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INVARIANTLY SUFFICIENT EQUIVARIANT STATISTICS AND
CHARACTERIZATIONS OF NORMALITY IN
TRANSLATION CLASSES
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It is shown that an equivariant statistic S is invariantly sufficient iff the
generated o-algebra and the o-algebra of the invariant Borel sets are indepen-
dent, and that if S is invariantly sufficient and equivariant, then the Pitman
estimator for location parameter vy is given by S — Eo(S). For independent Xj,
..., X,, the existence of an invariantly sufficient equivariant linear statistic

is characterized by the normality of Xi, -- -, X,.. Then, the independence of
Xy, - -+, Xn is replaced by a linear framework in which there are established
characterizations of the normality of X = (Xj, - - - , X) by properties (invariant

sufficiency, admissibility, optimality) of the minimum variance unbiased linear
estimator for y.

1. Invariantly sufficient translation equivariant statistics. For fixed n € N
and all y € R, let T,,: R" — R™ be the translation given by T',(x1, - -+, xn) = (X1 + v, + -,
X+ Y), (x1, +++, X2) € R" Further let 5= {B € 4"| T;%(B) = B, y € R} denote the
o-algebra of the Borel subsets in R" being invariant under all translations 7', y € R. If Po
is any probability measure on #" and if # = {P, = (P))™|y € R}, where (Po)™ is the
image measure of Py under T, is the corresponding n-dimensional translation class, we use
the symbols E, and V, for the expectation and variance w.r.t. P,. S: (R", #") — (R, %)
being a statistic, we use the symbol E* for (a version of) the conditional expectation under
S wr.t. P, A statistic S:(R", 2" — (R, #) is called (translation) equivariant, if
SeT,=S + yholds, y E R.

With these notations we can formulate a theorem which will be useful for characteri-
zations of normality in translation classes by sufficiency. Actually, only partial sufficiency
for invariant indicators is needed.

THEOREM 1.1. If W= {P,|y € R} is a translation class and S: (R", #") — (R, #) is
an equivariant statistic, then the following two statements are equivalent:
(a) For any B € #% there exists a measurable function g: (R, ) — (R, #) with g°S =
Ej(1s), YER;
(b) S™X(#) and B’ are independent (under Py).

We will call a statistic S satisfying (a) (¢ranslation) invariantly sufficient.

Proor. First let S be invariantly sufficient. Fix B € % 5and choose g according to (a).
On account of the equivariance of S and of the invariance of B we get, for £ € R and y €

R,

PO(Bn{S<t})=PY(Bn{S<t+y})=f 1 dP,
. {S<t+y}
@
=J’ goSdP.',=J’ g(S+v) dP,.
{S<t+y}

(S<t)
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Applying (i) for y = S(y), y € R", and integrating both sides w.r.t. Po, we obtain by Fubini’s
Theorem

PyBN{S<t}) =Py(B)-P{S<t}, tER.

Since B € #%was chosen arbitrarily, the independence of S™(#) and %% is established.
Now suppose S™'(#) and # % are independent under P,. Then it is readily verified that
S~Y(#) and & %are independent under P,, y € R. Therefore, for any B € % 7it follows that

ES(15) = P,(B) = P(B), YER,

which proves the theorem. 0

REMARK 1.2. The implication (a) = (b) of Theorem 1.1 is related to Theorem 2 in
Basu (1955) where it is shown that S™}(#) and #% are independent if S is boundedly
complete and sufficient. But, the above implication (a) = (b) is not covered by Basu’s
result. Firstly, in general an equivariant (invariantly) sufficient statistic need not be
boundedly complete. E.g., the statistic S = Idr in Example 3.7 in Lehmann and Scheffé
(1950) is equivariant and sufficient, but not boundedly complete. Secondly, while evidently
any sufficient statistic is invariantly sufficient, the converse does not hold. For, it is readily
verified that for n = 2, any maximal invariant statistic is invariantly sufficient, but not
sufficient.

The results stated below show that under the corresponding assumptions an invariantly
sufficient linear statistic which is not invariant turns out to be complete and sufficient.

In the sequel, X;: R — R denotes the jth projection, 1 < j < n. Further, we define Y
=Xe—-Xy, -, X, —Xj) forn=2.

As a first consequence of Theorem 1.1 we get the following.

THEOREM 1.3. Let W= {P,|y € R} be a n-dimensional translation class with n = 2.
(a) If S € £*(Py) is invariantly sufficient and equivariant, then the statistic §S=8-
Eo(S) is the Pitman estimator for v, i.e. the minimum mean squared error estimator
for y among all equivariant estimators.
(b) There exists essentially (i.e. up to Py-equivalence and up to an additive constant) at
most one invariantly sufficient and equivariant statistic in £*(Po).

ProOF. Since S € #%(Py) is equivariant, it is well known that the Pitman estimator
for y is given by S =8 — E{(S). Now, S is invariantly sufficient and Y~ B = BY;
hence Theorem 1.1 yields the independence of S and Y and therefore E;(S) — Eo(S)
which proves claim (d). The second statement is an immediate consequence of the
uniqueness of the Pitman estimator. 0

In this paper our interest will focus on linear statistics Y7-1 ¢;X;. First we are concerned
with necessary and sufficient conditions for (the existence of) sufficient linear statistics.
For X3, « - , X, being i.i.d. in Bartfai (1980) and Eberl (1983) respectively, see also Eberl
and Moeschhn (1982), 2.3.14 and 2.3.15, it was shown that the sample mean X is sufficient
iff Xy, - - - , X, have a (possibly degenerate) normal distribution. Theorem 1.4 represents a
generalization of this result.

THEOREM 14. Let W= {P,|y € R} be a translation class with n = 2 such that
Xy, -+ -, X, are independent (under Po). Then the following two statements are equivalent:
(a) There exists an invariantly sufficient statistic U = },}-1 ¢;X; with ¢; # 0,1 = J=n,

and ¢c=Y"-1¢#0;
(b) either the distributions of X;, 1 < j < n, are all point masses or they all are normal
distributions.

If (a) and therefore (b) are valid, then the complete sufficient statistic U=1/é) 31 &X;
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with

C; =

{ 1 for Vo(X;) =0, 1<j=<n,

1/Vo(X)) for Vo(X;) >0, 1<j=<n,

and ¢ = Yj-1 €; is the essentially unique invariantly sufficient equivariant statistic in
PUPy).

Proor. First,let U be a statistic according to (a). We assume without loss of generality
that ¢ = 1 and that the distribution of X; is degenerate if there is any X; with a degenerate
distribution. Due to Theorem 1.1, the statistics U and V = (¢; — 1) X1 + Y-z ¢;X; are
independent (under Py). Therefore, it follows by the Darmois-Skitovich Theorem that all
distributions of X;, 1 <j < n, are normal, possibly degenerate. If the distribution of X is
degenerate, then the independence of U and V implies the same for the distribution of
Y %=2 ¢;Xj, which implies that all distributions of X;, 1 =j < n, are degenerate. Considering
for the converse first the degenerate case, and assuming Po{X; = ¢} = 1 with¢, € R, 1 <
J = n, we will establish the sufficiency of the statistic

1
== (X - &)

which in turn implies the same for 7 = X. Fix any B € 4" and consider g = 1¢.v)z(B))
withZ=(X:—-4&, -+ ,Xs,— &) and h: R — R" given by h(y) = (¥, --+, ), ¥ € R. Then,
writing§+ y= (&1 + v, .-+, &+ 7), for D € B and y € R it follows that

@ J'V'(m Iz dPy = 15§+ v)-lv o) (€ + v)

(ii) JV_,(D) gdP,=g({+v)-lvmy( +v).

It is readily verified that ¢ + y € B holds iff £ + y € (ko V)™ (Z(B)). Thus (i) and (ii)
together with (ko V)™M(Z(B)) € V"1(#) imply g = E(15), y € R. Since B € #" was chosen
arbitrarily, this proves the sufficiency of V and of U = X for the case under consideration.
The completeness of T being easily shown, the degenerate case is accomplished.

The sufficiency and completeness of [J in the normal case being well known and the
assertion concerning the uniqueness being implied by Theorem 1.3 (b), the theorem is
proved. O

REMARK 1.5. If in Theorem 1.4 the invariant sufficiency is replaced by sufficiency,
then the condition ¢ 7 0 is superfluous. (But it is not otherwise; see Remark 1.2.)

REMARK 1.6., In Theorem 1.4 the condition ¢; # 0, 1 =j < n, cannot be dropped, in
general. In fact, if e.g. the distribution of X; under P, is degenerate, then one can show by
arguments similar to the corresponding ones in the proof of Theorem 1.4 that X; is
sufficient, irrespective of the distributions of X, +++, X, under P,.

On the other hand, if the degenerate case is excluded in advance and the invariant
sufficiency is replaced by sufficiency, then the condition ¢; # 0, 1 <j < n, is unnecessary.
More precisely: If S = Y1 ¢;X; is sufficient and if there exists at least one jo with ¢;, = 0,
then the distributions of all X; with ¢; # 0 are degenerate. Firstly, it follows along the same
lines as in the proof of Theorem 1.4 that all these distributions are normal or all degenerate.
Therefore the distributions of S are normal or degenerate. If they are normal, they
obviously obey the overlapping property (i.e., for any y;, y» € R and any B € # with
P35 (B) = 1it follows that P5(B) > 0). Assuming without loss of generality that ¢; = 0, in
this case by a theorem of Basu (see Basu, 1958, page 226) the distributions Pi‘* turn out to
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be independent of y. Thus, the distributions of S are degenerate, which proves the above
claim.

REMARK 1.7. The only translation classes (with the assumptions encountered in
Theorem 1.4) which at the same time are one-parameter exponential families in some
linear statistic are those for which the marginal distributions are normal. This can be seen
from Theorem 1.4, Remark 1.5 and Remark 1.6.

2. Characterizations of normality. Throughout this section let #'= {P,|y € R}
be a n-dimensional translation class with n = 2, A = (a;x) a regular n X n matrix and let Z=
(Zy, +++, Z,) be given by Z = XA with X = (X;, ---, X,) such that Z;, ..., Z, are
independent (under Po), Eo(Zx) = 0 and 0 < 6% = Eo(Z%) < o, 1 < k < n. (The assumption
Ey(Z:) = 0 is made only for convenience.) In the given linear framework there will be
derived characterizations of the normality of X by properties of the minimum variance
unbiased linear estimator of y. First, in an elementary, preliminary lemma this estimator
is stated. We use the notations A™ = (a}) for the inverse of A = (az), and a; =
Z';=1 app, 1<k=n.

LEmMA 2.1. The statistic
O=c'U=c" 356X,
with :
¢ =Y%h=10k’apnar and c =Y 5-1 ¢; # 0,

is the minimum variance unbiased linear estimator for vy.

The proof can be accomplished by showing 7 to be uncorrelated with any invariant linear

statistic and is omitted.
The first characterization in the framework under consideration now represents an

extension of Theorem 1.4.

THEOREM 2.2. If the condition
(2.3) ar#0, 1=sk=<n,

is fulfilled, then the following three statements are equivalent: (a) There exists one (and
only one, due to Theorem 1.2) (invariantly) sufficient unbiased linear statistic; (b) the
statistic ﬁgiven in Lemma 2.1 is sufficient; (¢) X = (X3, - .- , X,,) is (n-variate) normally
distributed.

ProorF. Theorem 1.3 and Lemma 2.1 yield the validity of (a) = (b); the implication
(c) = (b) is verified by elementary computations (linear transformation of the density of
Z) which are omitted. To verify the remaining conclusion (b) = (c) we first note that A’
can have no row with all elements equal. (Actually, if we have a}}, = a;, 1 < k < n, for some
fixed j € {1, -- -, n}, then necessarily a; # 0 holds; due to (2.3) and to §x = Y 7m=1 @ JnGme
= ajaz 1 <k =< n, this leads to a contradiction.) Since X = ZA™, the statistic U given in
Lemma 2.1 may be rewritten as

U= ZZ=1 Zka,k/(!/%.

Now we fix ko € {1, - - , n}, choose i,j € {1, - - - , n} such that a%; # a} ; and consider the
invariant statistic

Uo = Xj — Xi = Yi-1 Zi(akj — aki).
Then U and U, are independent, by Theorem 1.1. Since the coefficients of Z in the linear
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statistics U and U, do not vanish, the Darmois-Skitovich Theorem yields the normality of
Zy,. This proves the normality of Zy, .-+ , Z, and of X = Xy, .-+, X).0

The following lemma will be the main tool for the characterizations given below.

LEmMMA 24. Letn = 3. If (2.3) holds and if
EY(U)=0 Psae.
with U given in Lemma 2.1, then X is normally distributed.
PROOF. Let f; denote the characteristic function of Z,, and let g, = fi/fr = (d/dt)log f,
1 =k =< n. Further, let ¥ denote the characteristic function of P, and put ¢ = log ¥. (All

these functions are well defined in some neighbourhood of the origin.) From the linear
connection between X and Z we infer that

¥ty -+, t) = Eo{exp(i ¥J-1 X))} = [[i-1 fi 51 aky).

Therefore
ay/ot, = alog ¥/at, = Yi1 at,g:(Xi<1 tiak), 1<=v=<n,
and
n a\l/ n n -2 . n * n *
v=1Cy at = Zv=1 m=1 Om QymQ.m Zk=l QAry 8k (2/=1 tjak_])

= Yi-1 &(Xh-1 tak))ar/ok.

Thus Lemma 7.8.2 in Kagan, Linnik and Rao (1973) yields
. a. e on
(i) Y a—fgk@;:l takt)=0 if Y' . t;=0
k

for all (¢, +++, t,) in some neighbourhood of (0, .-, 0). Substituting s, = Y% taf, 1<
k=n,wehavet,=Yi_i siap, 1 <j=<n,and Y} &, = Y1 Y51 s = Y 7—1 sraz; hence
(i) implies
n Ak : n
Zk=l 7gk(sk) =0 if Zk=l srar =10
k
for all (sy, « -+, s,) in some neighbourhood of (0, - - -, 0). Putting s, = —(1/a,) Y=} swax
yields
.. _ an 1,
(ii) ZZ=% “ 8rlsr) = - gn<— —_— Zk:% ska.k)
Un a.n
for all (si, ---, $,—1) in some neighbourhood of 0, -+, 0). Due to (23) and n = 3
differentiation of both sides of (ii) w.r.t. sz leads to

gs)=vmER, 1=k=n,

for all s € R in some neighbourhood of 0. Because g; = f}/f:, this implies f, = exp{Q:},
where @ is a polynomial of degree at most 2, 1 < 2 < n. By Marcinkiewicz’s Theorem (see
Marcinkiewicz, 1938, or Kagan, Linnik and Rao, 1973, Lemma 1.4.2) this yields the
normality of Z;, ..., Z, and that of X. 0

Next we give a characterization by admissibility.

THEOREM 2.5. If n = 3 and if (2.3) holds, then the statistic U given in Lemma 2.1 is
admissible (under squared error loss) among all unbiased estimators for v iff X is
normally distributed.
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ProoF. For normally distributed Zi, . .., Z, the unbiased statistic U is sufficient and
complete and therefore the minimum variance unbiased estimator for y. Thus, Uis
admissible in this case. To prove the only if part, let U be admissible. Since the Pitman
estimator for y is given by U — E{(T), the admissibility of 7 together with the uniqueness
of the Pitman estimator implies E¢ ({7) = 0. Hence, the claim follows from Lemma 2.4. 0

Obviously, Theorem 2.5 retains its validity “U is admissible” being replaced by “U is
the minimum variance unbiased estimator for y.” The following theorem extends the
characterization of the normality of X by U being the minimum variance unbiased
estimator to a corresponding characterization for polynomials of UJ.

THEOREM 2.6. Suppose that n = 3, condition (2.3) is fulfilled and X; € £**(P,), 1 <
Jj=n, for some k € N. Further let Q(s) = Y% _ gns™, s € R, be a polynomial of degree k
(i.e. g #0) and let £: R — R be given by

£(y) = E(Q°T) =Fh-odmy™, YER,

where the coefficients dn may be (explicitly) determined by evaluating E(Q° U). Then
Qo U.is the minimum variance unbiased estimator for £(y) iff X is normally distributed.

For A = I, (I, the n X n identity matrix) Theorem 2.6 corresponds with Theorem 7.6.1
of Kagan, Linnik and Rao (1973), and since the proof of Theorem 2.6 follows the same
pattern (by showing E{(U) = 0 Py-a.e. and using Lemma 2.4 now), it is omitted.

In Kagan, Linnik and Rao (1973) there are given further characterizations of normality
in translation classes referring to the case A = I,, which apparently can be carried over to
regular matrices A fulfilling (2.3).

REMARK 2.7. We consider processes fundamental to time series analysis and which
are not covered by the ordinary independent case. Without going into details, we briefly
indicate a condition under which the above results can be applied to characterize the
normality for the processes under consideration.

It is well known (see e.g. Fuller, 1976) that for X being a finite autoregressive process of
order p, a moving average process of order ¢ or a (p, ¢)-ARMA a relation XA = Z holds
with A and Z satisfying all conditions encountered at the beginning of this section. The
entries of A are given by

di-, for0=j—i=p,
- |

0 otherwise,

where 1=p=n—1,d; € Rfor 0 < k =< p and do # 0. Thus, the assumption (2.3) required
for the above results is fulfilled iff

Yhodi#0, 1<j=<p.

Acknowledgment. The author is indebted to the referee for helpful remarks which
clarified some points of the paper.
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