 4 ¥ 7-1 ¥(X,) is defined
with probability 1. Further, let .# be the interval (—b, b), then, for Vn = C/b,
oYX, — 0/\/7_1) is defined for all § € [-C, C] if and only if

(5.1.3) —C——bsY1<Y,lsb—£,
n vn

where, for each C > 0, the probability of the event (5.1.3) tends to 1 as v — .
Now note that for fixed 6,
1

0
X +—
(o), n e
X J,;Z'zl Pp(F(| X, ]))sgn Xi + 56 JO ¢ (W) du—p, 0;

cf. the proof of Theorem VI 2.5, Hajek and Sidak (1967). Further

(5.1.4) Y, log

1
(5.1.5) Lovr o (F(X.|)sgn X = —= ¥y g (F(X.)
Jn =

and (5.1.4) and (5.1.5) imply that

9
1 f(X' " T;)

(5.1.6) 7 T (X)), Y log )
has asymptotically the same distribution as
(5.1.7) (1 L K), = Sl gy (FX) lozf 2()(1)
A = L= )y T T = Lu=19Q L -3 QLU ulj.
Vs T 2’ ), '

From the Conditions A(iii), B(i) and B(iii) it follows that the asymptotic distribution of
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(5.1.7) is two dimensional normal with means u; =0, g, = —% 6 [§ (piw(u) du, variances
+o0 1
= J' VA f(x) dx, of = 6’2J @i (u) du
—c0 0
and with covariance

—6’J Y(F (), (v) du = 0J Y(x)f'(x) dx.
0 ©

Using LeCam’s third lemma (see Héjek and Sidak, 1967, page 208) it follows that, for fixed
o,

1 P) +00 +00
(5.1.8) — \[J(X, - —) - N<0 j Y(x)f'(x) dx, J \[JZ(x)f(x) dx) .
N2 N . .

Further (see the proof of Theorem 4.1 of Jureckova, 1977), (5.1.8) implies that, for fixed
0)

1 0 1 e
(5.1.9) —y ¢(X, ——) — Y U(X) -6 f Y(@)f (x) dx —p, 0
N NN . "

and the uniformity in 6, for | #| = C, then follows, as in Jureckovd’s proof, from the fact
that ¥7-1 ¢(X, — 8) is, with probability 1, monotone in 6. 0

5.2. Some examples of estimators satisfying (2.1). In this section it will be supposed
that the conditions A and B are satisfied.

First consider the case when v is monotone nondecreasing. Then the estimator (2.2) is
defined when Y ?-; (X, — 8) takes, on its interval of definition, i.e. on the interval (Y, — b,
Y, + b), both positive and negative values. The probability that this is the case is 1 when
b = o and tends to 1 as ¥ — © when b < «; this can be seen as follows. Let § be a positive
number and let C(8) > 0 and n,(8) an integer be such that

(5.2.1) Py (Vn| 6, — 6] < C(3)) = 1 —g for n>ni(5),

where 8, is the solution (in @) to

(5.2.2) L osr X = 0) + Va6 - 6) f V@f (x) dx = 0;
N o

the existence of C(8) and n,(8) follows from the Condmons B(i) and B(ii). Further let n,(8)
be an integer such that

2C(9)

n

(5.2.3)

<b for n> nu@),

then, for n > n,(8), Y7-1 (X, — 0) is defined for all

ge [00 _ 2C(9) B+ 20(6)]
n n
if and only if

n n
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Now let n5(8) be an integer with n;(8) = n.(8) and such that (see (5.2.4))

2C(6)<Y1<Y,,<b+(9o—m)21—§ for n > n3(d);

n n

(5.2.5) P <—b + 60+

w

the existence of n3(8) follows from the fact that {x |0 < F(x) < 1} C 4. Further let ¢ satisfy

(5.2.6) (x) dx

and let n(e, 8) be an integer such that, by Theorem 5.1.1,

1
sz(,{sup&w—a.kzcmy i

1
L (X, = ) — — Y Y(X — 6o)
J;Z

<£}21—

Now note that if (i) JLB — 8| = C), (i) Y1 Y(X, — 0) is defined for all 8 € [6o —
2C(8)/«/_ 6o + 2C(8)/Vn ], (iii) 0 < e < C(8)| [ 1% Y(x)f'(x) dx|, (iv) n > n2(3), and (v)

(5.2.7)

for n>ne, ).

[SCR =)

— Vn(@ - 6) f Y(x)f'(x) dx

X - 0)
T =

SUDP /n16—60<2C@®) | ——

(5.2.8)
<e¢

- 7 Y (X — 6o) — Vn(8 — 6y) f Y(x)f'(x) dx

then Y7, ¢(X, — ) takes both positive and negative values on [6y — 2C(6)/\/_ 6 +
2C(©8)/ Vn n]. The fact that the probability of the intersection of the events (i), (ii) and (v)

is at least 1 — & for n > max(n:(8), n3(8), n(g, 8)), then implies that the probability that the
estimator (2.2) is defined tends to 1 as » — oo. Further (i)-(v) also imply

Loy w(Xi - 6o)

=g,

(5.2.9) [T WX, = 6.) | =< 2,

sil-

) —
J Y(x)f'(x) dx

where 8, is the estimator (2.2). This shows that any estimator defined by (2.2) whenever
it exists satisfies (2.1).

Now consider the case when { is not necessarily monotone and suppose that
[*2 Y(x)f'(x) dx is known. Then a linearized estimator, analogous to the lmearlzed signed
rank estimators of Kraft and van Eeden (1970, 1972) can be used. Let é,, be a location
invariant estimator of 6o such that vn | 81, — 6o is bounded in probability and let

(5.2.10) én = éln + :li;‘P(Xz - 01,,)
n Y(x)f'(x) dx

—o0

whenever Y 7-1 ¢/(X, — #.,) is defined. By a reasoning similar to the one given above for the
estimator (2.2), it can be shown that the probability that the estimator (5.2.10) is defined
tends to 1 as » — . That the estimator (5.2.10) satisfies (2.1) follows from Theorem 5.1.1;
for a proof see Kraft and van Eeden (1970, 1972).

If [*2 Y(x)f'(x) dx is unknown then an estimator with the same asymptotic properties
as (5.2.10) can be obtained by replacing, in (5.2.10), [% ¥(x)f'(x) dx by a consistent
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estimator. Such an estimator of [*% ¥(x)f'(x) dx can, for instance, be obtained as follows.
Let A > 0 be a given constant, then by (5.1.1)

1 A 1
Lo 4/<X,~—0,,——)—— I
7 i 1 7 7 i o
_ J;(o‘m 4, _%> V@) dx 0,
(5.2.11)

1 A\ 1
e 7=1¢<X1_0n+_>_— :l= (XL—B
7 > 1 T 7 Yy o)

_ &(91,1 — 0 + ?_-) f Y(x)f'(x) dx —p, 0,

n

which implies that

; o AN e A
Zz=l \I/<Xt 0ln + \/r_l) =1 ¢<Xl eln \/;)
2vnA

is a consistent estimator of [*% y/(x)f’(x) dx. The resulting estimator of 6o

(5.2.12)

24 Y1y Y(X: — 61n)

‘/;I:E:Ll ‘l’(Xz - éln + %) - ?=1 \P<X; - éln - %)]

is analogous to the linearized signed rank estimators proposed by Kraft and van Eeden
(1970, page 272).
Finally note that (5.1.1) implies that an estimator 6, satisfying (2.1) satisfies (3.13).

b1 +

REMARK 5.1. Another estimator satisfying (2.1) is (see Kraft and van Eeden, 1970,
1972) obtained by taking, among the roots to Y /-, (X, — 6) = 0, the one that is closest to
a linearized estimator.
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