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THE GENERALISED PROBLEM OF THE NILE: ROBUST
CONFIDENCE SETS FOR PARAMETRIC FUNCTIONS

BY G. A. BARNARD AND D. A. SPROTT

University of Waterloo

The pivotal model is described and applied to the estimation of parametric
functions ¢(#). This leads to equations of the form H(x; 8) = G{p(x, 6)}.
These can be solved directly or by the use of differential equations. Examples
include various parametric functions ¢ (6, ¢) in a general location-scale distri-
bution f(p), p = (x — 8)/¢ and in two location-scale distributions. The latter
case includes the ratio of the two scale parameters o,/0,, the difference and
ratio of the two location parameters 6, — 6; and the common location § when
0, = 6> = 6. The use of the resulting pivotals to make inferences is discussed
along with their relation to examples of non-uniqueness occurring in the
literature. .

1. Introduction. The “Problem of the Nile” was formulated by Fisher (1936) in the
context of a “likelihood model” for parametric inference. For such a model the inferential
structure is fully specified by three elements {S, @, f}, the sample space S = {x}, the
parameter space £ = {6}, and the probability function f: Sx & — R. The Problem of the
Nile then consisted in finding a “maximal ancillary”, a function a(x) whose probability
distribution does not involve §, maximal in the sense that any other such function a*(x)
is expressible as a function of a(x). The importance of the problem lies in the fact that
inferences about § are then based on the conditional distribution of the observations given
a(x) (Fisher, 1934). The widespread notion that such conditional inferences are inefficient
was shown by Barnard (1976) to be based on a misapprehension.

Difficulties arose, however, concerning the possible absence of maximal ancillaries—see
e.g. Basu (1964). Such difficulties are, however, overcome by the use of more structured
models, such as those of Fraser (1979), the “functional model” of H. Bunke (1975) and O.
Bunke (1976) (see also Dawid and Stone, 1982), and the “pivotal model” of Barnard (1977).
Here we use the pivotal model to present a more constructive formulation of the Nile
Problem, and a generalisation of it.

The notion of a pivotal quantity was introduced by Fisher (1945) as a function p (x, )
of the observations and parameters whose distribution does not involve the unknown
parameters. The pivotal model as described in some detail by Barnard (1977) has five
elements, {S, Q, P, p, D}. The S and € are as with the likelihood model, P is a (measure)
space of values of the function p: Sx@ — P, and D is a set of (completely specified)
densities on P, these densities usually being thought of as close to each other in some
sense, for example all being “approximately standard normal.” The function p is called the
basic pivotal. Adopting a pivotal model for a given experimental situation amounts to
asserting that the function p has a distribution specified by one of the densities in D. It was
shown by Segal (1938) that any likelihood model involving continuous distributions can
(by an extension of the probability integral transformation) be reformulated as a pivotal
model. What is special about Barnard’s pivotal model is that the set of densities D is
supposed to contain at least a small neighbourhood of an exactly specified density, just as
an observation “x”, being known only to finite precision, really denotes a small neighbour-
hood of x. '
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It was shown in Barnard (1977) that the small amount of uncertainty concerning the
exact distribution allowed by the set D is sufficient to ensure that all other pivotals
H(x, §) must be expressible as functions of the basic pivotal p:

oy H(x, 0) = G{p(x,0)}.

Functions of the basic pivotal will have (approximately) known distributions, and the only
quantities having (approximately) known distributions are functions of the basic pivotal.
Thus the situation considered here differs markedly from that considered by Owen (1948).
Owen starts with a likelihood model, with the density functions fsupposed exactly known;
as is natural in such a case, Owen considers f to belong to the exponential family, and in
particular the case of a scalar parameter 4 for which two functions U (x), V(x) are jointly
sufficient. He attempts to find a pair of pivotals p:(U, V, 8) and ps(U, V), uniquely related
to the pivotals derivable from U and V by Segal’s argument, such that p., being constant
on the parameter space, can be used to condition the distribution of p;. His analysis is
somewhat related to ours and, in the case of the normal distribution with 8 a function of
the location and scale parameters, his results parallel some of ours. However, our results
for location and scale place no restrictions on the form of the distributions; and, as not
infrequently happens, this generalisation helps to overcome some of the difficulties met
with in Owen’s treatment. For example, in our case, as shown in Barnard (1977), the
existence and uniqueness of the maximal ancillary can be guaranteed; it is the maximal
solution to the functional equation

2 A(x) = G{p(x,0)}.

We adopt Birnbaum’s Conditionality Principle (C), basing inferences about  on conditional
distributions given the observed value A (x) of A(x); and because the pivotal model fails
to satisfy Birnbaum’s Mathematical Principle (M) (Birnbaum, 1972) we escape the
argument leading to the Likelihood Principle (L) with all the difficulties that L entails.

In our approach, separate inferences about a function ¢(6) are possible iff a suitable
pivotal can be found such that

(3a) H{x,¢(0)} = G{p(x,0)}.

What is required to make such an H “suitable” is discussed below.

If in (3a) we take ¢ to be a trivial function, taking a single constant value, we obtain (2).
We therefore call (3a), and a slightly more general version (3b) to be given later, the
generalised Problem of the Nile. The rest of this paper is devoted to examination of various
situations that can arise in attempting to solve (2) or (3) for a specified ¢(8).

2. Direct method. We illustrate with the case S= {x} =R", Q2= {A} =R", P= {p}
=R" pi=xi—Ai(i=1,2, --+, n), and D any subset of the set of all densities on R". If we

take ¢(A) = A’A, (3) requires
; H(x,M\) = G(x — ).

Thus, given any two pairs (X1, A1), (X2, A2), and setting x; —x;=a+ b, — (A1 +Az) =a
— b, we have

G(X],A]) = G(X] + a,)\l + a) = G(X1 + a, — Al - a)
=Gx;+a+b,—A;1—a+b)=G(x, ),

since H is invariant under A — —A. Thus G must be constant and there is no non-trivial
solution in this case. Other cases of non-existence of non-trivial solutions can be dealt with
similarly, showing that no essential differentiability assumptions need be made. However
the theory of partial differential equations (with or without interpretation in terms of
Schwartzian “distributions”) is a developed body of techniques for such problems and we
now indicate how our problems can be dealt with using this theory.
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3. Use of differential equations. Differentiating (3a) with respect to the compo-
nents of 4 leads to

oH a¢ 3G 9pa
4 — ==y, ===
“) 3¢ 90, e s 96;
If ¢ is not a function of 6;, this is
G dp.
(5a) aa 36; =

Otherwise 3 H/d¢ can be eliminated by division of all such equations by one of them to
give

(5b) Yo (0G/8p.)(8p./361)/(36/801) = Yo (0G/3pa)(3pa/d0:)/ (3] 86;).

These are simultaneous linear equations in G. For a solution of the form G (p) not involving
0, to exist, it is necessary that (5a), or respectively (5b) should not involve 8. The required
“maximal” solution will then correspond to the general solution of the corresponding
complete set of equations associated with (5a) or (5b). If there are & equations in the
complete set, the solution will be an arbitrary function of (n — k) independent functions
of the p’s, and hence will be equivalent to (n — &) independent functions of the p’s. These
can be found by the usual method of auxiliary equations. References may be made to any
standard book on differential equations, e.g. Goursat (1959). It is more convenient to treat
examples separately than to derive general results from (5).

It may be noted that (5a), (5b) make no distinction between (3a) and the more general
form

(3b) H(x, ¢) = G(p, ¢)

where ¢ is allowed to occur explicitly in G. The equations (5a), (5b) follow as well from
(3b) as from (3a). However, if solutions of the form (3b) are allowed, then (5a), (5b) may
be allowed to involve ¢.

The distinction between (3a) and (3b) is sometimes important. We shall see that in
location and scale problems with § = (A, ¢) we can find Gi(p) = (X —)\)\/;L/Sx as
a pivotal for A and G:(p) = s./ ovn as a pivotal for ¢, and (G;, G:) will have an
(approximately) known conditional joint distribution, given the observed value of the
maximal ancillary. In the absence of other knowledge of 6, we can infer the distribution of
G, by taking its marginal distribution, and use this for inferences about A alone. But if G»
were of the form Gy(p, ¢), with o0 unknown, the conditional joint distribution of (Gi, G)
would not be approximately known and the marginalisation step might not be justifiable.
We do not in this paper enter further into these logical considerations.

4. Examples. In the following examples, we take S = {x} = R", 2= (A, 0) = R' X
RY,P={p} =R p,=(x;—AN)/o,i=1,2, ---, n, and D any subset of the set of all
densities on R", sometimes narrowed to a neighbourhood of the standard spherical normal
density on R". Unless otherwise specified, A and o are taken to be unknown.

ExaMPLE 1. Ancillary statistics in location-scale model. Here dp;/dN = —1/o,
ap:/do = —p; /o, so that (5a) is

Y8G/ap; =0, Y p:dG/ap;=0.

This is a complete set of two linear differential equations which are equivalent to the
auxiliary equations

dpi=dp;=-+- =dp,, dpi/pr=dp:/p2= -+ =dp./Dx.

The general solution is equivalent to the (n — 2) independent functions (p; — p1)/(p2 — p1)
= (%, — x1)/(x2 — x1). This is the maximal ancillary in the form used by Fisher (1934). We
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will use the more usual form
a;, = (p; — P)/sp = (x: — X) /s

where n(n — 1)sz = Y (p; — p)% so that Ya; = 0, Ya? = n(n — 1).
We now make 1 — 1 transformations { p} to {¢, z, A} where

t=ﬁ/sp=(x__)\)/sxy Z=Sp=Sx/0, A={a4}.

The basic pivotal p is thus equivalent to {¢, z, A}. Inferences about (A, ¢) will be based on
the conditional distribution f (¢, z| k) of ¢ = (¢, z) given A = k as described above. This
procedure was outlined by Fisher (1934). In particular, the joint conditional distribution of
(¢, z| A = k) yields a complete set of efficient, robust confidence regions for (A, o), efficient
in the sense that no information has been lost through making 1 — 1 transformations and
by conditioning on A, and robust in the sense of being exact confidence intervals for every
distribution in D. Integration with respect to z gives the marginal density of ¢ and so will
give separate inferences for A, and integration with respect to ¢ will similarly give separate
inferences about o.

The above reduction to g = (¢, z) with distribution conditional on A will be assumed in
the following examples; g will be called the reduced pivotal and will replace p in equations

(5a), (5b).

ExAMPLE 2a. Division of a location-scale distribution in a given ratio. The reduced
pivotal as above is ¢ = (¢, 2), :

t=(x—A)/s,z=s8/0,¢ =\ + ko, (k known)
where s = s,. Since 3t/d\ = —1/s, dz/d6 = —s/a>, 9¢/dA = 1 and d¢/da = k, it can be
readily verified that equations (5b) are
(8G/at)(=1/s) = (3G/dz)(— s/a”)(1/k)
or
k3dG/at = 2%0G/dz.
The auxiliary equations are dt/k = —dz/z% giving t — k/z = constant. This yields a

solution of (3a): (¢ — k/z) = {¥ — (A + ko)}/s. Thus ¢ = A + ko can be estimated via {¥
— (A + ko)}/s = t — k/z with distribution conditional on {a;} = {(x; — X)/s}.

ExaMPLE 2b. Coefficient of variation. Define o/ = 1/¢. Equations (5b) are now
3G/dt = (—s*/A0)dG/dz,
giving
$(8G/at) = —2%(0G/dz)

which involves ¢. There is thus no solution of the form (3a), but there will be of the more
general form (3b). The auxiliary equations are dt/¢ = dz/z® with solution ¢ + ¢/z =
constant. This yields a solution of the form (¢ + ¢/z) = (¥/s). Thus ¢, and hence o/A =
1/¢ can be estimated via ¢ + ¢/z = X/s, for an arbitrary joint density of the observations.

ExamPLE 3. Two location-scale distributions. Consider two samples (x, y) of sizes
(m, n) from two location-scale distributions with parameters (A1, o), (A2, ps). The reduced
pivotals arising from both distributions are (¢, 21), (2, 22), where t; = (¥ — A1)/s1, 21 =
81/0, t2 = (¥ — A2)/S2, 22 = $3/po, and s; = sy, S; = s,. Inferences about Ay, Ay, p, o will then
be based on the conditional distribution of #;, £, 21, 22 conditional on {a; = (x; — X)/s1, b;
= (y; — ¥)/s2}, so that g = (t, ¢, 21, 2») will replace p in equations (5a), and (5b).

ExAMPLE 3a. Ratio of scale parameters, ¢ = p. Equation (3a) is H(X, y, p) = G(t,,
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ts, 21, 22). Differentiation with respect to A1, A2 shows that G = G(z, 22). Differentiation
with respect to ¢ gives (5a) as

0= aG/aZl(—Sl/O'z) + BG/BZz(—S2/p02),
or
210G /92, = 2:0G/02z5.

The auxiliary equation is dz:/z; = dzs/ 2z with a solution of the form (3a), z2/21. Thus G (21,
29) = 22/21 = (s2/p)/s1 = r/p where r = sz/s1. Thus p can be estimated via 2;/z; = r/p
conditional on {a;}, {b;}. For a normal parent distribution, p? is proportional to the
variance ratio, and the result is the usual F distribution.

ExAMPLE 3b. Difference in location. Let ¢ =A; — Az and p be assumed known. Then
from the results of example 3a, r, having distribution depending only on p, is ancillary.
Therefore, in addition to conditioning on {a;}, {b;}, we now also condition on r or
equivalently on v = r/p. Thus r will be regarded as constant. Now (3a) is H(x, y, ¢) =
G (ty, tz, 21, 22), and differentiation with respect to p and to o shows that G is independent
of 21, 25, so that G = G (¢, t;). Since 3t,/0\; = —1/s, (i = 1, 2), and d¢p/dN; = —8¢/dA2 = 1,
(5b) is

(l/Sl)aG/atl = —(1/32)6G/6t2,

or
(6) raG/ot, + dG/ot, = 0, r = sy /5.

Since r is considered constant, the equation is of the required form, with auxiliary equation
dt,/r = dt,, the solution being ¢; — rt,.

Thus ¢ = A; — A2 can be estimated via (¥ — ¥ — ¢)/s1 = t; — rt; using the known
distribution of ¢, — rt, conditional on {a;}, {b,}, and r. This will give a family of confidence

intervals for ¢ = A1 — A in terms of p.
As a referee has pointed out, since p is known we can allow G to be a function of p, so
that H(x, y, ¢) = G(t1, tz, 21, 22, p). The preceding method then yields the solution

x—y—9)/s1=t— (pz1/22)t2

and since pz;/z; = r is known and hence ancillary, we condition as before on this known

value, and the two solutions are equivalent.
It is clear that in general k:¢; + kart; similarly estimates any linear combination %2;A;

+ kals.
EXAMPLE 3c. Length of mean vector. Let ¢ = A} + A} and assume p is known. Here
64)/6}\1 = 2)\1, a¢/6}\2 = 2}\2, so that (2b) is
(7‘/}\1)6(1'/(”1 = (1/}\2)6G/6t2

which involves A, A, explicitly, and so has no solution of the form (3b). It is thus not
possible to estimate ¢ = A% + A3 via robust pivotals. ‘

ExampLE 3d. The ratio of means. Let ¢ = A1/A; and p be assumed known. Now
/01 = 1/Az2, 8¢/ 2 = —A1 /A%, so that (5b) is
(A2/51)3G/dt; + (\3/A152)dG/dt; = 0,
or
r¢dG/t, + 8G/dt, = 0

which depends on A = (A1, A2) and so has no solution of the form (3a). However, as in
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Example 2b, A occurs only through ¢, so that there is a solution of the more general form
(3b). The auxiliary equations are

dtl/r¢ = dt,

with solution of the form ¢, — rét; = (X — ¢¥)/s1. Thus (¥ — ¢y)/s1 = t; — rét; has a
distribution conditional on {a;}, {b;}, r, that is a function of ¢ and p only, and so can be
used to set up confidence intervals for ¢ in terms of p.

ExAMPLE 3e. The common mean. Let A1 — A2 = 0, so that A\; = Ay = A and let p be
assumed known. Here ¢,— rt; = (X — ¥)/s: is parameter free and so is ancillary (that is, has
a distribution depending only on the known p). There is one remaining functionally
independent pivotal. Its distribution conditional as before on {a;}, {;}, r and, in addition,
on t; — rt, will yield confidence intervals for A in terms of p. Conditional on ¢; — rt;, the
remaining pivotal can be taken as a linear function of #, ¢,. It is convenient to take the
“orthogonal complement”

rty+t, = (X — A)(s? + s3)/s?s3
where
X = (s3% + s37)/(s? + s3).

ExAMPLE 4. Predictive inference. Future observations may be regarded as unknown
parameters to which the foregoing methods can-be applied. Let p(x, §) = (p1, -+, pn),
where p; = (x; — A\)/o, and suppose it is required to predict the mean of n future
observations ¥ = Y, y;/n, the y; occurring in the pivotals ¢; = (y; — A)/o. The reduced

pivotals are, as before, t = (X — A)/s and z = s/s. Now ¢ = y is to be estimated, and (3a)
is H(y, ¢) = G(t, 2, q1, - - -, q»). The equations (5) are

aH/ay; = (0H/d¢)/n = (0G/ag:)/o, i=1,2, ---,n
0H/d0 = 0 = (0G/dz)(—s/a®) — ¥, (0G/dg:)(y: — N) /o>
3H/a\ = 0 = (3G/at)(—1/s) — Y. (8G/aq:)/o.

The solution of the first n equations above is ¢ = (¥ — A)/o. The next equation is then

20G/3z + qoG/aq = 0,
with solution u = ¢g/z = (y — A)/s. Substituting § = uz, the last equation is
3G/t + 3G/ou =0

with solution ¢ — u = (X — ¥)/s. Thus y can be estimated by the known distribution of (¥
—¥)/s=t—Y q:/(nz). For a specific future observation y;, by setting m = 1 the associated
robust pivotal cah easily be seen to be (X — 7;)/s. This yields m pivotals for the estimation
of the entire future sample y1, - - -, y». Note that these pivotals are not independent.

ExAMPLE 5. Linear functional relationships.
pi= (xi—\)/0o,qi = (yi—a—B\i)/po, i=1,---,n,

where p is assumed known. Here we require H(x, y, 8) = G(p1, -+, Dn, @1, ***, Gn).

Differentiation with respect to A; gives
G G
G, B G _
ap;  p 9g;

the solution of which is G{u, -+, u,} where u; = Bp; — pg; = (Bx; — yi — a)/o. The

elimination of a, ¢ is as in Example 1, yields

ai=van—1)[Bx—% — (yi— N/ [Bx: — %) — (y: — 72}

’
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This yields the maximal B-pivotal as n-dimensional.
Differentiating H(x, y) = G(u, -- -, u,) with respect to § gives
G

Za_u,-xi=0

which has no solution of the form (2) independent of x. There are thus no pivotals
independent of B and so no ancillary statistics. The above n dimensional pivotal in 8
cannot therefore be reduced without loss of information to a one dimensional pivotal on
which to base confidence intervals.

5. Explicit expressions for Examples 3b, 3d, and 3e. Let g1, g2 be the parent
density functions for the pivotals arising from the first and second samples respectively.
Then the conditional distribution of ¢, ¢, 21, 22 given {a:}, {b;} is proportional to

22T IR g {(as + t) 21} [10=1 &2{(b) + £2)22).

Letting v = 25/z;, the resulting distribution ¢, Z, v is proportional to

)] vt J 2P ] (@ + t)z1) T] &{(by + t2)vz1) dzi.

1

The conditional distribution of £, £ given r (i.e. v) is proportional to (7) with v regarded
as constant.
Let w; = ¢, — ct;, where ¢ = r in Example 3b and r¢ in Example 3d. Let w; = ct; + ;.

From (7), the conditional distribution of w;, w: given the {a.}, {b;}, and v is proportional
to

f 27 ] g1{la + (Wit cwe) /(1 + ¢?)]z1}
(8)
-1 &b + (w2 — cw:)/(1 + ¢*)Jvz1} dzi.

Integrating with respect to w. gives the required distribution of w; for Example 3b, 3d.
If g, and g, are standard normal, the integrand of (8) is proportional to

2 lexp(—%2 (Y [a: + (Wi + cwe)/(1 + e*) P+ v* Y, [b + (w2 — cw) /(1 + ¢H1h.

Integrating this with respect to w; and recalling that ¥ a? =m(@m — 1), Y b7 = n(n — 1),
Y a; =Y b, =0, and that c and v are held constant, the result is porportional to
2Pt lexp[—Y% 2  {m(m — 1) + n(n — 1)v? + mnv’w?/(mc® + nv?}].

Integrating this with respect to z; gives the required conditional density of w; as propor-
tional to !
2)]—(m+n—1b/2

[m@m — 1) + n(n — 1)v? + mnv’w?/(me® + nv
which is proportional to
[1+ ¢/ (m+n—2)] 072
where
2 mnv*wi(m + n — 2)
(me® + nv?)[m(@m — 1) + n(n — Do?]’

Setting ¢ = r and r¢ gives
£’ =mn(x — y— ¢)*/(mp* + n)é% mn(% — 3)/(mp’e® + n)s?,

where (m + n — 2)6% = m(m — 1)s} + n(n — 1)s3/p® for Examples 3b, 3d respectively. In
each case this gives the usual ¢ = ¢(,+r—2. The former is the usual test for the difference
of normal means, usually derived under the assumption of equal variances (p = 1). The
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latter is the Fieller solution to the problem of the ratio of normal means. It is interesting
to note that this solution has the form (3a). Thus for a normal distribution the explicitly-
occurring ¢ = A;/A2 on the right hand side of (3b) and in (8) is absorbed to form the ¢
variate above, thus for this special case yielding the simpler solution (3a).

If \; = A2 = A, then as discussed in Example 3e, w; = t; — rt = (X — y)/s; is ancillary.
We use the distribution of w, conditional on w, for inferences about A. This distribution is
proportional to (8) with {a;}, {b:}, v and w; all held constant. For g; and g» standard
normal, this is proportional to

[m(w: + rws)? + nv*(we — rw)?] )"
(1+r%)2

2 A_ 2y —(m+n)/2
= mon v (2 )(B22YY

mp®+n

{m(m —1)+nr-1v:+

where
X = (mp%% + ny)/(mp® + n).

Since v and w, are held constant, this is proportional to

t2 —(m+n)/2
1+———
m+n-—1

where 2 = (m + n/p®) (A — \) /8%,
(m+n—-—1386"=m(@m—1)s? +n(n—1)s3/p? + mn(x —y)%/(mp® + n)

and A is given above. Thus ¢ has the ¢(,+.—1) distribution.

6. The Behrens Fisher problem. This is the same as Examples 3b, 3e with p
regarded as completely unknown. Thus r is not ancillary. Eliminating r from (6) gives

(9) pZzaG/atl + 2 6G/at2 =0

which involves the unknown p. There is thus no solution of the required form (3a). In the
absence of knowledge of p, ¢ = A; — A; cannot be estimated via robust pivotals.

7. Discussion. In using a pivotal G(p, ¢) = H(t(x), ¢) to make inferences about
¢(0) given observed values x = xo, we need to make use of the fact that the supposition
that ¢ is in a set %, is “equivalent, when x = x, is known” to G being in a set

%= {G: G=H(t(x),p) for some ¢ E %}
in the following sense: Denoting the proposition “x = x,” by “E”, we must have
"‘Eknownand¢ € 49— GE %, and Pr{(GE ¥} =T
Eknownand¢ € % — G& %, and Pr(G& ¢} =1-T.

This enables us to attach the probability that G(p) € € to that of ¢ € %, though it does
not thereby specify ¢ as a random variable—only functions of p are random variables. %
will be a conditional confidence set; by appealing to the law of large numbers, regarding
% as fixed, in a series on independent experiments in which the ancillaries A (x) take the
same values as in the current experiment, %, will be a set-valued function of x and ¢ which
will cover ¢ with frequency T'. If, as the ancillaries vary, we change % (if necessary) so as
to keep I constant, the conditioning on A (x) becomes irrelevant and %, is an unconditional
confidence set; however since variation of ancillaries will often imply variation in the
informativeness of the data, such forcing of I" to be constant may lead to unnecessarily
long confidence intervals—see Barnard (1976, 1982a).

R. A. Fisher noted that substituting #(xo) for ¢(x) in H(t, $) generates from the
distribution of H a distribution of ¢ which he called the fiducial distribution of ¢. He
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seemed to suggest (Fisher, 1973, page 169) for example, in the case of location A and scale
o, with ¢; = (A, ), that it would be possible to derive, for any (measurable) function ¢, of
(A, o), a distribution which would have the same status as that of (A, ¢); that is, to any
supposition of the form ¢(A, 6) € 9, there would correspond, given the observations, a
proposition about the pivotals (¢, z), whose maximally conditioned probability could be
evaluated using the density n(¢, z| k). Bartlett (1937) queried this, and suggested that
®(A, 0) = A + 30 would provide a counter-example. Fisher then showed, in reply to Bartlett,
that the pivotal u = ¢ — 3/z would provide a basis for statements about this ¢ of the form
required, as in Example 2b. However, although Bartlett’s “‘counter-example” was unhappily
chosen, he was right in principle, as shown in Section 2. There it is clear that ¢(\, 6) = A2
has no corresponding pivotal u’ = G (¢, z), such that ¢ € 2 implies, and is implied by Hp
€ D.

This bears on another objection to Fisher’s fiducial argument which was raised by Stein
(1959), who considered a model which, in pivotal terms, has § = R" = {x}, & = R" =
{A}, P = R"” = {p}, p a vector with ith component p; = x, — A;;, D = {£} with £ the
spherical unit normal density in R". Stein showed that the fiducial distribution of A, given
X = Xo, would assign probability % to the set for which

AM>w+x'x

though for sufficiently large n the confidence coefficient to be attached to this set can be
made arbitrarily small. But the results of Section 2 imply that in the pivotal model for
Stein’s example, ¢ = A’A has no corresponding pivotal u = G(p). Stein’s paradox is thus
avoided.

Example 3 was phrased in terms of o, po to emphasize that the scale parameters are not
required to be equal, as seems commonly assumed in textbooks. It is only necessary that
their ratio p be known. Fisher’s solution to the Behrens-Fisher problem assumes p to be
wholly unknown, apart from such information about p as is contained in the data. He
represents this ignorance by assuming that, when r is known, the pivotal r/p retains its
marginal distribution; such complete ignorance of p is unlikely to occur often in practice.
Thus in practice, when this ratio is uncertain, it would be preferable to examine how the
resulting confidence intervals for A; — A are affected by variations in p.

To obtain an overall average figure for the confidence coefficient to be attached to any
specified interval, the coefficient I'(p), for a specified p, can be averaged over a distribution
intermediate between the Fisher distribution and the singular distribution p = po. Further
details are given in Barnard (1982b). It is also shown in Barnard (1982b) that, in requiring
a test in the Behrens-Fisher problem to be similar, giving a constant a-level independent
of p, Neyman’s approach to the problem rules out all reasonable solutions. The proof,
using results given above, is simpler than Linnik’s related result which applies only to the
case of normal distributions.
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