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OPTIMAL STOPPING IN THE STOCK MARKET WHEN THE
FUTURE IS DISCOUNTED

By MARK FINSTER

University of Wisconsin

In the random walk stock market model, a stock is purchased at price x
and is sold at time ¢ for the price x + S; where S; = ¥} X,, X, is the price
change during the ith epoch, and X;, Xs, - .. are i.i.d. random variables with
p = E(X1) > 0 and finite o> = E(X}) — u® > 0. Discounting the future by a

-factor of y per epoch, 0 < y < 1, a selling or stopping policy ¢ has expected
payoff or utility u(¢) = E{y'(x + S:)}. This article determines second order
asymptotic properties of the optimal selling policy s, the first passage time of
S, across a straight line boundary ¢, whose utility is equal to the value V(x)
= supu(t) of the stock purchased at price x. Specifically, as y — 1, renewal
theory is utilized to evaluate the limiting distribution of s, E(s), V(x), and the
first passage boundary c up to second order terms.

1. Introduction and summary. In the random walk stock market model, a stock is
purchased at price x and is sold at time ¢ for the price x + S, where S, = ¥ X,, X, is the
price change during the ith epoch (=1, 2, .+.), and X}, X;, - - - are i.i.d. random variables
possessing mean p > 0 and finite variance o > 0. See Cootner (1967), Mandelbrot and
Taylor (1967), Fama (1965), Samuelson (1965, 1967) and Taylor (1967). An increasing
sequence of sigma algebras { £} - is adapted to {X,}n-, if, for each n > 0, %, contains
the past #{X,:k = n} and is independent of the future & {X,:k > n}, the smallest sigma
algebra generated by {X,:%k > n}. A selling or stopping time ¢ with respect to such {%} 2,
must satisfy {t = n} € %, for n = 0. Here %, is the degenerate sigma algebra so that one
buys (i.e. # > 0) with probability one or zero.

If, as in Dubins and Teicher (1967), the future is discounted by a factor of y per epoch,
0 <y < 1, then a selling policy ¢ has expected payoff or utility

ul®) =E{H'(x+S,)}

where y‘(x + S;) = 0 on {t = «}. Note that for small time epochs the discount factor vis
close to one. A selling policy s is optimal if its utility u(s) is equal to the value

V(x) = sup u(t)

of the stock purchased at price x where the supremum is taken over all stopping times ¢.
The stopping policy ¢, sells as soon as the price increases by at least a. That is, define the
first passage time

ta=inf{n =0:S, = a}.

Dubins and Teicher (1967) showed that if ¢ = inf {x:x = V(x)} then s = ¢,_, is optimal and,
in fact, stops no later than any other optimal policy. Taylor (1972) constructed upper
bounds on the value function which were shown to be asymptotically sharp by Finster
(1982) even without the assumption of finite variance. Specifically

(L1) c~p/(1—y) and V(x) ~p/e(l —v)
as y — 1. Taylor (1968) also utilized the Markovian structure and Dynkin’s (1963) excessive
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characterization of the value function to evaluate explicitly V(x) and c¢ for the analogous
continuous time Brownian motion problem. Van Moerbeke (1976) exhibited the exact
solution for continuous time by using the infinitesimal generator to formulate the problem
as an easily solved Stephan type free boundary differential equation. Continuous time
solutions can also be found explicitly by utilizing the fourier analytic approach exhibited
by Darling and Siegert (1953). Among others who have worked on discrete time versions
of this problem are Albert (1970), Boyce (1970), Darling et al. (1972), and Griffeath and
Snell (1974).

In this note, renewal theory is used to develop second order expansions for ¢ and V(x)
in terms of vy, u and o as the discount factor y — 1. The selling policy ¢, is shown to have
utility that differs from the value of the stock by terms that are smaller than o(1) provided

a=p/(1—7v) +o([1—y]"").

2. The optimal rule and the value function. In order to facilitate examination of
the optimal selling policy s and of the value function V(x) as A = —log y — 0, define the
normalized stopping time § by

§=VA(s =AY
and the excess R; of the selling price x + S, over the selling boundary ¢ by
Ri=x+S,—c

Note that y — 1 forces ¢ — oo.

The following facts are well known from renewal theory. See, for example, Woodroofe
(1981) and Spitzer (1966). As ¢ — =, § and R, are asymptotically independent with limiting
distribution functions G and H respectively. That is, as A —> 0, P(§ < a, R, < b) —
G(a)H(b). Anscombe’s Theorem and (1.1) indicates G ~ N(0, 62/u?) and renewal theory
gives H'(r) = P(S; > r)/E(S,), where 7 = inf{n > 0:S, = 0}, provided the distribution of
X is nonlattice (Feller, 1971, Page 138). Since the variance of X; is finite, the first moment
of R, and the first two moments of § are uniformly integrable (Woodroofe, 1981, pages 2-8
and 4-11). Hence as y > 1

(2.1) E(3%) — o%/u?
and
(2.2) E(Rs) —p

where, after an application of Spitzer’s formula (cf. Woodroofe, 1981, page 2-15), H has
mean

(2.3) p=(n*+0%)/2u+ 37 k'E(Sk)

with Sy = max(—S;, 0). If, in addition, the' distribution of X, is strongly nonlattice
(Woodroofe, 1981, page 2-16) then

0

p=p>+ o4+ 7! f Y {Re £(y) + log(uy)} dy

0

with ¢(¢) = E(e*™') and £(t) = log {1 — ¢()} " denotes the principal branch of the complex
logarithm. If X, has a lattice distribution with span d then (2.2) holds with

p = E{S.(S; + d)}/2E(S,)

as ¢ — o through multiples of d. A direct application of Wald’s Lemma and (2.2) then
yields

(2.4) E(s)=pc—x+p)+0(l) as y— 1.
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Furthermore
(25)  V(x) = u(s) = E{e™(x + S,)} = E{e™™(c + R.)} = E(e™*)(c +p) + o(1).

From the definition of s as a first passage time, the Strong Law of Large Numbers, and
(1.1), it follows that As — 1 a.s. Hence a Taylor’s expansion of e ™ about 1 gives

(2.6) Ee™)=e"'+ e 'E(1 —As) + ke 'E{e™(As — 1)?}

where the random variable y lies between As and 1. Since e ™ = y* <1 we havee™ < e
and thus the uniform integrability of §* implies the uniform integrability of e ”(As — 1)2
Since As - 1 a.s.,, y — 1 a.s. and (2.1) yields

(2.7) E{e”(As — 1)*} = Ao*/u* + o(N).

Substituting (2.4) and (2.7) into (2.6) and then (2.6) into (2.5) and utilizing (1.1) one obtains
(2.8) eV(x) =c+ c(l — Ae/p) + x + 0%/(2u) + o(1).

Since (1.1) implies ¢ = p/A + ¢ where ¢ = o(A™?), it follows from (2.8) that

(2.9) eV(x) = u/A + x + 02/ (2u) — £2A/p + o(1).

By mimicking the above development when s is replaced with the first passage time ¢,
where a = u/A + o(A7Y?), the utility

u(ta) = /(e + x/e + o*/(2ue) + o(1)

is realized and since u(¢,) = V(x) for all a, it must be the case that ¢ = o(A7/2) by (2.9).
Collecting the above results, we have proved the following.

THEOREM. Asy—1

(1) V(x) = p/(Ae) + x/e + o2/ (2ue) + o(1)

@) ¢ = /A + o(A\"V2)

() ults) = V(x) + 0o(1) if a = p/A + o(A7"?)

(4) E(t.) = (a + p)/pn + 0(1). If, in addition, a = p/A + o(A"?) then E(t,) = \7' +
o(A7V%) = E(s) + o(A7172).

Note that the best fixed sample procedure sells after n, days where no maximizes
Y™(x + ny) and hence has utility u/(eX) + x/e + o(1). The gain in using the sequential
procedure is therefore o2/ (2ue) + o(1).

3. The normal case. If time is measured in terms of the number of transactions,
then Mandelbrot and Taylor (1967) have indicated that stock market prices should follow
a random walk with the increments being normally distributed. Hence, in practice, u and
o? are easily estimated from the stock’s past prices. In this case (2.3) also assumes the
particularly tractable and easily estimable form

(3. p= (1 +0%)/(2n) — vlo/p),
where
v(¢) = T7 k@ (¢ VR) — ¢7 VRO VR))

and @ denotes the standard normal distribution function. Table 1 indicates some repre-
sentative values of »(¢); this table overlaps slightly with Table 1 of Siegmund (1975), whose
w is our 7%,

4. Illustrative exact results for exponential right tailed distributions. The
distribution of X, has an exponential right tail if x = 0 implies

P(X; > x) = K exp(—Bx)
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TaBLE 1
Values of v(¢) X 10* for use in (3.1)
0 1 2 3 4 5 .6 N .8 9

0000 0000 0000 0001 0020 0090 0224 0418 0662 0947
1264 1607 1971 2353 2749 3157 3575 4002 4435 4875
5320 5771 6225 6683 7144 7607 8074 8543 9014 9487
9961 10437 10914 11393 11873 12354 12836 13319 13803 14288

who =]

for some positive constants K and . In this case

P(szﬁz,Rs>r)=22P(s2n,Sn>a+r)=22E{P(32n,8n>a+r| Fa-1)}

=yn J K exp{—B(a + r — S,-1)} dP = pnexp(—fr).

Setting r = 0 indicates P(s = m) = p, and setting m = 0 shows P(R, > r) = exp(—fr).
Hence s and R; are independent and p = E(R;) = 1/8. Now proceed as in (2.5) to obtain

(4.1) V(x) = (Ey*)(c + 1/B) = ¥(y, x)(c + 1/B)
where
Wy, x) =E(y’) for 0<y=<1.

Defining the characteristic function ¢(¢) = E exp(itX,) and utilizing the Fourier methods
described in Feller (1971, page 600) one obtains

(4.2) ¥(y, x) = {1 - 6(y)/B}exp{(x — 0)8(»)},
where —if(y) is a solution to y¢(y) = 1. Solving
c=Vic) = Uy, c)(c + 1/B)
yields
c=1/6(y) = B!
and substituting this and (4.2) into (4.1) produces
V(x) = {1/6(y) — B~"}exp{x6(y) + 6(y)/8 — 1}.
Since (1) = 0 and 8'(1) = —1/p we find

- _X
0p p’

For example, if P(X; >0) = 1then 8(y) = (1 — y)8,c=v/{(1 -8}, E(s) = (1 —y)' -
xB, and for x < ¢, V(x) = B71(1 — y) "'y exp{x(1 = y)B — v} . In this case the approximations
are quite sharp as the exact results for ¢, V(x) and E(s) differ from their approximations
by terms that have order of magnitude O(1 — v).

E(s) = % W1, %) =
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