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FIXED ACCURACY ESTIMATION OF AN
AUTOREGRESSIVE PARAMETER

By T. L. Lat' anp D. SIEGMUND?

Columbia University and Stanford University

For a first order non-explosive autoregressive process with unknown
parameter 8 € [—1, 1], it is shown that if data are collected according to a
particular stopping rule, the least squares estimator of 8 is asymptotically
normally distributed uniformly in B. In the case of normal residuals, the
stopping rule may be interpreted as sampling until the observed Fisher
information reaches a preassigned level. The situation is contrasted with the
fixed sample size case, where the estimator has a non-normal unconditional
limiting distribution when | 8| = 1.

1. Introduction and summary. Consider the first order, non-explosive, autoregres-
sive model

(11) Xn = ,an—l +é&, n= 17 2’ Tty

where ¢, &, --- are independent, identically distributed random variables with Ee; = 0
and 0 < Ee} = 0® < . The initial state x, is a random variable (not depending on 8) which
is stochastically independent of {e,}. The constant 8 € [—1, 1] is an unknown parameter,
which at stage n is customarily estimated by the least squares estimate,

(1.2) b= (1 xi1x)/ Q1 xb) = B+ Okt x1e)/C1 xhy).

If the ¢'s are normally distributed, then b, is also the maximum likelihood estimator of 3,
and the observed Fisher information about 8 contained in xo, x1, « -+, X, is

d? 1
(1.3) I, =— d—B—i (ﬁZZL:l Xic1Xi — 3 ﬁz M x%‘—l) = Z;LI xi.
It is well-known and easy to prove that for fixed 8 € (=1, 1), as n —
(1.4) L/*(b, — B)— # N (0, 0?).

Here N(u, o) denotes a normal random variable with mean p and variance o2, and — &
indicates convergence in law. See, for example, Anderson (1959). However, for =+ 1, an
entirely different limiting distribution occurs (White, 1958, Rao, 1978). For example, if 8
=1, x, — %o is the sum of i.i.d. random variables ¢ + ... + &,, and summation by parts in
(1.2) yields

(Crrxi) (b — 1) = Yon ' (x2 — 23 — T1 ) /(n 2 Xy x20) V2

By Donsker’s theorem this converges in law to

1 1/2
(1.5) g {W2(1)—1}/U W2(t) dt} )
0

where { W(¢), 0 = ¢t < 1} is a standard Brownian motion process. Of course, this result
indicates that the asymptotic normality of (1.4) breaks down for 8 in a neighborhood of
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+1, in the sense that for any given n, no matter how large, there will be a neighborhood of
+1 in which one should not expect (1.4) to yield reasonable approximations.

Examples in econometrics having values of 8 close to 1 are cited by Evans and Savin
(1981) and by Dickey and Fuller (1979).

In this paper we consider the asymptotic behavior of {5,} under a sequential sampling
scheme which measures time in terms of accumulated (observed) Fisher information.
Define

(1.6) N.=firstn=1 suchthat I,= cs’
Our principal result (Theorem 2.1) is that as ¢ — o
(1.7) ' I¥*(by, — B) = #N(0, 0°)

uniformly in B for -1=8=<1.

The sampling rule (1.6) is motivated by the theory of fixed width confidence intervals,
cf. Anscombe (1953), Chow and Robbins (1965), or Grambsch (1982). Some precedent for
the rather surprising uniformity in the convergence of (1.7) is found in the work of
Siegmund (1981), although the underlying reasons are quite different in the present case.
A discussion of this problem in the comparatively trivial continuous time case is given by
Lipster and Shiryaev (1978).

When it is feasible to use the sampling rule (1.6), its advantages appear to be threefold:
(i) the accuracy of by_as an estimator of B (as measured by the variance of its asymptotic
distribution) is approximately a small constant ¢”', rather than an uncontrolled random
variable, (ii) the appropriate asymptotic distribution theory does not depend on the value
of the unknown parameter 8; and (iii) the convergence to asymptotic normality is much
more rapid, even when B is not near the values +1. (See Section 3.)

The remainder of this paper is arranged as follows. Section 2 contains a proof of (1.7).
In Section 3 we give the results of some simulations comparing confidence intervals
obtained by indiscriminate use of (1.4) for fixed sample sizes with (1.7) for sequentially
determined sample sizes. Section 4 is concerned with some related asymptotic results, and
in particular the appropriate modification of (1.6) when ¢ is unknown.

Partial results for the model x, = a + Bx,—1 + & indicate that the multiparameter case
can be appreciably more complicated, because if « is close to 0, one must recognize this
and use a stopping rule equivalent to (1.6); otherwise a substantially different stopping
rule is required.

2. Uniform asymptotic normality of by. The main result of this section is the
proof of (1.7) (Theorem 2.1 below). Our approach is motivated by the observation that b,
— B = 3" xi.e/Y1 x%1 is of the form of a martingale divided by the sum of the
conditional variances of its increments. The martingale central limit theorem (e.g. Dvo-
retzky, 1972) almost immediately implies (1.7) for each fixed B8 € [—1, 1], but the
requirement of uniformity demands a substantially more complicated argument. The
novelty of our approach lies in systematic exploitation of the condition (2.6) and the simple
identity (2.16). We begin with some preliminary probabilistic results.

ProrosiTION 2.1. Let x,, &n, n = 0, 1, ... be random variables adapted to the
increasing sequence of o-algebras %, n = 0,1, .... Let { Py, 8 € E} be a family of
probability measures such that under every Py
(2.1) €, &, --+ areiid. with Eje, =0, Ezei=1;

(2.2) supoEy{e? || >a} >0 as a— o
(2.3) &, s independent of %1 foreach n=1,

(2.4) Py{Yroxl=0)=1;
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(2.5) supgPy{xi>a}—>0 as a— o foreach n=0;

and for each 6 >0

(2.6) lim,—,[sups Po{x2 = 8375 x? for some n=m)]=0.
Forc >0 let
2.7) T.=inf{n: Y7 2%, = ¢} (inf ¢ = + ).

Then uniformly in 6 € Z and —o <t < o
(2.8) P{c?Y e x6,<t) > D(t) as c— x,

where @ is the standard normal distribution function.

REMARK. For the autoregressive model (1.1), if we identify # with the autoregressive
parameter B3, all the conditions of Proposition 2.1 are trivially verified, with the single
exception of (2.6).

Proposition 2.1 is proved by reducing it to the following convenient martingale central
limit theorem (cf. Freedman, 1971, pages 90-92).

LEmMMA 2.1. Let 0 < § <1 and r > 0. Assume that {u,, %, n = 0} is a martingale
difference sequence satisfying

(2.9) |un| =8 forall n
and

(2.10) SYEui| %) >r as.
Let

r=inf{n: Y E(u}| %) = r}.

There exists a function p: (0, ©) — [0, 2], not depending on the distribution of the
martingale difference sequence, such that lim,_op(x) = 0 and

supx| P{Y1u; = x} — ®(x/r'»| < p(8/r'7?.
PROOF OF PROPOSITION 2.1. By (2.4) Py{T. < ®} = 1, and obviously P, {lim . T, =

o} =1 for all §. Let 0 < § < 1 and define £, = x,, if x2 < 8%c and %, = 8¢ otherwise. Then
for all 6

Py{x, # %, forsome n<T,.)
=Y Po{al1> 8%} + Po{T.>m, x, % %, forsome m=<n<T)}
= Y21 Po{xli > 8%) + Po{xk =835 ' x? for some n=m},

which is bounded above by 24 if we first choose m large enough and use (2.6), then choose
¢ large and use (2.5). Hence if

Q.={x,=%, forall n<T.,
then for all large c and all §
(2.11) Py(2.) =1 — 26.

Define %, = e,I{|ex| < 87'/%} and &, = &, — &,. Then under Py, {¢ ™ *%01(Gs — E4&n), %, 0
= n < =} is a martingale difference sequence satisfying

| e 2%, 1(6n — Egéy)| < 262,
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and by (2.4)
Py{Y§ &=} =1

Also by (2.2),as § » 0
(2.12) vg(8) = vargé; — 1
uniformly in 6. Hence, if

7. =inf{n: Y1 1= ¢},
then by Lemma 2.1
(2.13) iPo{c“”"’ZI Fe1(§ — Egé) = t) — ®(t/(0s(8))D) | = p[2(8/vs(8))/2].
On Q., 7. = T.and
(2.14) |21 &1(E — Eof)) — X1 wae | = | BT &i1(& — Eofl)|.
By Wald’s identity (cf. Chow, Robbins, and Siegmund, 1971, page 23)
(2.15)  Eqlc™?%1 £1(E — Eof)P = ¢'(1 — v (8)) Eo (X1 £21) = (1 — 1y(3))(1 +87).

The Proposition follows from (2.11) — (2.15) by letting § — 0.

For ease of reference we state without proof the following lemma. It is related to the
strong law of large numbers given e.g. by Neveu (1965, page 148), whose method of proof
can be adapted to the present purpose. Alternatively it follows easily from Proposition 2
of Robbins and Siegmund (1971) and a straightforward calculation along the lines of their
Lemma 1.

LEMMA 2.2. Suppose that the measurability conditions of Proposition 2.1, (2.1), and
(2.3) are satisfied. For each y > %, 8§ > 0, and increasing sequence of positive constants
Cp—> ©,

supy Po{| X7 %16, | = 8 max(c., (X7 x21)7) for somen=m} — 0
asm— o,
We now return to the autoregressive model (1.1) and write Py to denote dependence of

probabilities on the parameter B. (The joint distribution of xo, €, &, ---, however, is
assumed not to depend on B.) The principal result of this section is

THEOREM 2.1. Define {b,,n=2,3, ---} by (1.2) and N, by (1.6). If ¢1, €, - - - areiid.

with mean 0 and variance ¢%, and are independent of xo, then
lime_oPs{IN*(bn, — B) < t} = ®(t/0)

uniformly for -1 =B <1and —o <t <oo. /

Proor. Theorem 2.1 follows immediately from Proposition 2.1 once we have verified
(2.6). To this end, note that squaring (1.1) and summing yields
(2.16) X2+ (A =B Y xi—x3 =31l + 2B Y01 xim1ei.
Let | 8| =1 and 0 < A < 6%/4, and define
(217)  Qua={|n7 31 e — o?| <A, | 3T -1 &| < max(An, (37 x21)*?) for all n= m}.
On @ if n = m and x2 < An, then (2.16) implies

Yot x2= (6% — A)n — An — 2max{An, (37 x721)%%}
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and hence for all m sufficiently large

(2.18) 25 xi= (0P — 4\)n = (6A! — 4)x2.
On the other hand, since | xn—1| = | B%n-1| = | xn| — | & |, it follows that
i<, | %nsy | 2 [ %0 = T Lensy| = |50 (1 = 5458 [enc | /(An)2)

if x2 = An. Hence n = k and x2 = An imply

(2.19) 2ot xb/xh = k{1 =3 }0 |ens| /(AR)RYE

and since Y7 |e.—,|, n = k, k + 1, ... are identically distributed with finite second
moment, the right hand side of (2.19) converges to % with probability one, at a rate which
does not involve 8. Hence by choosing A small and % so that 2/(c?A™" — 4) < & and
k > 1/8, we see by (2.18) and (2.19) that

limy,..sup 51 Pp{x7 = 8 X5 x? for some n=m)} < lim,_.sups=1Ps(Q5,),

which equals 0 by Lemma 2.2 and the strong law of large numbers. This establishes (2.6)
and hence the theorem.

3. Monte Carlo results. In this section we report the results of a Monte Carlo
experiment to compare the fixed sample size and sequential asymptotic distributions. The
basic experiment to assess the accuracy of the normal approximation indicated by (1.4)
and (1.7) consisted of a frequency count of the number of times the normalized estimator
of 8 exceeded z or was less than —z for commonly used quantiles z of the standard normal
distribution. Since very similar results were obtained for various z, we report here only for
z = 1.28, for which the (one-tailed) probabilities are nominally p, = p,= 0.10. For simplicity
X0 = 0, and ¢, &, --- were taken to be N(0, 1). In the fixed sample experiment, n = 50
observations were taken; and the results are reported in Table 1. In Table 2 observations
are taken sequentially with ¢ chosen so that E;N, = 50 for all 8; in Table 3, ¢ = 50 and
EgN. varies with 8. There were 1600 replications.

For normally distributed e, b.(by,) fails to be normally distributed only because of
variability in Y} x%, (ZIIV” x21). (See Dvoretzky, 1972, page 520.) Of course, the sequential
experiment is designed to reduce this variability. The columns of Tables 1-3 with the
headings E(I) and SD(I) report the observed average and standard deviation of ¥ x%,
respectively. Variability for } x?, in the fixed sample experiment goes into variability in
N. for the sequential experiment, so Tables 2 and 3 also report estimates of EN and
SD(N). Note that variability in Y, x7_; for the fixed sample size case and SD(N) /EN for
the sequential case increase dramatically as 8 approaches one.

The columns headed p, and p, report the percentage of excesses in the right and left
tails of the distributions.

The figures in Tables 1 and 2 indicate that the fixed sample size asymptotic theory is
not especially good when n = 50, even for small | 8|, and it deteriorates quite noticeably
for B near 1. In the sequential case the asymptotic theory is much better and shows no
dependence upon the value of 8.

4. Additional asymptotic theory. Here we give some additional asymptotic results,
which follow from the techniques developed in Section 2. Theorem 4.1 describes the
asymptotic behavior of N., and to some extent explains the rather surprising differences
between the fixed sample and sequential cases. Theorem 4.2 is concerned with the uniform
strong consistency of b, and 63 = 7' ¥, (2 — bax,y)? It provides the foundation for
consideration of the case of unknown o.

THEOREM 4.1. Under the conditions of Theorem 2.1,

(i) for each B € (-1, 1), Ps{limc.c™'N. = (1 - %)} =1,
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TABLE 1
Fixed Sample Case
n = 50, z = 1.28, p, and p, are nominally 0.10

B b be EdI) SD{)
0.1 .084 .108 49 10
0.5 .086 118 65 18
0.9 .052 .136 232 136
1.0 .048 .166 1272 1505

TABLE 2

Sequential Case
z = 1.28, p, and p, are nominally 0.10

B br Pe c EJI) SD() EN  SD(N)

0.1 094 .105 50 52 1.7 52 10

0.5 103 .096 65 67 2.2 52 13

0.9 .103 .099 200 207 8.0 51 21

1.0 .098 101 500 524 22 48 24
TABLE 3

Sequential Case
¢ =50, z =128, p, and p,are nominally 0.10

B br ) 2 EI) SDd) EN  SDWN)
5 097 .099 52 2.4 41 11
9 092 102 55 5.4 20 9.0
10 .108 107 58 8.2 16 7.6
11 .096 093 61 10 13 5.9

and

t
(i) for|B|=1,c "’ N.— y»inf{t:J’ W2(s) ds = 1} ,
[

where W(t), 0 =t < , is a standard Brownian motion process.

REMARK. In addition to containing information on the sample size of our sequential
procedure, Theorem 4.1 has interesting connections with Theorem 2.1 and a theorem of
Anscombe (1952). As generalized by Mogyorédi (1962), Anscombe’s theorem says that if
Y. — ¢ Y, some additional technical conditions are satisfied, and if »(c) are integer-valued
random variables which can be normalized by constants 2(¢c) — + « in such a way that
v(c)/k(c) converges in probability to a positive random variable, then Y,) — « Y. Hence
(1.4), Theorem 4.1 (i), and Anscombe’s theorem show that IX%(by, — 8) — « N(0, 1) for
each fixed B € (—1, 1). However, because the convergence of Theorem 4.1 (ii) is in law and
not in probability, Anscombe’s theorem is not applicable for || = 1, and in fact its
conclusion would be incorrect.

ProoF oF THEOREM 4.1. On the event £, , defined in (2.17), (2.16) implies for all
n=m

(4.1) |x2 —xf+ (1= B2 Irxl, — no’| <= 3An + 2(37 x7)%°.

If | 8| is bounded away from 1,say || =p < 1,s01 — 8°>=1— p’ > 0, then (2.6), (4.1), and
Ps(Qm,5) = 1 (uniformly in 8) imply that

(4.2)  limpn_osupp<,Pp{|(1 — BHn" 'Yt x%; — 0®| =8 forsome n=m}=0.
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Theorem 4.1 (i) follows easily from (4.2).
If 8 =1, then x, = xo+ S,, where S, =& + - -+ + &. Thus Theorem 4.1 (ii) follows from
Donsker’s Theorem, which implies that

t
{c7'2le* 82, ¢ = 0) —W{aZJ’ W2(s)ds, t= 0}.
0

A similar but slightly more complicated argument handles the case g = —1.

THEOREM 4.2. Define the least squares estimate for B as in (1.2), and in the case of
unknown o, estimate ¢” at stage n by

(4.3) Gr=n""Y% (% — baxio)®

Then b, and &2 are uniformly consistent for | B| <1 in the sense that for all § >0
(4.4) lim,, wsupyp=1Ps{|b» — B| =8 for some n=m} =0

and

(4.5) lim,, .oSupg<1Ps{| 6% — 0°| =8 for some n=m} =0.

Proor. From (2.6), (2.16), and (4.2) it is easy to see that foral 0 <A <1
supigi=1Pg{n ' 31 x1 = Ao® for some n=m}—0, (m— x),

which together with (1.2) and Lemma 2.2 proves (4.4).
To prove (4.5) note that

(4.6) 2=n'Yri (e + (B— b)) =n ' Tiel — (Timi x18)?/n Yooy X7
For |B| =<1, |x.| =|x0| + X% | &| = U., say, where the distribution of U, does not depend
on B. Moreover, Y7 x2, = Y5 Ui = o(n*) with probability one. Hence by Lemma 2.2
lim,,esup g <1 Pp{(XF xi16,)* = 0n Y1 x>y  for some n=m} =0,
which along with (4.6) and the strong law of large numbers implies (4.5).
With the help of (4.5) it is possible to modify the definition of N. to handle the case of

unknown o. The following result can be proved along the lines of Theorem 2.1, although
the details are considerably more complicated. The proof is omitted.

THEOREM 4.3. Define b, by (1.2) and 6% by (4.3). Let {8.} be a sequence of positive
constants with 8, — 0. Let s2 = max(8,, 6%) and for ¢ < 0 define

(4.7) N.=inf{n:n= 2,3 x2, = cs?).
Then as ¢ > x .
Pa{(XF x2)2(bs, — B)/65. < t} > D (t)

uniformly in |B| <1 and —o <t < o,
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