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APPLYING WALD’S VARIANCE COMPONENT TEST"

By Justus F. SEELY AND YAHIA EL-BASSIOUNI

Oregon State University and Cairo University

In this note a generalization of a variance component test that was first
suggested by Wald is examined. Necessary and sufficient conditions are given
for the test to be applicable in a mixed linear model. A uniqueness property
of the test in terms of degrees of freedom is also obtained.

1. Introduction. For a regression model where a subset of the regression parameters
are independent and normally distributed with mean zero and variance %, Wald (1947)
showed how to place a confidence interval on the ratio of 6% to the error variance o via
the F-distribution. His confidence interval also provided a means to test the null hypothesis
that ¢% is zero. Since Wald’s paper, several authors have used modifications of Wald’s idea
to test variance components in particular mixed linear models. Spjgtvoll (1968), however,
shows by means of an example that this is not possible with all mixed linear models. The
present note is an attempt to indicate the conditions under which the Wald test can be
applied, and to present the test in such a way that modification of Wald’s idea is not
necessary to generate the test statistic.

In the sequel we obtain the Wald test via reduction sums of squares. This circumvents
the necessity of transforming to independent variates and/or modifying Wald’s method as
discussed by Spjgtvoll (1968). We also give necessary and sufficient conditions under which
the Wald test can be used in mixed linear models. These conditions are given in terms of
matrix ranks and do not require the matrices involved to have any particular structure.
One drawback of the conditions, however, is that they are dependent on using o as the
common scale factor for the two quadratic forms that make up the F-ratio. Lastly, we give
a uniqueness property of the Wald test that allows one to immediately determine whether
or not a proposed variance component test in a mixed linear model is the Wald test.

Some notation used throughout is R(A) and r(A) for the range and rank of a matrix A.
The notation .«/* denotes the orthogonal complement of the set </, and N,(u, 2) denotes
the s-dimensional normal distribution with mean p and covariance matrix 2. Other notation
will be introduced as needed.

2. Wald’s test. Consider the mixed linear model
2.1) Y=Xr+Bb+e

where 7 is a p X 1 vector of unknown constants, b ~ N,(0, 63I), e ~ N, (0, 02I), b and e are
independent, and X, B are known matrices. Wald showed how to construct a confidence
interval for p = g% /0 which provides a method for testing

Hz:03=0 vs Kgp:6:>0.

In Wald’s original paper it was implicitly assumed that the partitioned matrix (X, B) was
of full column rank. After examining Wald’s development, it can be seen that his test
statistic for Hp is identical with the test statistic for the test of “no b-effects” when b is a
vector of fixed effects. Viewing Wald’s test in this manner, it is straightforward to relax the
full rank assumption as follows: Pretend momentarily that b is a fixed effect. Let R denote
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the residual sum of squares and let R (b| ) be the sum of squares for b adjusted for =.
Under the assumptions of model (2.1), it is easy to verify that R/o% ~ x%, where f=n —
r(X, B) and that R and R(b|n) are independent. Furthermore, under Hj it is easy to
verify that R (b|7)/o® ~ x% where k = r (X, B) — r(X). Thus, Wald’s procedure leads to
testing Hp via an F-ratio.

REMARK 2.2. Wald’s original paper, and subsequent papers, have mainly concentrated
on a confidence interval for p as opposed to testing Hg. The assumed full column rank of
(X, B) is not necessary to form such an interval. To see this let L and F be matrices whose
columns form orthonormal bases for R (X, B) N R(X)* and R (X, B)* respectively. Set U
=L'Yand Z=F'Y. Then U ~ N;(0, 6° + 63G) where G = L’BB’L, Z ~ N;(0, o*I), and
U and Z are independent. It follows that @(p) = £ fU'(I + pG) 'U/Z'Z has an F-
distribution with % and f degrees of freedom. Because G can be taken as a diagonal matrix
(transform L’Y via an orthogonal matrix that diagonalizes L’'BB’L), it is easy to see that
Q (o) is a decreasing function of p. Let ¥(-) denote the cdf of the F-distribution with % and
f degrees of freedom. Then a 1 — a confidence interval [p,; p*] can be formed for p by
solving @ (p,) = x2 and @ (p*) = x; where Y(x1) = a; and Y (x2) = 1 —ap wWith a = a; + a3.
As a referee pointed out, the upper bound p* can be negative which is contrary to the
model assumptions. This happens when @ (0), which is Wald’s test statistic, is smaller than
x1. (Q(0) is Wald’s test statistic because U'U = R(b|7) and Z'Z = R.) From Okamoto’s
(1960) corollary it can be shown that

Prob{@(0) < x1|p} < ¢ (x1/m,) forall p=0,

where m, is the harmonic mean of (1 + gip), -+, (1 + gxp) when G is expressed in the
diagonal form G = diag(gi, -- -, &). Thus, the probability that p* is negative is at most
a; and goes to zero as p gets large. To avoid the possibility of negative endpoints, one can
use an adjusted interval suggested by Thompson (1955b). The adjusted interval is [max(0,
04), max(0, p*)] which has confidence level 1 — a for p >0 and 1 — a; for p = 0.0

3. Main results. From the previous section it is clear that the Wald test is applicable
to model (2.1) whenever % and f are both nonzero. For special cases of the model, the test
has been derived by several authors including Thompson (1955a, 1955b), Spjgtvoll (1967),
and Portnoy (1973). As illustrated by Spjstvoll (1968) and Thomsen (1975), it is also
possible to apply Wald’s test in some models where there are more than two sources of
variation.

Because the Wald test can sometimes be applied to more general mixed models than
allowed by (2.1), we consider here the mixed linear model

3.1) Y=Xr+Bb+Cc+e

where X, =, B, b, and e are defined as in model (2.1). We assume that interest is still in
testing Hp vs Kz. We further assume that C is an n X s known matrix and that c is a
random vector independent of b and e whose distribution is N; (0, I'). Here I' is an unknown
covariance matrix ranging over a subset, say ¥; of non-negative definite matrices. The form
of ¥'= {I'} can be selected arbitrarily. For example: I' = ¢% I with ¢% = 0; or I' = diag(%,

., 0%, 6%z, -+, 04s) with 6%, 048 = 0; or even I" completely unknown. We do, however,
assume that there is at least one I' € ¥that is a positive definite (p.d.) matrix.

Let us try to extend the development of Wald’s test as presented in Section 2.
Momentarily assume b and c are fixed effects. Let R denote the residual sum of squares
and let R(b| =, c¢) denote the sum of squares for b adjusted for = and c. Under the
assumptions of model (3.1), the following facts can be established:

(a) R/e® ~ xi» wheref=n—r(X, B, C),

3.2) (b) R(b]|m, c)/a® ~ x%w for all distributions under H
: where 2 =r(X, B, C) — r(X, C),

(c) R and R(b|m, ¢) are independent.
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Thus, if f and & are both nonzero, then Hp can be tested via an F-ratio. We shall refer to
this F-test as the Wald test.

PROPOSITION 3.3 Let Q. = Y'H,Y where H, is any real symmetric matrix. If Q. / o~
X3 for all distributions (3.1), then v < f. Moreover, if v = f, then Q. = R.

ProoF. Because 2 = Cov(Y) is p.d., we can conclude from Theorem 9.2.1 in Rao and
Mitra (1971) that 0 2H,=H, = H,. This equality must hold for all 6> > 0, all 6% = 0, and
all T' € ¥, This means H, is idempotent; H.BB’H, = 0 which implies B’H, = 0; and
H,CT'C’H, = 0 which implies I'C’H, = 0. Because there is at least one I' € ¥"that is p.d.
(by assumption), it must be true that C’H, = 0. The same theorem in Rao and Mitra also
implies v = ¢ %tr(ZH,) and ¢ 27’A’H.An = 0. Using the properties of H. already estab-
lished, we get v = r(H,) and (because = is arbitrary) A’H, = 0. Hence H. is an orthogonal
projection operator satisfying R (H.) C #'= R(X, B, C)*. This implies v < fand if v = f
that R(H,) = A 'so that Q. = R.0

PROPOSITION 3.4. Let Q, = Y'H,Y where H,, is any real symmetric matrix. Assume
Qs/0” ~ X%, for all distributions under Hp. The following conclusions can be drawn: (a)
If k =0, then Q/0> ~ X% for all distributions (3.1). (b) If @ and R are independent,
then u < k. (c) If Q, and R are independent and if u = k, then @, = R(b|m, c).

PrROOF. Applying the same ideas as in the proof of Proposition 3.3, we find that H,
must be an orthogonal projection operator satisfying R(H,) C R(X, C)*. For part (a),
notice that £ = 0 implies R (B) C R(X, C), from which it follows that the distribution of
Qs does not depend on b. For parts (b) and (c) first note that independence implies
(@b + R) /6% ~ x}+p) for all distributions under Hp. As in the proof of Proposition 3.3, this
implies (z + f) < ¢ = dim[R (X, C)*] and that @, + R = [R(b| =, c) + R]whenu +f=gq.
Both (b) and (c) now follow after noting that ¢ = f+ k.0

There are several conclusions concerning the Wald test for Hp that can now be drawn:

(a) R and R(b]|m, c) are the unique quadratic forms satisfying all three conditions
in (3.2);

(b) there exists a nonzero quadratic from Q. satisfying @./0” ~ x{, for all distri-
(3.5) butions (3.1) if and only if f> 0;

(c) there exists a nonzero quadratic form @, satisfying @,/a* ~ x % for distributions
under Hp and Q,/¢ is stochastically larger than x%, for all distributions under
Kp if and only if 2 > 0.

The sufficiency part of (3.5¢) is the only portion of these statements that does not follow
directly from Propositions 3.3 and 3.4. And this can be verified from the observations in
Remark 2.2 which hold true for model (3.1) when X and R (b | 7) in the remark are replaced
by (X, C) and R(b| =, c) respectively.

ExaMPLE 3.6. Portnoy (1973) considers a special case of model (2.1) and derives what
he claims is an improved test over the usual test. Using our notation, Portnoy’s model has
B = diag[1l,, -+, 1,] where ni, - - -, n, are integers and 1, is an r X 1 vector of 1’s. His
development is essentially as follows: Set Y; = (B’B)Y/?B’Y and Y. = L’Y where L is a
matrix whose columns form an orthonormal basis for R (B)*. Let S: denote the residual
sum of squares for the model Y, ~ N,_,(Fym, 6°I). Then Sz/0® ~ X’im) where ms = (n — t)
— r(Fy). At this point Portnoy assumes that n; = ... = n, = r. Then Y1 ~ N,(Fym, ¢I)
where ¢ = 62 + ro%. Let S; be the residual sum of squares for the Y; model. Then S:/¢ ~
X’m,) where m; = t — r(F;). Next let A be any p X m matrix whose columns form a basis
for R(F7) N R(F’;) and let § = A’m. (We have introduced 6 instead of »* which Portnoy
used. This avoids his implicit assumption that the »* vector is estimable in both the Y,



200 JUSTUS F. SEELY AND YAHIA EL-BASSIOUNI

and Y, models.) Then using the difference of the least squares estimators for § based on
the Y; and Y; models, Portnoy determines a third sum of squares T such that T/¢® ~ x%n
under Hp (our m is the same as Portnoy’s k). Portnoy states that the usual test is based on
S and S; and suggests his improved test based on (T + S;) and S;. It can be established
that r(F3) = r(X, B) — r(B). Since r(B) = t, it follows that m, = f. Further,

m = dim[R (F"1) N B (F2)] = r(F1) + r(F3) — r(F1, F3) = r(F1) + r(F3) — r(X).

Using this last expression for m and r (Fz) = r(X, B) — ¢, it is easy to check that m; + m,
the degrees of freedom for (S; + T), is equal to k. Hence, (3.5a) implies S;: = R and S; +
T = R(b| m) so that Portnoy’s test is in fact the Wald test. [0

ExaMPLE 3.7. Spjgtvoll (1968) and Thomsen (1975) considered variance component
testing in the completely random model

Yin=p+a:+di+gy+ e

where p is a fixed effect and the remaining terms are random with the usual assumptions.
Write the model in matrix form as Y = Xy + Aa + Dd + Gg + e and suppose i = 1, - - - ,
r,j=1,.--,s,and h=1, ..., n;. Let m denote the number of nonzero n;;. To explicitly
write out ranks, we assume that r(4, D) = r + s — 1. (This connectedness assumption is
trivially satisfied in Spjgtvoll (1968) because m = rs and is implicitly assumed in Thomsen
(1975) because of his (iii) in equation (5.2).) Consider testing H: 6% = 0. In model (3.1) take
B=Gand C= (A, D). It is well known that r(X, A, D, G) =r(G) =m;so f=n — m and
k=m — r — s + 1. Since both f and k agree with the degrees of freedom for the tests
derived by Spjgtvoll and Thomsen, it follows from (3.5a) that their tests are based on
R(g|u, a, d) and R. This fact is actually apparent in Spjgtvoll’s work, but required a
separate proof in Thomsen’s work. [0

ExampLE 3.8. Consider testing Ha: 6% = 0 in Example 3.7. Taking B = A and C = (D,
G), we get f=n — m and k = 0. This means R(a |y, d, g) (= 0) cannot be used to form a
test. However, Wald type tests are derived in both Spjgtvoll (1968) and Thomsen (1975)
under the additional assumption that 6% = 0. In this case Gg does not appear in the model
which means we now have C=Dsothat f=n—r —s+ 1and 2 = r — 1. Thus, H4 can
be tested via the Wald test when ¢% = 0. By comparing degrees of freedom we see that
Spjgtvoll’s test in Section 2.b (no missing cells) is the Wald test, but his test in Section 4
(missing cells) is not the Wald test, nor is the test given by Thomsen the Wald test. O

ExampLE 3.9. For testing H, in Example 3.8 with a Wald test we found that %2 = 0.
This does not say that it is impossible to test H4 via an F-ratio. For example, it is implied
in Thomsen (1975) that this can be done if all of the nonzero n;j are equal (which is a well
known fact when all of the n;; are nonzero and equal). To see this, suppose all of the
nonzero n; are ‘equal to v. Set Y; = L'Y where L’ = (G’G) "2G’. Then

Yi=Xip+Aia+Did+g, g=L'Gg+Le,

where X;, A;, and D, are defined in the obvious manner. Because G'G = vl, it is easy to
check that g1 ~ N, (0, ¢I) where ¢ = 6* + vo%. Because of the covariance structure of g1,
we see that Y, satisfies the assumptions of model (3.1); so, we could attempt to apply a
Wald test through the Y; model. Taking B = A; and C = D;, we now find that f = m —
r(Xi, A1, D1) =m —r—s+1and k =r — 1 (the matrix L’ does not change the rank
properties of X, A and D). Thus R(a |y, d) and R based on the Y; model could be used to
form a Wald test for H4. Actually, even if the nonzero n; are not all equal an F-ratio for
testing H, can still be determined (although probably not recommended). For example, let
v denote the minimum value of the nonzero n;;. Next form an mv X 1 vector Y, composed
of v observations out of each group for which n;; is nonzero. Then proceed as above to form
Y, using the vector Y in place of Y. [



WALD’S VARIANCE COMPONENT TEST 201

Without close examination, it may appear that Example 3.9 and statements (3.5b, c) are
contradictory. Statements (3.5b, c) say that &, f >0 is a necessary and sufficient condition
to form an F-ratio for testing Hp via quadratic forms @./o® and Qs/0%. The common
parameter o2 is crucial in this statement because, as Example 3.9 shows, it may happen
that o2 can be replaced by some function of ¢* and I" (e.g., ¢ in Example 3.9) and still form
an F-ratio to test Hp even when &, f > 0 is not satisfied.
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