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COVARIANCE MATRICES CHARACTERIZATION BY A SET OF
SCALAR PARTIAL AUTOCORRELATION COEFFICIENTS

By HIDEAKI SAKAT

Kyoto University

It has been shown that the autocovariance matrices of a stationary
multivariate time series can be uniquely characterized by a sequence of the
normalized partial autocorrelation matrices having singular values less than
one.

In this note, we show that the same autocovariance matrices can be also
uniquely characterized by a set of sequences of scalar partial autocorrelation
coefficients whose magnitudes are all less than one.

1. Introduction and summary. It has been shown by Morf, Vieira and Kailath
(1978) that the autocovariance matrices of a stationary multivariate time series can be
uniquely characterized by a sequence of the normalized partial autocorrelation (PARCOR)
matrices, having singular values less than one. This is a nice generalization of the scalar
case (Barnoff-Nielsen and Schou, 1973; Burg, 1975; Ramsey, 1974) but it is not an easy
task to parametrize the PARCOR matrices satisfying the above constraint.

In this note, using the recent result of Sakai (1982) about circular lattice filtering based
on the work of Pagano (1978), we show that the same autocovariance matrices of a
stationary d-variates time series can also be characterized uniquely by d sequences of the
scalar normalized PARCOR coefficients whose magnitudes are all less than one. This may
be a more convenient generalization, since now the parametrization becomes quite easy.

2. The circular lattice filtering. Here we give a review of Sakai (1982) for later
discussion. Let {X(¢)} be a zero-mean real d-variates stationary time series and the scalar
process { Y(¢)} be generated from {X(¢)} by

@) Y(j+d(t-1) =X;(t),

where X, (t) is the jth element of X(¢). Then { Y(¢)} becomes a periodically correlated
stationary process of period d (Pagano, 1978).
We denote the autocovariance matrices of X(¢), and the covariances of Y(¢) by

) R, =E{X(t)X"(¢—k)}, R-x=Ri,

3 R(s, t) =E{Y(s)Y(¢)}, R(¢s)=R(s 1),

respectively where “T” denotes the transpose operation. Define the jth order £th channel
forward and backward linear prediction errors for Y(¢) by

4) e(j,k+nd) =Y(k+nd) + Y1 a(j, )Y (& + nd — i)

(v) NG k+nd) =Yk +nd—j)+Y B, j+1—-0)Y(k+nd—i+1),
respectively. The predictor coefficients ax(J, i), Bz(J, i) =1, ---, j) are determined by

minimizing E {¢*(j, k + nd)}, E {n*(j, k + nd)} with respect to ax(J, ), B (J, i), respectively.
That is,
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(6) Ri())ar(j) = (6()), 0, - -+, 0)T
(7 Re(/)be(j) = (0, ---, 0, 73(/)T
f0110‘” Where alz‘(j) = (1; ak(j) 1)) R ak(j) ])); bg‘(]) = (Bk(]’ J)’ ctcy Bk(j) 1)) 1)) and the
(p, g)-th element of R (j) isR(k—p + 1,k —q + 1), (1 =p, ¢ =j+ 1). Note that Ro(j)

= Ra()).
Then, we have the following efficient algorithm for successively obtaining a.(7), b.(j),
(j=0,1, --.)(Sakai, 1982).

THEOREM 1. (A Levinson-Type Circular Recursive Algorithm) (a) Initial conditions
(=0
@) 0(0) =7i(0) = R(k, k), Aw()=R(k,k—1), k=1,...,d.

(v "-der update from jtoj + 1
(i) compute

9) Ar(j) =Th-o R(k—m, k —j — Dax(j, m)
(10) =YhoR(k—j— 1+ m, k)Bs(j, m)
(11) ar(J+ 1,7+ 1) = —Ax(j) /73-1(j)
(12) Be(j+ 1,7+ 1) = =As(j)/0k())

(i) update '

13 a(+Lid)=aG ) +a(+Lj+ DB j+1-0), i=1,...,j
149 B +1L,0) = B0 ) + B+ L+ Dy j+1—13), i=1,-..,j,
(15) ok + 1D =0k(N1 -+ 17+ DB(j+ 1,7+ 1)},
16 G+ =rh(DA-aG+ L+ DARG+1,j+ 1)
where the subscript k — 1 = 0 is replaced by d.
We also note that the third condition in (8) must be added to the original version of this

result (Sakai, 1982). It is shown there that the stationarity of X(¢) is equivalent to the
condition
(17) 0=a(j+Lj+DB(+1,j+1) <1
As in Morf, Vieira, and Kailath (1978), if we define the normalized PARCOR coefficients
by
. Ar(y
(1s) o+ 1) = —— 2D
0 (J) Te-1(J)

then from (11), (12), and (17), we have | px(j + 1)| < 1. The statistical property of the
estimated p(; + 1) is derived in Sakai (1982) under the assumption that px(j + 1) = 0 for

J = P, that is, {Y(¢)} is a pure periodic autoregressive process.
3. Covariance characterization. We now present the main result of this note.

THEOREM 2. There is a one-to-one correspondence between a sequence of the auto-

covariance matrices {Ro, R, -+, Ry, -+ -} of d-variate time series and d sequences of
{R(k, k), px()), (=1, -.-,d;j=1,2, -..)} satisfying the condition
(19) R(k, k) >0, lor(j + 1)| < 1.

Note that the corresponding constraint in Morf, Vieira, and Kailath (1978) is that R, is
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positive definite and that the normalized PARCOR matrices have singular values less than
one. ’
For proof, we note first from (1) that R;’s are expressed in terms of R (s, ¢)’s by
[R(1,1) R(,2) .- R(Q,d)
R(2,1) R(2,2) --- R(2,d)

R0= ’

20 | R(d,1) R(d,2) --- R(d,d)
(20) [ R(1,1-d) R@,2-d) .-- R(,0)
R2,1-d) R2,2-d) .-- R(20
R = . . -

| R(d,1-d) R(d,2—-d) --- R(d,0)

Thus, given a truncated sequence { Ry, Ry, - -+, Ry} of the autocovariance matrices, the
algorithm of Theorem 1 yields d sequences of R (k, k), pr(J), (=1, .-+, d;j=1, .-+, ps)
satisfying (19) where p, = Nd + k — 1, since from (20) we have R(k, k) > 0, R(k, k — 1)
and can start the algorithm by (8), and from (20) we see that the largest order that can be
defined for the kth channel must satisfy £ — j = 1 — Nd.

Defining ax(j + 1, 8) = ax(j + 1, 0) /0 (j + 1), Be(j + 1L, 1) = Be(j + L, 1) /7 (j + 1),
(=1, ..., j+ 1) and noting from (15), (17), and (18) the equalities

(21) or(j + 1)/ + 1) = 0r(j)/7e-1(J)
(22) or(J + 1 /0or(j) = e (j + 1/m-1(j) = V1 = pi (j + 1),
we obtain a normalized Levinson-type algorithm as

—0r(J) Tr-1(J) o (j + 1)

(23) =R(k, k—j—1) +0x(j) =1 R(k —m, k — j — 1)ar(j, m)
=R(k—j—1,k) +71(j) She1 R(k = j = 1+ m, k) Bo1(j, m)

(25) ar(j+1L,j+ 1) =p(j+1)/m(G+1)

(26) Br(j+1,j+1) =px(j+ D/ow(j + 1)

where fori=1, ...,j

@7) & +1,8) = {6, ) + s G+ DBr (G, j + 1= D)}/NT—p3(G + 1)

@8) B+ 1,0) = (Burl, i) +pa(+ D&, j+ 1= D}/VI—p3G+ 1D i=1,---,j
with the initial conditions

9) 6%(0) = 74(0) = R(k, k), — 0£(0)74-1(0)px(1) = R(k, k — 1).

Conversely, given d sequences of {R(k, k), px(j), (k =1, ---, d;j =1, --+, p)}
satisfying (19), we can generate R(k, k —j)(j =1, - - -, pz) in the following way. First, use
(?’) to obtain R(k, £ — 1), and use (22), and (25)-(28) successively to compute ax(J, i),
Br(j, i), =1, ---,j) from px(1), - -+, pr(j). Then, from (23) or (24), we obtain R (k, k —
J — 1) by using previous R(k, k — i), &(J, i) or fr1(j, i), (=1, --+,7), and pr(j + 1). We
feel that the use of (24) is more appropriate, since it consists of £th channel R (%, & — i),
(k — 1)th channel ﬁk_l( J, 1) and 74—1(j) while the use of (23) requires £th to (2 — j)th
channel covariances which ultimately spread to whole channels, showing the inappro-
priateness to parallel processing. Anyway, we can obtain the 2th rows of Ry, Ry, ---, Ry
each from right to left, except R, for which only the lower triangular elements are required,
where N is an integer satisfying max,(p. — 2 + 1)/d = N < maxx(pr — k + 1)/d + 1 and
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we extend R(k, k — j) for pr <j =< Nd + k — 1 by putting p.(;j) = 0. This completes the
proof of Theorem 2.

A reviewer has pointed out that the result in this note is implicit in Delosme and Morf
(1980) and in Lev-Ari and Kailath (1981) which treat the covariance characterization
problem of general nonstationary processes. However, it seems to the author that further
argument is needed to deduce the present result from the above two papers. It is also
stressed by the reviewer that the covariance characterization is better described by the
Schur-type algorithms (Lev-Ari and Kailath, 1981) rather than the Levinson-type algo-
rithms. Actually we can develop such an algorithm for our case but do not present it here.

Acknowledgment. The author wishes to express his sincere thanks to Prof. H.
Tokumaru of Kyoto University for his useful advice and Y. Iiguni for pointing out several
errors in the earlier manuscript.
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