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Random variables, X, - - -, X, are said to be negatively associated (NA)
if for every pair of disjoint subsets A;, Az of {1, 2, ---, k}, Cov[ (X1, i € Ay),
8(X;,j € Az)] = 0, for all nondecreasing functions f, g. The basic properties of
negative association are derived. Especially useful is the property that non-
decreasing functions of mutually exclusive subsets of NA random variables
are NA. This property is shown not to hold for several other types of negative
dependence recently proposed.

One consequence is the inequality P(X, < x,, i =11, ---, k) < HfP(X, =
x,) for NA random variables X, - --, X, and the dual inequality resulting
from reversing the inequalities inside the square brackets. In another appli-
cation it is shown that negatively correlated normal random variables are NA.
Other NA distributions are the (a) multinomial, (b) convolution of unlike
multinomials, (c) multivariate hypergeometric, (d) Dirichlet, and (e) Dirichlet
compound multinomial. Negative association is shown to arise in situations
where the probability measure is permutation invariant. Applications of this
are considered for sampling without replacement as well as for certain multiple
ranking and selection procedures. In a somewhat striking example, NA and
positive association representing quite strong opposing types of dependence,
are shown to exist side by side in models of categorical data analysis.

1. Introduction and summary. The concept of (positively) associated random
variables was introduced into the statistical literature by Esary, Proschan, and Walkup
(1967). Since then a great many papers have been written on the subject and its extensions,
and numerous multivariate inequalities have been obtained. In this paper we introduce
the notion of negatively associated (NA) random variables, derive basic theoretical
properties, and develop applications in multivariate statistical analysis. The theory and
application of NA are not simply the duals of the theory and application of positive
association, but differ in important respects.

Actually, NA is but one qualitative version of negative dependence among random
variables. Other versions are treated in Block, Savits, and Shaked (1982), Ebrahimi and
Ghosh (1981), Jogdeo and Patil (1975), and Karlin and Rinott (1980). (See Section 2 for
definitions of certain types of negative dependence.)

Negative association has one distinct advantage over the other known types of negative
dependence. Increasing functions of disjoint sets of NA random variables are also NA.
This type of closure property does not hold for the three other types of negative dependence
described in Section 2. ,

In Section 2 we define NA and develop its basic properties. We define other types of
negative dependence, such as negative upper (lower) orthant dependence, reverse regular
of order two (RR:) in pairs, conditionally decreasing in sequence (CDS), and negatively
dependent in sequence (NDS), introduced by other statisticians working in negative
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dependence. We prove that among these types of negative dependence, only the NA class
enjoys the important property of being closed under formation of increasing functions of
disjoint sets of random variables, as mentioned above.

A very useful theorem is proved in Section 2 which gives simple sufficient conditions
for the conditional joint distribution of X;, .., X, given the sum Y%, X;, to be NA
(Theorem 2.8).

We show that permutation distributions (Definition 2.10) are NA. The applications of
this result yield NA for the ranks of a random sample as well as for the values of
observations obtained by a random sample when sampling is done without replacement
from a finite population of values. These and the following applications are given in Section
3.

An aesthetically appealing result states very simply that negatively correlated normal
random variables are NA., The somewhat surprising fact that (positive) association and
NA may co-exist in the same model is illustrated by contingency tables. Under the
assumption of independence, it is shown that with marginal tota]s fixed, the cell frequencies
with no pair from the same row or column exhibit positive association.

We point out that a number of well known multivariate distributions possess the NA
property, such as (a) multinomial, (b) convolution of unlike multinomials, (c) multivariate
hypergeometric, (d) Dirichlet, and (e) Dirichlet compound multinomial. Not only does this
strengthen the negative dependence properties observed by the previous authors, but also,
via closure properties, this makes their proofs almost a triviality.

In the sequel, the following two well known results about covariance will be used.

Let (X, Y) be a pair of real random variables and Z be a real or vector valued random
variable. Then

(1.1) Cov(X, Y) = E{Cov(X, Y|Z)} + Cov{E(X|Z), E(Y|Z)}.

The following inequality is known as T’chebycheff’s inequality. Let X be a real random
variable. For every pair of increasing functions f, g

(1.2) Cov{f(X), g(X)} = 0.

For fand g discordant functions, the inequality is reversed. (T'wo functions are discordant
if one is increasing, the other decreasing.)

Throughout, we use increasing in place of nondecreasing, decreasing in place of nonin-
creasing, positive in place of nonnegative, and negative in place of nonpositive.

2. Theoretical results.

DEFINITION 2.1. Random variables X;, Xs, - - -, X}, are said to be negatively associated
(NA) if for every pair of disjoint subsets A;, A; of {1,2, - .-, k},
(2.1) ' Cov{fi(Xi, i € A1), (X;,J E A2)} =0
whenever f; and f; are increasing. “NA” may also refer to the vector X = (X, -+, Xz) or

to the underlying distribution of X. Additionally, “NA” may denote negative association.
Clearly (2.1) holds if both f; and f, are decreasing. Also, without loss of generality, we
may assume that A; U A, = {1, 2, ..., k}.
Some basic properties of NA follow.

DEerFINITION 2.2. (Lehmann, 1966). Random variables X and Y are negative quad-
rant dependent (NQD) if for every real x, y,

(2.2) PX=x,Y=y)=sPX=x)P(Y=y).
ProOPERTY P;. For a pair of random variables, NQD is equivalent to NA.

This follows immediately from Definitions 2.1 and 2.2.
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PROPERTY P;. Let A;, --., A, be disjoint subsets of {1, .-+, £} and fi, f2, + -+, f be
increasing positive functions. Then Xj, - .-, X;, NA implies

(2.3) ET[Z X, j € Ai) < [[R1 Efi(X), j € A)).
This follows from the repeated application of Definition 2.1.

DEFINITION 2.3. The random variables X, .-, X, are said to be negatively upper
orthant dependent (NUOD) if for all real xi, - - -, xz,

(2.4) P(Xi>x,-, i= 1, “-,k)SH,k:l P(X,->xi),
and negatively lower orthant dependent (NLOD) if
(2.5) PXisx,i=1, .-, k) <[[LPX: = x).

Random variables Xj, - - -, X, are said to be negatively orthant dependent (NOD) if they
are both NUOD and NLOD.

PROPERTY Ps. An immediate consequence of Property P, is that for A;, A, disjoint
subsets of {1,2, ---, k}, and x1, .- -, x;, real,

(2.6) PX;=x;,i=1,---, k)= PXi=x,i € A)PX; < x;,] € A2),
and
2.7) PX;>x,i=1,:.--,k) = PX;>x;,i € A;)P(X; > xj, ] € Ap).

In particular, X, ..., X, are NOD. The following three properties are obvious from the
definitions.

PrROPERTY P4. A subset of two or more NA random variables is NA.
PROPERTY P;. A set of independent random variables is NA.

PrROPERTY Ps. Increasing functions defined on disjoint subsets of a set of NA random
variables are NA. ’

PrROPERTY P;. The union of independent sets of NA random variables is NA.

Proor. Let X, Y be independent vectors, each NA. We shall show that the vector (X,
Y) is NA. Let (X, X,) and (Y1, Yz) denote arbitrary partitions of X and Y respectively.
Let f and g be arbitrary increasing functions. Note that E{f(X:, Y:)|Y:} is a Y
measurable function, so that

(2.8) E{fXi, Y1)| Y1, Y2} = E{f(Xy, Y1) | Y1}

almost surely. A similar result holds for E{g(Xz, Y:)|Y2}. Denote these conditional
expectations by 4,(Y1) and A2 (Y:) respectively, and note that A, A are increasing. Thus

E{fX1, Y1)g(Xz, Yz)} = E[E{f(X1, Y1)g(Xz, Y32) |Y1, Y:}]
= E{h(Y1)h2(Y2)} < E{h: (Y1)} E {h2(Y2)}
=E{fXi, Y1)}E{g(Xz, Y2)},

where the first inequality follows from the fact that (X;, X;) is independent of (Y, Y2)
and hence NA is preserved under conditioning. The second inequality holds since (Y, Y2)
isNA.O
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REMARK 2.4. Properties Ps and P; broaden the scope of application of NA considerably.
For example, to verify NA for distributions that arise as convolutions of relatively simple
distributions, we need only verify NA for the simple distributions. We shall give examples
in Section 3.

REMARK 2.5. Neither NUOD nor NLOD implies NA. We present an example in which
X = (X, X2, X3, X4) possesses NOD, but does not possess NA.

Let X; be a binary random variable such that P(X; = 1) = .5 for i = 1, 2, 3, 4. Let
(X1, X2) and (X3, X,) have the same bivariate distributions, and let (X;, X», X3, X;) have
joint distribution as shown in Table 1.

TABLE 1
(X1, Xa)
(0, 0) 0, 1) (1, 0) 11 marginal
(0, 0) 0577 .0623 0623 . 0577 24
(X3, X4) 0,1) .0623 0677 0677 .0623 .26
(1,0) .0623 0677 0677 .0623 .26
(1, 1) 0577 .0623 .0623 .0577 24
marginal 24 .26 26 24

It can be verified that all the NLOD and all the NUOD conditions hold (with strict
inequalities in some cases). However,

PX;=1,:i=1238,4)>PXi=X,=1)P(Xs =X, = 1),

violating NA.
In some applications negative dependence is created when the random variables are
subjected to conditioning, as in the following theorem.

THEOREM 2.6. Let X1, ---, X, be independent and suppose that the conditional
expectation E{f(Xi, i € A)|Yiea Xi} is increasing in Y.ca X;, for every increasing
function f and every proper subset A of {1, 2, - .., k}. Then the conditional distribution
of Xi, -+, X, given ¥, X;, is NA almost surely.

Proor. Let A;, A; be an arbitrary proper partition of {1, 2, - .-, k}. Let S1 = Yiea, X;,
Sy = Y jea, Xj, S =81 + 8, and fi, f: be a pair of increasing functions. Using (1.1), where
the conditioning vector is taken as (S;, Sz), it follows that

Cov{fi(Xi, i € A1), f2(X;, ] € Az2) IS} = COV{E(fl|Sl, Sz), E(f2|SIy S2)|S}-

With S = S; + S;, the two terms inside the brackets on the right side are discordant
functions of S; and hence by (1.2) the covariance is negative. (I

Theorem 2.7 takes on added interest when considered in conjunction with the following
theorem.

THEOREM 2.7 (Efron, 1965). Let X, - - -, X be k independent random variables with
PF: (log concave) densities, let S = Y%, X;, and let ¢(x1, -+ -, x) be increasing in each
argument. Then

E{¢pXi, +++, Xi) | Sk = s}

is increasing in (almost every) s.

As a consequence of Theorems 2.6 and 2.7, we immediately obtain:
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THEOREM 2.8. LetXi, ---, X, be k independent random variables with PF, densities.
Then the joint conditional distribution of X1, - - -, X, given ¥, X, is NA (a.s.).

REMARK 2.9. The above theorem when specialized to independent identically distrib-
uted random variables generates a conditional distribution which is permutation invariant.
Let us denote these conditioned random variables by Y, ..., Y,; then according to
Diaconis and Freedman (1980) these are called “finitely exchangeable.” The above authors
studied the approximation of the distributions of finitely exchangeable sequences by a
distribution of a finite piece embedded in an (infinite) exchangeable sequence. In particular,
they show that for a finitely exchangeable sequence of length n, the “variation distance”
between the distribution of a subset of %2 random variables and the approximating
distribution of £ random variables chosen from an (infinite) exchangeable sequence, can
be bounded by a (universal) constant times ./n. It is well known that the random variables
from an exchangeable sequence possess positive correlations and hence exhibit positive
dependence. In view of Theorem 2.8, at least for the upper or lower orthants, the
independent random variables lie in the middle of finitely exchangeable but negatively
associated random variables and exchangeable random variables with positive dependence.
Thus approximation by independent random variables seems to be suitable. This is verified
by Diaconis and Freedman (1980) in Theorem 4 where random sampling without replace-
ment is considered. We comment on this example in Section 3.

NA also arises naturally via permutation distributions described below.

DEFINITION 2.10. Let x = (xy, ---, x) be a set of k real numbers. A permutation
distribution is the joint distribution of the vector X = (X, - - -, X:) which takes as values
all k! expermutations of x with equal probabilities, each being 1/k!, where k& > 1.

THEOREM 2.11. A permutation distribution is NA.

Proor. For £ = 2, the assertion is easily verified. Thus assume that it is true for
k — 1. Let X, X; be an arbitrary partition of X, a vector of 2 components. Let f; and f; be
increasing functions. We want to show that

COV{ﬂ(X]), f2(X2)} =0.

Without loss of generality, we may assume that f; and f, are permutation invariant.
Further, suppose that x; is one of the minimum values of x;, i = 1, 2, - - -, k. Let I be the
random variable indicating which component of X assumes the value x;. Thus I takes
values 1, 2, .- ., k with equal probabilities. Now

(2.9) Cov{fi(X1), 2(X2)} = E{Cov(f, 2| I)} + Cov{E(fi|]), E(£:|])}.

The first term on the right side of (2.9) is negative by the induction hypothesis. Further,
due to the permutation invariance of fi, E{fi(X) |} takes only two values. It is smaller
when I corresponds to one of the indices of X, than when I does not. Thus E{ f,(X;) | I}
and E{ fo(X;) | I} are discordant functions of a binary random variable and hence by (1.2)
their covariance is negative. This shows that the second term on the right side (2.9) is also
negative. []

Finally, in this section, we want to compare some other concepts of negative dependence
developed by Karlin and Rinott (1980) and modified by Block, et al (1982).

Let u be a probability measure on the Borel sets in R*. For intervals I, ---, I, in R,
define a set function a(ly, .-, I) = u(I; X --- X I,); for convenience, write i instead of
g For intervals I, J in R', write I < J if x € I, y € J implies x < y.

DEFINITION 2.12. (a) Let u be a probability measure on R.. We say that u is reverse
regular of order two (RR;) if

(2.10) ply, B)p, I3) = p(ly, I)p(I, 1)
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TABLE 2
The Joint Density g of (Y1, Y2)
Y,

0 1 2
0 f(0, 3,0) + £(3,0,0) 0 f(1,2,0) +f(2,1,0)
1 f(0,2,1) +f(2,0,1) f(1,1,1) 0
2 f(0,1,2) +f(1,0,2) 0 0
3 f(0,0,3) 0 0

for all intervals I, < I, I, < I+ in R,

(b) Let u be a probability measure on R*(k = 2). We say that u is RR; in I;, I; when
(2.10) holds for this pair with the remaining variables held fixed, for all 1 <i <j =< k. We
also say that the random variables X;, - - -, X; (or the random vector X or its distribution
function F) is RR; in pairs if its corresponding probability measure on R* is.

DEFINITION 2.13. The random variables X, - - -, X}, are said to be: (a) conditionally
decreasing in sequence (CDS) iffori=1,2, ...,k — 1,

[Xi+1| X1 = &1, - -+, Xi = x:] is decreasing stochastically in x1, - - -, x;,

(b) negatively dependent in sequence (NDS) if fori=1, <.., k, [Xi, - -+, Xi1 | Xi = xj] is
decreasing stochastically in x;.

THEOREM 2.14. (Block, et al, 1982). Let Xo, X1, -+, Xi be independent random
variables and let each have a PF. density or probability function. Then for fixed s, the
conditional random variables (X1, - -+, X3 | Xo + X1 + - -+ + X, = x) are RR; in pairs and
consequently CDS and NOD.

We next show that Property Ps enjoyed by the NA class is not enjoyed by the classes
of RR; in pairs, NDS, or CDS.

Resurt 2.15. Neither RR; in pairs, CDS, nor NDS are closed under the formation of
increasing functions of disjoint sets, while NA is.

Let X = (X1, X;, X3) be a random vector with a trivariate multinomial frequency
function f having strictly positive cell probabilities p;, ps, ps, and satisfying X; + Xz + X;
= 3. Consider the induced random vector Y = (Y1, Y3), where Y; = X1X; and Y, = X;.
Denote the frequency of (Y1, Yz) by g. We now show that although fis RR; in pairs, CDS
and NDS, g is neither RR;, CDS, nor NDS.

The multinomial is shown to be RR; in pairs in Block, et al (1982) and Karlin and
Rinott (1980). The former authors show also that the multinomial is CDS and NDS. Thus
the multinomial f above has all three negative dependence properties.

To see that the induced g is not RR;, we obtain the joint density g of (Y:, Y2) as shown
in Table 2.
It follows that

’gw,m g0, 1|,

£(1,0) g(1,1)

so that g cannot be RR,.
To verify that (Y1, Y2) is not CDS, we note that:

P(Y:>0|Y1=0=1-P(Y,=0|Y:=0)<1,
while

P(Y;>0|Y1=1)=1-P(Y.=0|Y:1=1)=1
Thus Y is not CDS.
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For a bivariate vector, CDS and NDS are the same. It follows that Y is not NDS. Using
Theorem 2.8, we conclude that X is NA. It follows by Property P that Y is also NA. The
powerful closure property possessed by NA but not by RR; in pairs, CDS, or NDS gives
NA a great advantage over the other three classes of negative dependence.

REMARK 2.16. NA does not imply RR; in pairs, CDS, or NDS. This assertion may be
verified directly from the preceding example. Specifically, Y in that example is NA, but is
not RRz, CDS, or NDS.

3. Applications.

3.1. Standard multivariate distributions possessing the NA property. In the papers
listed earlier, a number of well known multivariate distributions are shown to possess the
NOD properties, i.e., they satisfy inequalities (2.4) and (2.5). In some cases stronger
properties are shown such as RR; in pairs, NDS, etc., which imply NOD. Specifically,
distributions shown to enjoy the NOD properties are (a) Multinomial, (b) Convolution of
unlike multinomials, (¢) Multivariate hypergeometric, (d) Dirichlet, (e) Dirichlet com-
pound multinomial, (f) Multinormals having certain covariance matrices.

We illustrate the ease with which NA can be established by considering (a) and (c).

(a) Let Z = (Z,, ---, Z;) be a vector having a multinomial distribution, obtained by
taking only one observation. Thus only one Z; is 1 while the rest are zero. The NA property
for Z trivially follows from Definition 2.1. Since the general multinomial is the convolution
of independent copies of Z, the closure property (P¢) establishes NA in this case.

An alternative way to derive the multinomial is to condition independent Poisson
random variables by fixing their sum. By Theorem 2.8, we see that the multinomial is NA.

(c) An urn contains N balls, each having a different color. Suppose a random sample of
n balls is chosen (without replacement) and X;, i = 1, ..., N, be random variables
indicating the presence of a ball of the ith color in the sample. Clearly, the random
variables X;, i = 1, ..., N, possess a permutation distribution and hence are NA. More
generally, suppose N; balls are of the ith color,i =1, - .-, &, with Y%, N; = N, and let Y;
be the number of balls of the ith color in the sample. Then Y; can be viewed as the sum
of N; indicators in the simple model above, where the ith color is obtained by pooling N;
colors. Since the Y; are sums over nonoverlapping sets of random variables, by Property
Ps the NA property is transmitted.

3.2. Further applications of permutation distributions.

(a) Random sampling without replacement. The multivariate hypergeometric dis-
cussed above is a special case of the following model. Suppose a finite population consists
of N values: x1, -+, xn. Let Xi, ..., X, represent the sample values obtained by ran-
dom sampling without replacement. Then Xi, .- -, X, may be considered as a subset of
Xy, - -+, Xn, which has a permutation distribution and hence, by Property P, is NA. In
most textbooks-the fact that Cov(X;, X;) =< 0 is pointed out. However, NA is a much
stronger property.

(b) Joint distribution of ranks. Let Xi, - - -, X; be a random sample from a population.
Let R; be the rank of X;, i = 1, ---, k. Then clearly (R:, .-+, R:) has a permutation
distribution and hence is NA.

Next we present two applications discussed by Lehmann (1966) in the framework of the
bivariate case. We prove that the relevant vectors are NA, a fact which can be used for
multiple decision rules.

(c) Selection procedures based on multiple rankings. Suppose m judges indepen-
dently rank » individuals. Let R be the rank received by the ith individual from the kth
judge, and R; = Y%-1 Ri. Under the assumption that there is no preference among the
individuals, Lehmann (1966) proves negative quadrant dependence for a pair (R;, R;).

Note that for % fixed, the vector (R, :--, Ru) is NA. Further, (Ry, -, Ru), -+ -,
(Rim, + -+, Rnum) are mutually independent, implying that (Ri, -- -, R,) is NA. Thus the
Lehmann result is strengthened and extended to the multivariate case.
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Suppose now that several “good” candidates are to be selected. The criterion of
goodness is set by requiring that the rank R; be at least as large as a constant c(m, n). For
this procedure, the probability of selecting 2 undesirable candidates is similar to the
probability of an error of the first kind. If the least favorable distribution kappens to
correspond to the case of no preference among the candidates (that this may not always
correspond to the least favorable distribution was shown by Rizvi and Woodworth, 1970),
then NA provides an upper bound for the above probability:

(3.1) P{R;i=cim,n);i=1, ..., k} =Yk P(R; = c(m, n)}.
Usually, computing the upper bound on the right is much easier than computing the exact
probability on the left.

The following is another variant where a selection rule similar to the rule above is used.
Suppose the candidates are grouped according to regions of residence. The aim is to select
at most one candidate from every region subject to the goodness requirement. Suppose
there are p regions and let R = max R;, where the maximum is taken over the jth region.

Then it follows that (R, ..., R‘”) is NA and again we have:
P{R(j) = c(m, n)p)).] = 1) b ')p} = H;‘;l P{R(j) = c(m, n)p)})
a bound which is easier to compute.

3.3. Moment inequalities. Property P, can be utilized to derive moment inequalities.
Suppose Y3, ---, Y, are NA positive random variables, ¢; = 0,i =1, ..., m, with m < k.
Then

Masaz- - -am = Barfbaz *** Homs
where floay...an = E(YT1Y$2 ... Y5r) and p,, = E(Y?). In particular,
E(Y\Y: .-, Yn) =[[E E(Y)).

In the above inequalities, Y, - .., Y,, could be replaced by any other subset of m chosen
from Yy, -+, Y;.

3.4. Negatively correlated normal random variables are NA. We use the same
approach as in the proof that positively correlated normal random variables are associated,
given by Joag-Dev, Perlman, and Pitt (1982). The present case is actually simpler since
the functions utilized are defined on disjoint sets.

Proor. Let X, ---, X, be jointly normally distributed random variables with covari-
ance matrix Z. By a lemma of Slepian (1962), it follows that
i)
3.2) FP{XI = a1(Xs), Xo = a2(X3), Xs € A} = 0,
12

where X; = (X3, X4, - - -, X3), @1, @z are defined on R*"2, A is an arbitrary measurable set
in R*7% and o; is the element in the ith row and jth column of 3. From (3.2) it follows that
if fi(x1, X3) and g1 (x2, X;) are increasing in x; and x; respectively, then

(3.3) E{fi(X,X5)81(Xz,X5)} 1 in ou.

Suppose now that f and g are increasing in each argument and A;, A, are disjoint
subsets of {1, ---, k}. Then

(3.4) E{f(x:, i € A1)g(x:, i € A2)} 1 in g,

for every pair (J1, j2) such that j; € A;, and j. € A;. From (3.4), it follows that if g,;,<0
for every pair (i, j2), then

E{fX;,i€A))gX;,i€ A;)} = EfX;,i € A)Eg(X;, i € A,).

The desired result is now proven. 0.
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TABLE 3
A, A e A, Totals
B, Xu X2 e Xir n
B, Xo Xoo oo Xor ng
By, Xn P oo Xer nr
Totals T, T, e T, n=yn,

3.5. Dependence among the cell frequencies in categorical data. Suppose an individ-
ual or an item can be classified according to one of the categories A;, i = 1, ---, r,
corresponding to a characteristic A and also classified as By j = 1, - - -, &, corresponding to
characteristic B. The usual categorical analysis is made for the independence between the
two characteristics A and B. To test such a hypothesis, the usual statistical model assumed
is the following. Let ni, - - -, n; be the sizes of independent random samples taken from
subpopulations formed by partitioning the population according to the categories B;,
«++, B;. Let X;; be the cell frequency corresponding to B; and A;, with full data table in
Table 3. Under the hypothesis of independence, the model above implies that the
components in each row have a multinomial distribution, and the random vectors repre-
senting the rows are independent with a common parameter vector (p;, - - -, pz).

In the following we show that positive as well as negative association is manifested
when the marginal totals are fixed. Note that under the hypothesis, the vector of column
totals (T4, - - -, T,) is a sufficient statistic, so that the joint (discrete) distribution of {X;}
given Tj=t¢t,j=1,...,r,is

. . I ¢! I1% ma!
PXj=xyi=1 -, k;j=1,.-4,7) =m!-,
independent of (p:, -« -, px).

We sketch the proof of the following two assertions.

A;: The marginal distributions of row (column) vectors possess negative association.

A;: The marginal distribution of a set of cell frequencies such that no pair of cells is in
the same row or column (for example the set of diagonal cells) possesses (positive)
association. ’

To verify these properties, first consider the special case where all row totals are 1.
Thus the table represents the results of n independent copies of multinomial trials, each
of size 1, and in the previous notation, R =nand n; =1,i =1, ..., n. It is clear that the
conditional marginal distribution of the column vector (X1, Xo1, + + -, Xn1) when the column
totals are fixed at T; = ¢;,i =1, ..., r, is the same as that of the conditional distribution
of n Bernoulli random variables given that the sum is ¢;. However, the Bernoulli random
variable has a distribution ‘which is PF;, so that by Theorem 2.8, the vector is NA.
Similarly, the conditional distribution of a row vector is multinomial with sample size 1
and probability vector (t/n, - .-, t/n).

To verify A,, consider Xi1, Xz, and Xs;. We will show that these satisfy a regression
condition called “stochastically increasing in sequence”, which in this case amounts to
showing that for every c,

(3.5) P(X1; = ¢| X2, Xas)
is increasing in Xz, and in X33 with probability one and showing a similar property for
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Since X, are binary variables, the only nontrivial value of c is 1. It is easy to see that

t t n—1-t
2 PXpp=1|Xs3=0) =—>—. ?,
n—1 n—1Is

P(X22=1|X33=1)= »
n—1

A similar computation establishes (3.5).

Next, to verify these properties for the case where row sums are n;, n,, - - -, nx, observe
that the first row vector can be viewed as the sum of n; rows of the simple model, the
second as the sum of the next n, rows, and so on. NA for the columns follows by the
closure properties. The row vectors have a multinomial distribution and hence are NA.
Positive association for cell frequencies from distinct rows and columns follows by an
argument similar to that for the simple case.
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