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OPTIMAL INCOMPLETE BLOCK DESIGNS FOR COMPARING
TREATMENTS WITH A CONTROL'

By DIBYEN MaJuMDAR? AND WiLLiAM 1. Notz®

University of Illinois at Chicago Center and Purdue University

The problem of finding optimal incomplete block designs for comparing
p test treatments with a control is studied. B.I.B. designs are found to be D-
optimal. A- and E-optimal designs are also obtained. For a large class of
functions ¢, conditions for a design to be ¢-optimal are found. Most of the
optimal designs are certain types of B.T.LB. designs, introduced by Bechhofer
and Tamhane (1981), which are binary in test treatments.

1. Introduction. Consider an experimental situation where it is desired to compare
p = 2 test treatments to a control treatment. Let the p +_ 1 treatments be indexed 0, 1,
-+ +, p with 0 denoting the control treatment and 1, 2, - - -, p denoting the test treatments.
It is desired to compare simultaneously the p test treatments to the control. For improving
the precision of the comparisons the experimental units are to be blocked in & blocks each
of size k, 2 < k < p. We are then in an incomplete block design setting.

Let Y denote the observation on treatment {(0 < i < p) in block j(1 < j =< b) in plot
h(1 = h < k). We assume the usual additive linear mode! without interactions, namely

(L1 Yin=p+ ai + B + en,

where the &;;, are assumed to be uncorrelated random variables with mean 0 and common
variance o2 The p control-treatment contrasts ao — «; are to be estimated by their BLUE’s
& — (1 =i = p). It is desired to choose an experimental design (an allocation of
treatments to blocks) which will yield the best, in some sense, set of estimates among all
possible designs.

For given values of b, k, and p let C(d, k, p) denote the class of all possible incomplete
block designs with b blocks, each of size k(p = k& = 2), p test treatments indexed 1, - - -, p,
and a control treatment indexed 0. For a design d € C(b, k, p) let r;j(dy denote the number
of replications of treatment (0 < i < p) in block j(1 = j < b). Also let r;(d) = Z}Ll ri(d)
and Ai(d) = Y1 ry(d)r.(d) (0 =i # ¢ =< p). Notice r;(d) represents the number of
replications of treatments in the entire design d and A;(d) represents the number of times
treatments i and ¢ are paired together in a block summed over all blocks.

For d € C(b, k, p), let M(d) denote the information matrix corresponding to estimating
all @) — a;, 1 =i <p, as in Bechhofer and Tamhane (1981). M(d) is a nonnegative definite
p X p matrix and is nonsingular if and only if all the ap — «; are estimable, in which case
it is proportional to the inverse of the covariance matrix of ap — &;, 1 < i <p.

We now make our goal of finding a design d € C(b, k, p) which gives us the best, in
some sense, set of BLUE’s 4y — &;(1 < ¢=< p) more explicit. Following the work of Kiefer
(see, for example, Kiefer, 1958, 1959, 1971, and 1974) we seek a d € C(b, &, p) which
minimizes ¢(M(d)) for some function ¢ over C(b, &, p). Such a design will be called ¢-
optimal. Restricting to non-singular designs, some common examples of ¢ are ¢o(M(d)) =
det M'(d) (so called D-optimality), ¢:(M(d)) = tr M~(d) (so called A-optimality), and
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¢M"'(d)) = maximum eigenvalue of M~'(d) (so called E-optimality). In the present
context of control-treatment comparisons, A-optimality has an appealing statistical inter-
pretation, viz. it minimizes Y,%.; Var(ao — a:) over all designs. We are, however, yet to
realize natural statistical interpretations for the other criteria.

Traditionally, Kiefer and other researchers were interested in an orthonormal basis of
treatment contrasts. In other words, the aim was to determine good designs for estimating
Pa where a is the vector of all the p + 1 treatment effects and P is a p X (p + 1) matrix
of zero row sums and orthonormal rows. Nothing much seems to be known for the situation
when the contrasts are not mutually orthogonal. In this paper we look at one such
situation, that of control-treatment comparison.

Let »;(d), 1 <i <p, be the positive eigenvalues of the well known “C-matrix” of normal
equations for a, for a design d in p + 1 treatments in b blocks of % plots each. Let Pa be
any vector of p independent treatment contrasts, and V(Pa(d)) be the covariance matrix
of the BLUE’s of Pa. Then it can be shown that

det V(Pa(d)) = det(PP’)(#1(d) -+ vp¢d))™".

This can be established by starting from a spectral decomposition of the C-matrix for the
design d, or by proving a result like equation (A.2) of Bechhofer and Tamhane (1981).
Since a B.LB. design, if it exists, is D-optimal in the traditional sense of estimating
orthonormal contrasts, we have the following theorem.

THEOREM 1.1. A B.LB. design, if it exists, is D-optimal for estimating any set of p
independent treatment contrasts.

It has come to our notice that this result has been known for some time by Hedayat
(1974) and Kiefer; the result follows easily from Section 3 of Kiefer (1958). Observe that
the D-optimality criterion ignores the particular interests of the experimenter expressed
through the matrix P.

From the work of Kiefer and others on optimal incomplete block designs for estimating
an orthonormal basis of treatment contrasts, it is known that the B.I.B. design is optimal,
not only according to the D-criterion, but under a very large class of optimality criteria as
well (see Kiefer, 1958, 1959, 1971, 1974 and 1975). Such results might lead us to expect that
in our setting an optimal design d in C(b, &, p) would be symmetric (in some sense) and
binary in the test treatments 1, - .., p (but not in the control). Since the control plays a
special role in our setting, we might also expect that the number of replications of the
control (more specifically the ry(d)) will be an important factor in determining what
design d is optimal. These expectations are indeed found to be the case as will be seen in
the results of Section 2.

The proper sense of symmetry in a design d € C(b, &, p) turns out to be that all A;.(d)
are equal for 1 <i# /=<pand all Ao.(d) for 1 = £ =< p are equal (but not necessarily to the
Ai(d) for 1 = ¢'< p). Such designs are called balanced treatment incomplete block designs
(abbreviated BTIBs) and were first introduced in Bechhofer and Tamhane (1981) in
connection with making joint confidence statements about the contrasts ap — a;, 1 < i <
p. The interested reader is referred to this paper for more information on BTIB designs.
We remark that if a design d € C (b, &, p) is a BTIB design its information matrix M(d) is
completely symmetric (i.e. all off diagonal elements equal and all diagonal elements equal).
Bechhofer and Tamhane (1981) also have a review on available literature for designs for
control-treatment comparisons.

Section 2 of this paper contains results about what designs are ¢-optimal for a fairly
broad class of functions ¢. As an important application we discuss A-optimal designs.

The class of functions considered in Section 2 does not include E-optimality. This is
treated in Section 3, which also includes a result showing that an A-optimal design is
optimal according to another statistically interesting criterion. Section 4 contains some
concluding remarks.
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2. A-optimal designs. We begin this section with a series of lemmas culminating in
a general theorem from which A-optimal designs may be obtained as a special case.

Suppose d € C(b, k, p) is arbitrary. Let ¥ be the set of all p! permutations of the test
treatments 1, - .-, p. Let od, 0 € ¥., be the design resulting from d by the permutation o
of the treatments in d. We define

2.1 M(d) = Y oex Mlod)/p! = ¥ en 7’ M(d)7/p!

where II is the set of all p X p permutation matrices. It is easily seen that when M(d) is
the information matrix of some design then this design is a B.T.L.B. design (Bechhofer and
Tambhane, 1981).

LEMMA 2.1. Ifd € C(b, k, p) then M(d) has eigenvalues pi(d), pz2(d) = « -+ = py(d)
with

p(d) = (T2, Aoi(d)/k}/p = {ro(d) — X1 rtzlj(d)/k}/l?a
pe(d) = [T, ri(d) = BIy Yi-1 () /k = {ro(d) — 331 r&i(d)/R} /p)/ (D = D).
In addition if d is binary in test treatments
pa(d) = [b(k — 1) — {(k — 1)/k}ro(d) — {ro(d) — Xj-1 r§i(d)/k}/p]/(P — D).

Proor. From the appendix of Bechhofer and Tamhane (1981), the entries of M(d) are

me . = ril(d) - 2?—1 r?l,-(d)/k (i1 = i2),
"t =i, (d) /R (&1 # i),

and the sum of the entries in the ith row (or ith column) is Ay (d)/k. Thus it is
straightforward to check that

M(d) = [{T&1 ri(d) — T2, Yo-175(d) /R
(2.2) + Disiinsp Niin/ k(P — 1)}/P1Lp
- {ZISilﬁizﬁp Ail"’z/kl)(}7 - 1)}JP’

where I, is the p X p identity matrix and J, is the p X p matrix all of whose entries are
+1. The first part of the lemma now follows from the well known fact that al, + bJ, has
eigenvalues a with multiplicity p — 1 and a + bp with multiplicity 1. The second part
involves essentially straightforward computations only.

LEMMA 2.2. Suppose ¢ is a convex real-valued possibly infinite function on the set of
all p X p non-negative definite matrices and ¢ is invariant under pern_wtations, le ifw
is a permutation matrix, ¢(='Mn) = ¢(M). Then for d € C(b, k, p), ¢(M(d)) < ¢(M(d)).

Proor. ¢(M(d)) = Zoez »(M(od))/p! sizlce ¢ is permutation invariant. Thus by
convexity ¢(M(d)) = ¢(T,ex M(od)/p!) = ¢(M(d)).

LEMMA 2.3. Suppose ¢ is some real-valued possibly infinite function on the set of all
non-negative definite p X p matrices with the property that if M and N are non-negative
definite p X p matrices with eigenvalues 1 < ps < - < and N <1 < --. <y,
respectively which satisfy y; = vifori =1, -+., p then $(M) < ¢(N). Let d € C(b, k, p) be
a design which is not binary in test treatments. Then there exists d* € C(b, k, p) which
is binary in test treatments with ro(d*) = ro(d) and which satisfies ¢(M(d*)) < ¢(M(d)).

ProoF. In each block of M(d), replace any duplicates of test treatments by test
treatments not in the block so that each block is binary in test treatments (this is possible
since & =< p). Call the resulting design d *. Notice d* is binary in test treatments, has r;(d *)



OPTIMAL INCOMPLETE BLOCK DESIGNS 261

=ro(d) for all 1 <j =< b, and has Y2, ri(d*) = Y2, ri(d). As a result it is easy to see that
D Y- ry(d*) = 38, X- ri(d).
From Lemma 2.1 it then follows that the eigenvalues of M(d) and M(d*) satisfy p:(d)
= m(d*) and po(d) = -+ = pp(d) < po(d*) = .-+ = u,(d*). Hence by the property of ¢
given in the statement of the lemma, ¢(M(d*)) < ¢(M(d)).

LEMMA 24. Among all non-negative integers roi, roz, - - -, Fos Satisfying S irg=r,
where r is a fixed constant, the value of ¥!- r¥; is minimized by choosing r — b[r/b] of
the ro; to have value [r/b] + 1 and the remaining b(1 + [r/b]) — r of the ro; to have value
[r/b]. Here [ -] denotes the greatest integer function.

ProoF. This is Lemma 2.3 of Cheng and Wu (1980).

LEMMA 2.5. Suppose ¢ is as in Lemma 2.3. Suppose d € C(b, k, p) is binary in test
treatments and has ro(d) > bk/2. Then there exifts d* € C(b, k, p) which is binary in test
treatments, has ro(d*) < bk/2, and satisfies ¢(M(d*)) < ¢(M(d)).

Proor. Take d* to be the design where in each block of d we replace all test
treatments by the control and all of the original replications of the control by differing test
treatments not originally in the block. Notice

23)  ro(d*) = e roy(d*) = Yioy {k — roi(d)} = bk — ro(d) < bk/2 < ro(d),
(2.4) ro(d*) — Y51 r3i(d*)/k = ro(d) — X 3-1 réi(d) /k.

From (2.4) it follows that if u:(d), pe(d) = - - - =pp(d) and p:(d*), pe(d*) = « -+ = p,(d*)
are the eigenvalues of M(d) and M(d*), respectively, as given in Lemma 2.1, then p(d)
= pa(d*). Also from (2.3), (2.4), and Lemma 2.1, p2(d) < p2(d*). By the property of ¢ given
in the lemma, it follows that ¢ (M(d*)) < ¢(M(d)).

THEOREM 2.1. Suppose ¢ is a real-valued possibly infinite function on the set of all
P X p non-negative definite matrices satisfying
oM) =X, f(w)

where p; < pz < -+ <, are the eigenvalues of M, f is a real valued possibly infinite
function on the set of all non-negative numbers which is continuous on the set of all
positive numbers, has f < 0 and f” > 0 (here primes denote differentiation). Suppose
there is a § € C(b, k, p) such that M(8) is completely symmetric and

(i) & is binary in test treatments,

(i) ro(8) is the value of the integer r, 0 < r < [bk/2], which minimizes

@5) &(r; b,k p)=[((r—h(r; b)/k)/p)

+ (p — Df((b(k — 1) = ((k — 1)/k)r — (r — h(r; b)/k)/p)/ (P — 1)),
where
(2.6) h(r; b) = (b(1 + [r/b]) — N[r/b + (r — b[r/b])([r/b] + 1)%,

(iii) the ro;i(8) have value either [ro(8)/b] or [ro(8)/b] + 1. Then 8 is ¢p-optimal over
C(b, &, p).

Proor. First we notice ¢ and f have the following properties.
(a) ¢ is convex and orthogonal invariant (i.e. if = is an orthogonal matrix then ¢ (7’Mn) =

(M),
(b) Pofu) <SP fw) if m=w forall 1=i<p,
(C) lf u15”2=...=up’ V15V2="'=Vp, ”121}1’

and if Y2, p =Xl v, then XI,f(w)=XE, ().
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Property (a) follows from the fact that /' > 0. Property (b) follows from the fact that f’ <
0. Property (c) follows from the fact that ¢ regarded as a function of (ui, - - -, up)’ is Schur
convex.

Now suppose 8 is as given in the theorem. Let d € C(b, k, p) be any design which is
binary in the test treatments. By (a) and Lemma 2.2, ¢$(M(d)) = ¢(M(d)). If ro(d)
> bk/2, by Lemma 2.5 there exists d* € C(b, k, p) with ro(d*) < bk/2 and ¢(M(d*)) <
¢(M(d)). Replace d by d*. If ro(d) < bk/2 let d* = d. Notice by Lemma 2.1 that M(d*)
has eigenvalues

m(d*) = {ro(d*) — X2ey r3(d*)/R}/p
(d*) = [b(k — 1) = {(k — 1)/k}ro(d*) — {ro(d*) — Y%= r3(d*)/E} /p)/(p — 1),
2=i=p.

Using the facts 2 = 2, ro(d*) = bk/2, and some calculus, one can prove that,
pa(d*) = bk/4p = max(ro — Y21 ri/R) ip = pa(d*),

where the maximum is over all real numbers ro, ro1, « - -, rojsuch that 5o =0, r; = 0,1 <j
< b, and Y% ro; = ro < bk/2. Thus the eigenvalues pi(d*), pz2(d*), - - -, pp(d*) of M(d*)
satisfy pi(d*) < pe(d*) = «- - = pp(d™).
Next notice that
o(M(d*)) = f(ma(d*N+ (p — Df(u2(d*)) = f({ro(d*)

= X5-1r8 (d*)/kY/p).+ (p — Df({b(k — 1)
— ((k = 1)/R)ro(d*) — (ro(d*)
= X5-1r8(d*)/k) [P}/ (P — 1)).
For a fixed value of ro(d*) < bk/2 we have
pi(d*) + (p — Dpa(d*) = (k. — 1){b — ro(d*)/k} = constant

2.7)

and the largest possible value of
p(d*) = {ro(d*) — E?=1 r%j(d* )/ R}/p

occurs when b(1 + [ro(d*)/b]) — ro(d*) of the ro{d*) are [ro(d*)/b] and ro(d*) —
b[ro(d*)/b] of the roj(d*) are [ro(d*)/b] + 1 by Lemma 2.4. This choice of the ro;(d*)
maximizes u;(d*) for fixed ro(d*) and hence by property (c) of ¢ minimizes o(M(d*)). If
we then select a value of ro(d*) < bk/2 (with the optimal choice of the ry;(d*)) which
minimizes the R.H.S. of (2.7), we see that this is precisely the value of ro(8) and the ro;(3)
stated in the theorem. We thus conclude § is a design minimizing ¢(#(d*)) among all d*
which are binary in test treatments and have ro(d*) = bk/2. Since M(d) is completely
symmetric, M(8) = M(8) and we see using Lemma 2.2 that ¢(M(3)) < ¢(M(d)) = $(M(d))
(d is the design, binary in test treatments, we chose arbitrarily) we conclude 8 is ¢-optimal
among all d which are binary in test treatments. Property (b) of ¢ and Lemma 2.3 then
give us that § is ¢p-optimal among all designs.
Theorem 2.1 is useful for finding optimal designs for many ¢ such as

&(M) = =2, In p:(D-optimality) and ¢(M) = Y2_, 1/p:(A-optimality).

It is not directly applicable to the problem of finding E-optimal designs, i.e. the design §
€ C(b, k, p) which minimizes the maximum eigenvalue of M ~1(8).

As mentioned in the introduction, A-optimal designs are statistically very meaningful.
So we now examine such designs in some detail. A design d € C(b, k, p) is A-optimal if it
minimizes tr M~'(d) over C(b, k, p). In the notation of Theorem 2.1 this means ¢ (M (d))
= tr M~'(d) and f(u) = 1/p. Equations (2.5) and (2.6) then become

g(r; b, k, p) = p/{r — (h(r; b)/R)}

(2.8)
+(p—172/{blk = 1) — r(k — 1)/k — (r — h(r; b)/k)p}
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TABLE 1

10
14
30
30
30
30
30

SO A WA W
[

O UL g, ™
e e e e e Q)

with
(2.9) h(r; b) = [r/b]%(d + b[r/b] — r) + (r — b[r/b])([r/b] + 1)

The following result is a consequence of Theorem 2.1.

THEOREM 2.2. Suppose R is the value of the integer r, 0 < r < [bk/2], which
minimizes g(r; b, k, p) as given in (2.8). Also suppose 8§ € C(b, k, p) is a B.T.L.B. design
such that (i) 8 is binary in test treatments, (ii) ro(8) = R, (iii) ro;(8) = [R/b] or [R/b] + 1
for 1 =j<p. Then § is A-optimal over C(b, k, p).

The integer r which minimizes g(r; b, k, p) can easily be found using a computer. As an
example, r = 18 minimizes g(r; 24, 3, 9) and the following B.T.1.B. design is therefore A-

optimal.
000000000000000000112345
1111222233344566772634538
345845785796968989976879

Here columns correspond to blocks and the numbers are the treatment labels.

Having determined the integer R, the next step is to investigate whether a B.T.L.B.
design satisfying conditions (i)-(iii) above exists or not. Writing ¢ = [R/b] and a = R — bq,
an A-optimal design looks like

dy
d= ,
<d(z>

where d(;) consists of g plots in each of b blocks and d) the rest of the 2 — g plots in the
blocks. d(;) consists entirely of the control, while d) is binary in all p + 1 treatments with
the control appearing a times. The A-optimal design shown above gives an example of d
= d since here ¢ = 0.

If a = 0, then d(;) has to be a B.I.B. design in the p test treatments. Table 1 gives some
examples of A-optimal designs having this structure.

Let us denote by d, a design in C(b, %, p) which is a B..B. in the %2 — g plots of b blocks
in the p test treatments, augmented by the control in each of the remaining g plots of b
blocks. Designs of this type have been mentioned briefly by Cox (1958, page 238); Pesek
(1974) has looked at d;. Neither of them have considered these as optimal designs. The
interested reader may find their efforts put in perspective in Bechhofer and Tamhane
(1981). We shall now show that for many gq, d, cannot be a very bad design: it is at least
A-better than a B.I.B. design in all p + 1 treatments.

A B.I.B. design is a binary B.T.I.B. design with ro(d) = bk/(p + 1). Moreover, for any
B.T.I.B. design, tr M(d) ™" = g(ro(d); b, k, p). Hence we look at the sign of the function,

&1(q) = g(qb; b, k, p) — g(bk/(p + 1); b, k, p)
=p/{r — (bg*)/k} + (p — 1)’/[b(k — 1) — r(k — 1)/k — {r — (bq®)/k}/p]
- 2p°/{b(k — 1)},
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with ¢ allowed to be positive integers only. If one allows g to be any real number, then it
is easy to see that the polynomial equation

g8(q) =0

has no roots in the interval [1, (2 — 1)/2] of q. Moreover g:(1) <0 and g:((2 — 1)/2) <0,
but g1(£/2) > 0. Thus in particular g:(q) <0,q9 =1, 2, .., [(k — 1)/2]. We summarize this
in the following theorem.

THEOREM 2.3. Design d, is A-better than a B.LB. design in all p + 1 treatments for
allq=1,2, ..., [(k - 1)/2], whenever they exist.

REMARK. Recently Constantine (1981) has also obtained some results on A-optimal
designs in a subclass of all block designs.

3. E-optimal designs. We now determine E-optimal designs.

THEOREM 3.1. If there exists § € C(b, k, p) such that (i) every block contains exactly
k/2 replications of the control, if k is even, or either [k/2] or [k/2] + 1 replications of the
control if k is odd, and (ii) Ao1(8) = Ao2(8) = - - - Agp(8), then & is E-optimal over C(b, k, p).

Proor. We first show that Ao;(8)/% is the minimum eigenvalue of M(5). To see this,
notice that the sum of the entries in the ith row of M(8) is Ao:(8)/k. Since Ao1(8) = Aoi(d)
for all , all the row sums of M(8) are Ao (8)/k. It therefore follows that the p X 1 vector
1,1, ..., 1) is an eigenvector of M(8) with eigenvalue Ao (8)/%.

To verify that Ao:(8)/% is the smallest eigenvalue of M(3), let e be any eigenvector of
M(8) other than (1, ..., 1)’. Without loss of generality we may assume the largest
coordinate in absolute value of e is +1. Suppose +1 is the ith coordinate of e. Let A denote
the eigenvalue of M(8) corresponding to the eigenvector e. Let e; denote the jth coordinate
of e and m;;(8) the i, jth entry of M(8). The ith coordinate of M(8)e is

21 my(d)e; = eimis(8) + Xy, jureymy(8) = muu(®) + Xy jus my(3)
= Y2 my(8) = Aoi(8)/k = Aor(8) /.

The inequalities above follow from the fact that e; = +1, | ¢;| = 1 for all j, and m;;(8) =0
for i # j. Since Ae = M(8)e and the ith coordinate Ae is Ae; = A, we have A = A\¢1(8)/%.
Since e was an arbitrary eigenvector, and hence A was an arbitrary eigenvalue, we
conclude that Ag;(8) /% is the minimum eigenvalue of M(5).
Notice

Aor(8)/k = Y2 Aor(8)/(kp) = {ro(d) — Z?=1 r%j(S)/k}/p.

By a proof similar to that used in Lemma 2.4 one can show that among all integers ro1, 7oz,
-+ -, rop such that 0 < ry; < &, the value of ro — Y21 r;/k (ro = Y41 r;) is maximized by
choosing all ro; = k/2 if k is even or roj = [k/2] or [k/2] + 1,j =1, - - -, b, if k is odd. Since
these are precisely the values of the ry;(8) we conclude

min eigenvalue of M(8) = {ro(8) — X% r%(8)/k} /p
= (ro(d) — X1 73(d)/R} /p
for all d € C(b, &, p). For any d € C(b, k, p)
min eigenvalue of M (d) = miny,-; ¥’M(d)u = (1,1, --., 1)M(d)(1,1, ---,1)'/p
= Y2 Y51 mii(d)/p = Y51 Ai(d) /Ep

=< min eigenvalue of M (3),

(3.1)
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where we have used (3.1) and the facts that Y 7-1 m;;i(d) = Ao;(d) /&, Y5=1 Aai(d) /k = ro(d)
- (1/k) T rE(d).

We conclude that § has the largest minimum eigenvalue among all d € C(b, &, p) and
hence it follows that § is E-optimal over C(b, &, p). O

The first of the following designs is E-optimal when b = k£ = p = 3, the next two are
both E-optimal when b = k& = p = 4 and the last is E-optimal when b=% =5, p = 6.

000O00O0
0000 00 00O
000 00000
0000 00 00
11 2 14000
1 2 3 4 1 2 3 4
233 1 2 3 4 2 3 41 25135
3 6 2 46

The first two are B.T.I.B. designs; in fact the first one is A-optimal also.

Even though E-optimality is an effective way of minimizing a norm of M (d) ', in the
present context it does not seem to possess a very natural statistical meaning. If one
favours a minimax style approach then possibly one way is to minimize the maximum
variance of (4, — &;), the maximum being over 1 < i < p, minimum over all d € C(d, &, p).
In other words, one considers the criterion ¢(M (d)) = maximum diagonal entry of M ~'(d).
Since ¢ is convex and permutation invariant, Lemma 2.2 says that (M (d)) < ¢(M(d)) for
any d € C(b, k, p). Furthermore, since M (d) is completely symmetric, it is easily verified
that ¢(M (d)) = tr M (d) ' /p. From these two observations, it follows that if 8 € C (b, %, p)
is as in Theorem 2.2 then it is ¢-optimal as well as A-optimal. This lends additional
significance to the A-optimal designs.

A class of criteria that are sometimes considered in optimal design investigations (see
Kiefer, 1974) are the ¢, criteria, 0 < ¢ < o, where

O (M(d)) = X1 pi?

and p; < .-+ = p, are the eigenvalues of M (d). D-optimality and E-optimality are limiting
cases of these criteria in the sense that

limg_o {¢pg (M (d))/p}"? = {det M~'(d)}"? and
lim,_... {¢, (M (d))/p}/? = max eigenvalue of M~'(d).

In particular, ¢o and ¢ are sometimes used to denote the D-optimality and E-optimality
criteria, respectively. Also notice that ¢ is just the A-optimality criterion.

An examination of our above results for D-, A-, and E-optimality (or for ¢o, ¢1, and
¢w) indicates that the number of replications of the control in an optimal design is smallest
for D-optimality, second smallest for A-optimality, and largest for E-optimality. This
suggests that the number of replications of the control in a B.T.I.B. design which is ¢,-
optimal is increasing as g increases. Since ¢,, 0 < g < =, satisfies the conditions of Theorem
2.1, it is possible (although somewhat tedious) to verify that this is indeed the case. From
this it follows that if d € C(b, k, p) is a B.T.LB. design which is binary in test treatments
with [b2/(p + 1)] < ro(d) < b[%/2], then d is ¢p,-optimal for some 0 < g < oo.

4. Concluding remarks. In this paper we have established optimality properties of
some B.T.IB. designs. It is hoped that this will provide added incentive for the study of
these designs, particularly their construction. Observe also the dependence of optimal
designs on the optimality criterion used. This is different from the usual incomplete block
design setting where orthonormal treatment contrasts are of interest.
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