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GALTON’S TEST AS A LINEAR RANK TEST WITH ESTIMATED
SCORES AND ITS LOCAL ASYMPTOTIC EFFICIENCY

By KoNRAD BEHNEN AND GEORG NEUHAUS

University of Hamburg

In the general two-sample testing problem F = G versus F < G, F # G
the shift-model score function f’°F~'/foF~' has to be replaced by the non-
parametric score function b = f— g, where f= d(FoH™')/dx, § = d(G-H™")/
dx, H = (mF + nG)/(m + n), and adaption of linear rank tests should be
-based on rank estimators of . We consider an easy but rough and inconsistent
rank estimator of b. The resulting rank test turns out to be a generalization of
Galton’s test. A formula for local asymptotic power under arbitrary local
alternatives is derived which allows for comparison of Galton’s test with every
linear rank test. For various types of alternatives the Galton test is compared
with the optimal linear rank test and with the Wilcoxon test. In order to get
an impression of the validity of extrapolation to finite sample sizes, we included
a Monte Carlo study under the same types of fixed alternatives.

1. Introduction. Let X, ..., Xy, Y1, -+, Y, be independent real valued random
variables and suppose that the distribution of X;[Y,] is given by a continuous (cumulative)
distribution function F[G]. Let N = m + n be the size of the combined sample. If a shift
model

G(x) = F(x + 9), xER, dER,

is assumed, it is well known that (under additional assumptions) it is possible to construct
tests which are asymptotically optimum for testing {# =< 0} versus {# > 0} with respect to
large classes of contiguous distributions. This is done by using linear rank statistics with
scores which are based on an estimator of the (unknown) score function

—f'eF~'/feF,

e.g. Hajek and Sidéak (1967), VIL1.6, and many successive papers.
Behnen (1975) demonstrates a breakdown of power of such procedures in the more
general model of stochastically-larger-alternatives, i.e.

F=G versus F=G, F#QG.

The reason for this breakdown is the asymptotic power behavior of a linear rank test with
score function y(y-test) for local nonparametric alternatives of type b (b-type alternative),
ie.

dF n N da m N
D a PRV B mT PR Vam

with p >0, || by — b| = 0 as N — o, and H continuous d.f., the asymptotic power in this
situation being

(1~2) B(‘P’ Qa, b’ P) =1 _q)(ua—p (b) ‘I/)/"‘P"))

where @, ¢, and u, denote the distribution function, the density, and the upper a-quantile
of the standard normal distribution .4#7(0, 1), respectively, and (-, -) denotes the usual
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scalar product in L. space of Lebesgue (A)-square integrable functions on [0, 1] with

corresponding norm || - ||. In case of Y = b we have asymptotic optimality according to
(maximum) asymptotic power
(1.3) B*(a, b,p) =1 —Pu.—p| b]),

cf. Behnen (1972).

Also in this more general (local) nonparametric model (1.1), the problem is the unknown
optimal score function, i.e. the underlying 6. One might try to estimate this & from the
data, but (without additional information) it is not possible to have a consistent estimator
of the underlying & under the local model (1.1). This is true because of contiguity: Consider
the asymptotic testing problem b =0 (ie. F = G = H) versus b = by, || b1 || > 0 (i.e. FN and
GN according to (1.1) with b = b;). Now assume by to be an estlmator such that || by | =
| b5 — & || = 0 in probability under b = 0. Then contiguity implies || by || = 0 in probability
under b = b,, therefore excluding || by — b || — 0 in probability under b = b;. So again the
questions are: What has to be estimated in reality? What is the right asymptotic in order
to give valuable extrapolations? In order to give an answer we shall consider the case of a
general fixed alternative.

2. The general model. Let us consider the null hypothesis Hy:F = G versus the
general ‘“stochastically larger” alternative H,:F < G, F # G. Now consider the simple
alternative (F, G) € H; and put

(2.1) H = Hrc= (mF + nG)/N.

Then, obviously, the measure H dominates the measures F' and G. Moreover, without
further assumptions it can be shown (cf. Behnen, 1981) that FcH™' and GoH™' are
distribution functions on [0, 1] with existing Lebesgue-densities (A-densities) according to

(2.2) f=dF-H")/d\, g=d(G-H"Y)/d\  (mf+ng/N=1,
and

dF dG
(2.3) Zl__fH 1+—(f £)°H, E—gd‘i—l——(/‘ &) H.

See also Pyke and Shorack (1968) and Hajek (1974) for such representation.
The following useful properties, which reveal the function f — g as a standardized
description of the problem H, vs. H;, are easy consequences of the above representation:

(2.4) ingsf—és%, fol(f—g>d>\=o,
(2.5) F=Gef-£=0,

O P
(2.6) F: G@(F—G)OH“:O.

The optimal test for the simple problem (H, H) versus (F, G) is based on the log-likelihood
statistic

Gy,

dF d
L= Z }lOg H(X)+Zn_110gd—H,

= Y log{l + I% (f- é)(H(Xi))} + Y1 log{l —% (f—g‘)(H(Y,))} .
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Since, in the general case, H and f — & are unknown there has to be some assumption or
estimation. Obviously, because of (2.1) the natural estimator of H under (H, H) as well as
under (F, G) is

Hy= (mf’m + nén)/N,

where F,, and G, are the empirical distribution functions of Xi, -+., X,y and Y, « -, Y.,
respectively. Now notice

NHy(X,) = Ry; = rank of X; in pooled sample,
NHN(Y)) = Ry, = rank of Y, in pooled sample.

Thus, for the problem (H, H) vs. (F, G) the natural approximation of the optimal statistic
L is the “exact rank statistic”

@27) Tp= log{l +—(f g)(NR+ 1)}+Z,—1 log{l——(f g><NR+ 1)}

(Here we use i/(N + 1) instead of i/N in order to have the usual symmetry.) This statistic
depends on the alternative (F, G) only by the “score function” b = f—-&

Before discussing estimates of b we establish the relationship to usual simple linear
rank statistics: Local alternatives (Ho-contiguity) imply (cf. Behnen and Neuhaus, 1975)

i dF _aH| dG dH e
M SUPemm—=) P\ |\ TH T JH dH ~ dH :

Because of (2.3) this means
mn 1 2
lim sup(m,,l)am{ A= | | f—&| d)\} < o,
N 0

Thus, in local situations, the statistic (2.7) may be approximated by

Rlz n
(2.8) Sb__z 1(f g)<N+1)_N 1(f g)<N+1)

which is a simple linear rank statistic with score function b = f — &.

3. Estimation of scores and Galton’s test. In case of the exact rank statistic (2.7)
as well as in the case of the approximate rank statistic (2.8) we have to estimate the
function b = f — &. Because of b = f— § = dB/d\, where B= F-H ™' — GoH ™' is invariant
under strictly isotone transformations

T(Xl)y "')T(Xm)y T(Yl)y MR} T(Yn))
estimators of B and b should be based on the ranks only. The natural rank estimator of B
is
FpoA5 — GoAR.
Uptoa n}aximal difference of m ™' + n~! this is just the usual empirical two-sample rank-
process D, according to

]. th R
(3.1) D) = Zz—l 1(0¢]< N) —=Y5=1 1, !]< 1\;j>

The;refore, good estimators of b should be the derivatives of good smooth approximations
of D. On the basis of suitable modifications of kernel estimators which are applied to the
rank data

Rll/N, °°-,R1m/N and R21/N, cey R2n/Ny
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respectively, this concept is studied in Behnen, Neuhaus, and Ruymgaart (1982). In the
present paper we study a rough and easy estimator of the scores, which surprisingly leads
to Galton’s test.

Because of F = G we have B = FoH ' — GoH ™' < 0. Therefore we should adjust the
estimator D of B to this condition, i.e., we take the estimator B of B according to

D), it D) =o,
0 if D()>0 0=<¢t=<1.

i dB 1 .
b(m)—a(mﬂ’ b= N,

should be estimated by a “derivative” of B at those points. A very rough “derivative” at
the point i/(N + 1) is

N ~(i—1

x)-2(5)

o i
b(N + 1) - 1/N

Obviously, this “derivative” has no consistency properties for estimating the underlying b,
but at least it should estimate some tendency of the underlying b.

Now, if we insert these “estimated” scores into the following representation of S;, (which
is just an easy reformulation of (2.8) with respect to the definition (3.1) of D),

_mroy Ip(L) - p(it i
s=5pan {0(5) - o) (i)
we get the statistic

w5 o) oS5 o) 55

(Here a factor NV is included in order to have a good standardization for evaluating the null
distribution.) The corresponding rank test for Hy:F = G versus H:F < G, F # G is the
upper level a test based on S*. This test has some interesting features:

(3.2) B@) = {

And the scores

(3.4) S* = Lebesgue measure of {t € [0, 1]:D(¢) < 0},

where D is the version of D which is smoothed by linear interpolation between the points
(i/N, D(i/N)), i =0, 1, ---, N. (In the case m = n this is an easy consequence of the
representation

L1 . aft—1 N L
35) N —N#{ze{l,---,N}:D( N )50,D<N>50}

1 A2k —1
=E#{ke{1,---,m}:D< N )<0}.

In case of m 5 n the proof is done by summing up the fractions where the D-process is
below zero.) Under the null hypothesis Hy: F = G we have

(3.6) L, (S*) > %(0,1) as m,n— o

uniform distribution on [0, 1]. This is true since the C[O0, 1]-[3r0cess vmn/N(D) converges
in distributrion to the Brownian bridge W,, cf. Hajek and Sidak (1967, V.3.5), and since
the statistic

(3.7) A(Wy) =A{t €[0, 1]: Wy (¢) <0}
is distributed according to %/(0, 1), cf. Billingsley (1968, pages 85-86).
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In the case m = n we have
(3.8) mS*=#{ke(l,---,m}):R¥ <R},

where R < ... < R{™, R’ < ... < R{™ are the ordered ranks of the X- and Y-sample

in the pooled sample, respectively. (This is an easy consequence of the representation

(3.5).) This statistic is known as Galton rank statistic, which has exact null distribution
1

¥ =) = ——
(3.9) PI{()(mS l) m + 1 ’

i=()’ 1, .-, m,

cf. Feller (1968), page 94. We shall use this name in the more general (m, n) case, also.
Under local nonparametric alternatives (F, G) of type b as defined in formula (1.1), we
get by standard contiguity arguments

(3.10) Fre(S*) = LA{t € [0, 1]: Wy (¢) + pB(t) < 0}), asm, n— .

where
t
B(t) = J bdr=0Vte[0,1], B(0) = B(1) =0,
0

because of F < G.

An immediate consequence of (3.6) and (3.10) is the asymptotic unbiasedness of the
Galton rank test for H¥:F = G vs. H;:F < G, F # G, and also the consistency of the
Galton rank test for a fixed alternative (F, G), F =< G, F # G, iff

AtE[0,1]:B(t) =0} <a.

On the other hand the Galton test is highly specific for the testing problem Ho:F = G vs.
H,:F < G, F # G. This is true because of the following properties: If (F, G) &€ H, then ¢
= At € [0, 1]:B(¢) > 0} > 0. Thus, because supo=c=i | Dn(¢) — B(t)| — 0 in (F, G)-
probability as N — o, we have in the case ¢ > «

Prc{Sk>1 —a) =Prc{A{tE [0, 1]:Dn(¢) <0}>1 —a}—>0 as n— oo,

This means that the power of the Galton test asymptotically stays below the level a for
any fixed (F, G) which deviates from H; more than g, if the measure of deviation is

At € [0, 1]: B(¢) > 0}, B=FoH™' — G-H™"
4. Local asymptotic efficiency. First we show the concept of Bahadur efficiency to

be inadequate in case of Galton’s test. For simplicity reasons we restrict the discussion to
the case m = n. Then we have (under the null hypothesis)

i i m+1—1 .
OIN<—)=PH0<S*Z—> =‘—-———-l, 1=0,1, ..., m.
m m m+1

Therefore the level actually attained an(S*) has the property

m+1—mS* 1
>

1= an(S*) = = .
m+1 m+1

This implies (for any underlying distribution)

1 1
OzﬁlogaN(S*)ZNlog 1—-)0 as m— o,

m +

From this result we cannot conclude that the Galton test has bad power behavior, but it
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is obvious that the concept of Bahadur efficiency is inadequate for this type of test, the
reason being the concentration of too much mass on the maximal value 1 of S*.

Now let us consider the concept of local asymptotic efficiency as defined in Section
VIIL.2.3 of Hajek and Sidak (1967). Because of (3.6) and (3.10) the asymptotic power of the
Galton test under local alternatives (F, G) of type b as defined in formula (1.1) is

(4.1) Bala, b, p) = limu ) Pircy(S* > 1 — a)

= PA{t€[0, 1]: Wo(¢) + pB(t) <0} > 1 — a).
Similar to Hajek and Sidak (1967), VI.4.5, we get
(4.2) ' Bola, b, p) = a + p (b, Fu) + o(p),

with F,(¢) = [4 Wo(¢) dP and F.(t) = (3/0t)F.(t) 0 < ¢t < 1, where P is the distribution of
Brownian bridge W, on C[0, 1] and A is defined by

A= {feC[0,11:A{t€[0,1]: f(¢) <0} > 1 — a}.

In order to evaluate the slope (b, F.,) of the asymptotic power function Bac(a, b, p) at p =
0, we have to evaluate F,(t), 0 < ¢ < 1. In order to do this, we define functionals A and A,
t € (0, 1), on C[0, 1] according to

A(z) = A{s €[0, 1]:2(s) < 0}, z € C[0, 1],
A(2z) = A{s €0, t]:2(s) < 0}, z € C[0, 1].
With this notation we get, for each ¢ € (0, 1),

F.(t) =J Wo(t) dP = fyP[A(VVO) >1—a| Wo(t) = y]P™9 (dy)
A

and
LAWo) | Wo(t) = y) = L(AW,) | Wo(t) = y)x LIA(Wo) — A(Wo) | Wolt) = y)
= LN (Wo) | Wo(t) = y)* L(Ni-o(Wo) | Wo(1 — ) = )
= ZLNW) | W(E) = )+ LN (W) | WL —¢) = )
= LEAW) | WQ) = y/Jt)» 21 — HAW) | W() = y/V1 - 8),

where W denotes the Brownian motion in C[0, 1]. From Billingsley (1968), formula (11.24),
we get a Lebesgue density of Z(¢A(W) | W(1) =y/ Vt) in the following form (0 < u < ¢):

1
J g(s,y/Vtyds, ify=0

/t
&uy(u) =

tp(y/NO |
J g(s,y/Vo) ds, ify<o,
1—u/t
where
1 [x] 1 x?
= exp[ -z —— 0 _
(s, x) o {s(l—S)}3/2eXp< 21_3), <s<l1l x€ER

Therefore we get a Lebesgue density of
LANWo) | Wo(t) = y)
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TABLE 1
Evaluation of F.(t) according to (4.3).

torl-—t 0,10 £0.05" Fp.15%

0 0 0 0
0.05 —0.01789 —0.01135 —0.02245
0.10 —0.03052 —0.01780 —0.03963
0.15 —0.03925 —0.02240 —0.05305
0.20 —0.04613 —0.02584 —0.06272
0.25 —0.05151 —0.02848 —0.07041
0.30 —0.05557 —0.03050 —0.07654
0.35 —0.05859 —0.03200 —0.08113
0.40 —0.06066 —0.03303 —0.08428
0.45 —0.06188 —0.03364 —0.08614
0.50 —0.06229 —0.03384 —0.08675

according to

hey(v) = J 8uy(wgi-ey(v — u) du, O<v<l.
0

Since ¥(Wy(t)) has the density
p(y/VH1 - )/Nt1—1), yER,

we have
Fa(t) = fmy(f huso )d)”?ﬁ‘_i?’
_ {t((21w) ”;/)2}2 J dy j dv f du J: » f( skt
: t((zlw)_* 3:}2 f dy f dv f du f dr f( o dshi(y, 1, ),
where

3 2 _ _ _
h(y,r, s) = B4 p{_% tl-r+01-a s)}

raA-ns1 -9y = t1— 01 -n0-2s

By a straightforward but tedious calculation of the last integrals we finally get

(4.3) F.(t) = 2m)™ 2f dx' f dyB: (%, y)Au(x, ),
0 0

where
Bux, y) = [(t = x)(1 = t = ] (xy) ™A - x = y)7,
Az, ¥) =[la— 2" P+ [(a= ' —[la—x—y'F - d
~“[x-1+a)'P-[(y-1+a)'P+[{x+y—-1+a)']

A further evaluation of F,(¢) in (4.3) seems to be very difficult, but a numerical integration
is possible (see Table 1). Therefore, the slopes (b, F,) of the asymptotic power function
(4.2) of the Galton test may be computed numerically for practically all b of interest. This
has been done for a set of alternatives A.1 to A.7 (below). The results are contained in the
first column of Table 2.
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TABLE 2
Slopes of Galton’s test, LARE of Galton’s test relative to Wilcoxon’s test,
and local asymptotic efficiencies of Galton’s test and Wilcoxon’s test with
level a = 0.10 for seven b-type alternatives.

b-type - LARE
alternative (bF.) (Ga:yw|a,b) e(Ga|ob)  e(W|b)
Al 0.1187 0.81 0.81 1.00
A2 0.0997 0.67 0.50 0.75
A3 0.0495 0.54 0.13 0.23
A4 0.0161 0.30 0.01 0.05
Ab 0.0407 1.15 0.11 0.10
A6 0.0450 1.99 0.12 0.06
A7 0.0333 0.76 0.06 0.08

In case of local alternatives (1.1) of type b according to
b(t) =yw(t) = V3@t —1), O0=t=<],
(Wilcoxon-type alternative) an explicit evaluation of (yw, F,) is possible. By partial

integration and Fubini we get

(Yw, Fo) = f V32t — 1) % F.(t) dt = V3(2t — 1)F.(t)
0

1 1
—2v3 J' Fo(t) dt
0 )

2v3 (o
= dt f dx f dyB:(x, y)Ad(a, y)
(4] 0

- (277)3/2 X

V3
8v27

By an elementary but very tedious evaluation of integrals this implies the following explicit
formula, if 0 < a < Y:

1 1
f dx f dylpn(x + y)(xy)"?Aux, y).
(4] 0

(44 (Yw, B = % [wa +(1- 2a){g — arc sin(1 — 2a)} —2Va(l - a)] .
T

In order to compare with linear rank tests with score function y, write (1.2) as

4.5) B, a, b,0) =1—®u,—p(b, )/ ¥]) = a+ p(b, P)p(ua) /| ¥ | + o(p)

and define local asymptotic relative efficiency (LARE) of the Galton test relative to the
y-test under b-type alternatives (1.1) according to (cf. Hajek and Sidak, 1967, VII1.2.3)

LARE(Ga:{y|a, b) = e,

where e > 0 and (em, en) are sample sizes of the y-test which has the same asymptotic
slope as the Galton test with sample sizes (m, n). This means that e is a solution of

e'2(b, Yyp(ua) /|| ¥ || = (b, Fu),
ie.,
(4.6) LARE(Ga:{|a, b) = {(b, F.) | ¢ ||/ ({(b, ¥)p(ua))}>

From (4.6) the LARE of the Galton test relative to nearly arbitrary y-tests under nearly
arbitrary b-type alternatives can be computed. In column 2 of Table 2 this is done for the
Yw-Test (Wilcoxon) under seven b-type alternatives A.1 to A.7 (defined below) by partial
integration and using the numerical values of Table 1.

For given b-type alternative (1.1), the y-test with ¢ = b is optimal. Therefore, an
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absolute measure of performance of the Galton test under b-type alternative is
e(Ga|a, b) = LARE(Ga:b | a, b),

which is called local asymptotic efficiency. Obviously, we have from (4.6)

4.7) e(Ga|a, b) = (b, F.)*/(p(u.) || &)

Again by partial integration and using the values of Table 1, e(Ga | «, b) is evaluated for
the b-type alternatives A.1 to A.7 in Table 2. For comparison reasons we included in Table
2 the local asymptotic efficiency of the Wilcoxon test under b-type alternatives (cf. (4.5))

e(W|[b) = (b, yw)?/| b]%

which is independent of the level a.

Table 2 reveals that even in cases designed in favour of Galton and against Wilcoxon
(A.3) the LARE(Galton:Wilcoxon) is only 0.54, whereas in cases where (under fixed
alternatives of type b) the Wilcoxon test is consistent but the Galton test is not consistent,
the LARE(Galton: Wilcoxon) is larger than 1 (cf. A.5). The values of the local asymptotic
efficiency are rather low in case of A.3 to A.5 for both tests.

For alternatives of Wilcoxon type (b = yw), we get from (4.4) and (4.7) the explicit
formula

(4.8) e(Ga|a, yw) = 3{77a +(1- 2a)<7§7 — arcsin(1 — 2a)) - 2Va(l — a)} exp(uZ).

Some values are as follows:
«a 0.20, 0.10, 0.05, 0.01

e(Ga|a, Yyw) 0.902, 0.813, 0.726, 0.557

For small levels « these results do not look very good for the Galton test. But it should be
kept in mind that the Galton test is compared with the optimal y-test (here the Wilcoxon
test), that these results are local (p — 0) under Ho-contiguous alternatives, and that under
Ho-contiguity the effects of (possibly) estimating some characteristics of the alternative
f — & disappear. Therefore the Galton test might give a better performance under fixed
alternatives, especially if they are different from “Wilcoxon type.”

5. Power extrapolation and power simulation. From (4.5) and the definition of
LARE(Ga:y|a, b) = e, we get an approximation of the asymptotic power of Galton’s test
according to

(5.1) Bala, b, p) = 1 — (ua — e’ (b, ¥) /|| ¥ ]]).

In case of some fixed alternative (F, G) and sample sizes (m, n) we have the representation
(2.3), which formally may be embedded in a sequence of type (1.1) if we put

(5.2) b=f-8& p=(mn/N)"
Therefore, by combining (5.1), (5.2), and (4.6) we obtain
(5.3) B(Ga|a, F, G, m,n) =1—®u, — (mn/N)"*(b, F,)/p(u.))

as an approximation of the power of Galton’s test under (F, G), which we call extrapolated
power of Galton’s test under (F, G). Similarly, using (5.2) and (4.5), we get an extrapolated
power of the Y-test under (F, G),

(5.4) B(W|a, F, G, m,n) =1~ ®(u, — (mn/N)"*(b, $) /|| ).
Finally, from (5.2) and (1.3), we get an extrapolated envelope power under (F, G),
(5.5) B*(e, F,G,m,n) =1— ®u, — (mn/N)"*|| b]).

In order to get an impression of the power behavior of Galton’s test under fixed alternatives
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TaBLE 3
Extrapolated power according to (5.3), (5.4), and (5.5) and Monte Carlo simulation of power of
Galton’s test, Wilcoxon’s test, and optimal y-tests, respectively, under null hypothesis Hy, and
seven types of fixed alternatives (A.1-A.7) for sample sizes m = n = 10, 20, 40.

Type Sz;l:;];le Galton’s Test Wilcoxon’s Test Optimal -Test
Monte Carlo Power/ Monte Carlo Power/ Monte Carlo Power
m= Extrapol. Power Extrapol. Power (Level)/
: : Extrapol. Power
Ho 10 9.2/10 11.2/10 /10
20 9.9/10 10.7/10 /10
40 9.9/10 10.1/10 /10
Al 10 54.0/59 69.2/65 68(10.5)/65
20 77.2/80 88.6/86 88(10.4)/86
40 94.6/96 98.9/98 99(10.1)/98
A2 10 39.9/50 63.2/61 61(8.8)/69
20 58.4/70 83.3/82 78(6.0)/89
40 78.7/90 97.5/97 99 (13.2)/99
A3 10 19.9/26 35.5/34 42(11/6)/69
20 26.5/35 47.6/47 67(11.3)/89
40 35.6/49 67.5/67 90(9.3)/99
A4 10 11.4/14 20.0/18 40(14.6)/66
20 12.5/16 23.4/22 57(11.5)/87
40 12.7/19 30.0/30 84(10.6)/98
A5 10 16.9/22 23.1/21 31(6.2)/62
20 19.3/29 28.1/28 73(12.9)/83
40 21.7/40 38.2/38 88(7.9)/97
A6 10 18.1/24 20.7/19 36(9.0)/65
20 21.6/32 24.9/24 54(5.6)86
40 24.0/45 32.3/32 93(13.5)/98
A7 10 12.4/20 23.5/21 51(11.2)/67
20 12.6/25 29.0/28 74(9.3/88
40 10.9/33 32.2/38 95(9.60/98

(F, G) relative to the “optimal” y-test and the Wilcoxon test and also in order to see the
quality of power extrapolations (5.3) to (5.5), a Monte Carlo study of Galton’s test,
Wilcoxon’s test, and the optimal y-tests was done under the null hypothesis Hy and under
seven types of non-parametric alternatives (A.1-A.7), which are given in the form of (2.3).
The sample sizes were m = n = 10, 20, 40. The Monte Carlo sample size was 10000. In case
of Galton’s test we used the exact critical values with natural levels « = 1/11, 2/21, 4/41,
respectively. In case of Wilcoxon’s test and optimal y-tests, we used the 10%-critical value
from normal approximation. Results are given.in Table 3.

The alternatives were designed to bring out some special features of Galton’s test
against Wilcoxon’s test. In order to get comparable envelope power for all seven types of
alternatives, the distances from H, were adjusted by using (5.5), i.e., by using || b| =
|| f — £ as a measure of distance from H.

Since the power of rank tests under alternatives (2.3) is independent of the special H in
(2.3) and since we assume m = n, i.e. m/N = n/N = Y%, the alternatives are given by
Lebesgue densities on [0, 1] of the form

(5.6) f=1+b/2, g=1-1b/2
with b according to A.1-A.7:

ALTERNATIVE 1 (A.1). b(t) =132t —1),0=t=<1,|b|*=0.5633, (b, yw) = 0.7506.
For this type of alternative the Wilcoxon test is asymptotically optimal.
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ALTERNATIVE 2 (A.2). (%)b = — lios + lpsa, || 8|7 = 0.6400, (b, yw) = 0.6928. For
this type of alternative the rank median test is asymptotically optimal.

ALTERNATIVE 3 (A.3). b= (—0.3)11003 — (1.2)1103,05 + (1.2)1j0507 + (0.3)1107,13, || & "2
= 0.6300, (b, yw) = 0.3845. This type of alternative is designed against Wilcoxon and in
favor of Galton.

ALTERNATIVE 4 (A4). (%)b = — lios05+10s0m, | 8] = 0.5760, (b, Yw) = 0.1663. This
type of alternative is even more against Wilcoxon, but the Galton test is not even consistent.

ALTERNATIVE 5 (A5) b= —1[0,0,25) + 1[0‘25,0_5), " b "2 = 05000, (b, \Pw) = 0.2165. This
unsymmetric type of alternative is easier for Wilcoxon than A.4, but again the Galton test
is not consistent.

ALTERNATIVE 6 (AG) (%)b = —1[(),0‘2) + 1[0,2,0‘5) - 1[0.5,048) + 1[0‘&1], " b"2 = 05625,
(b, yw) = 0.1819. This type of alternative does not correspond to alternatives from H;:F
= G, F # G since B = 0 is not true. But the Wilcoxon test has asymptotic power 1
(undesirable), whereas the power of the Galton test asymptotically stays below the level
«, which is desirable because of the deviation from H;.

ALTERNATIVE 7 (A7) b = (03) 1[0,0‘3) —(0.9)1[0‘3,0‘7) + (0.9)1[0_7,1], " b " 2 = 0.5940,
(b, yw) = 0.2182. Again, this type of alternative does not correspond to alternatives from
H,:F = G, F # G since B = 0 is not true. The deviation from H, is much larger than in A.6,
but again the Wilcoxon test has asymptotic power 1 (undesirable), whereas the power of
the Galton test asymptotically stays below the level «, which is desirable because of the
deviation from H,.

REMARK. Because of (5.5) and 0.50 < || & ||* < 0.64 in all seven cases, the extrapolated
envelope powers under A.l1 to A.7 are of comparable order. On the other hand the
extrapolated power of Galton’s test and Wilcoxon’s test show large variability under A.1 to
A.7. The last two types of alternatives (A.6, A.7) are included in order to find out whether
Galton’s test is specific for H, in finite situations, too.

Discussion of the results and final remarks. The first thing to notice from Table 3 is
the rather bad power behavior of the Galton test with respect to the Wilcoxon tests. Even
in cases designed in favour of the Galton test (A.3) the power of the Galton test is
substantially lower than the power of the Wilcoxon test. Especially, there is no indication
for an adaptive behavior of the Galton test. Comparison with the power of the respective
optimal tests (envelope power) reveals the bad power behavior of Wilcoxon and Galton
tests for alternatives of type A.3 to A.5. On the other hand the simulation shows (at least
in the substantial case A.7 of deviation from H,) that the Galton test is specific for Hi,
whereas the Wilcoxon power increases with sample sizes. In case of A.6 the deviation from
H, seems to be too small to see some effect up to sample sizes (40, 40).

Second, notice the very good extrapolations in the case of the Wilcoxon test; the
extrapolations are valid up to more than 90% power. In the case of the Galton test the
extrapolations are surprisingly good in case of Wilcoxon alternatives (A.1). For the other
alternatives (A.2-A.7) the extrapolations are rather bad; but at least they give some rough
tendency of the power behavior. The results in the case of A.7 show that the extrapolation
of slopes of local asymptotic power does not bring out that the Galton test is specific for
H 1.

Finally, the simulation of the locally optimal rank tests with respect to alternatives of
type A.1 to A.7 shows that the normal approximation under H, depends very much on the
type of the score function, leading to substantial deviations of the empirical levels from the
asymptotic level o = 0.10. On the other hand, the corresponding empirical power shows
substantial deviation from the extrapolated envelope power, also in cases where the
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empirical level is approximately 10% (cf. A.4). Thus, the extrapolated envelope power is
only a limited measure of distance from hypothesis.

The ideas of the present paper carry over to other testing problems in a natural way.
E.g. the one sample problem of testing “symmetry” versus “positive asymmetry” may be
treated in an analogous way, leading to Galton’s test for symmetry as defined in Bickel
and Hodges (1967).

As a summary, we may conclude that some very rough estimation of scores is not
sufficient in order to get an adaptive procedure. For consistent estimation of scores under
mild assumptions on the underlying alternatives see Behnen, Neuhaus and Ruymgaart
(1982).
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