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TRANSFORMING CONTINGENCY TABLES

By MicHAEL M. MEYER

Carnegie-Mellon University

We consider examples where it is possible to transform a contingency
table and associated model into a form where it is easier to compute estimates
and where closed-form estimates may be recognized. The motivating example
comes from the Theory of Social Networks.

1. Introduction. There are many numerical procedures for calculating the maximum
likelihood estimates for loglinear models of frequency data. The most popular methods are
the Iterative Proportional Fitting Procedure (IPFP) and variants of Newton’s method. For
problems involving a large number of parameters, Newton’s method is often impractical.
On the other hand many models can not be expressed in a form which allows the simple
IPFP to be applied. In these circumstances some other nonlinear optimization technique
must be used, e.g. the Generalized Iterative Scaling method of Darroch and Ratcliff (1972)
or the extensions of the IPFP due to Haberman (1974). As the basic IPFP is a well
understood, robust, and widely available algorithm, it would often be desirable to cajole a
given problem into a form where the IPFP can be applied. We present a general theorem
on transforming contingency tables and several applications where the transformation
technique has allowed us to take advantage of the IPFP and resulted in simple and useful
procedures. A further advantage of this technique is that it is sometimes possible to
recognize closed-form estimates in the transformed problem while they would be over-
looked in the original setting.

We shall view the estimation problem as one of minimizing the Kullback-Leibler
information distance between two probability mass functions (p.m.f.’s) and will roughly
follow the notation of Csiszar (1975). Although we have adopted the information distance
point of view, the duality between maximum likelihood estimation and minimum infor-
mation estimation (see e.g. Darroch and Ratcliff, 1972) implies that the results of this
paper can just as well be interpreted from the maximum likelihood point of view.

2. Background and notation. Csiszar (1975) presents a very elegant discussion of
the IPFP by developing a “geometry” for the information measure. A simplified version of
the chief results of this theory are outlined below. Let n, p, g, r, s, and ¢ denote p.m.f.’s
which are non-zero for all elements of a finite set I. The Kullback-Leibler information
number (or directed divergence) specifies a distance,

I(p |l q) = Xer pOIn{p(i)/q (i)}

between p and ¢. The principle of minimum discriminant information, as formulated by
Kullback (1959), aims to minimize the distance between a reference distribution, g above,
and a family of other distributions. The properties of such estimates have been studied
extensively. The most important results can be found in Kullback (1959) and are summa-
rized, with a special emphasis on contingency tables, in Gokhale and Kullback (1978).

We next develop an appropriate family, &, of p.m.f’s. A convex set, &, of p.m.f.’s is called
linear if when p and g arein fand t=a-p+ (1 —a)-q, (¢ ER) is a p-m.f., then ¢ is also
in &. A p.m.f. ¢ € & which satisfies
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I(g || r) = min,e I (p | r)

is called the I-projection of r on & and will be denoted by g = P, (r). Csiszar gives conditions
under which Pg(r) exists (very weak conditions ensure uniqueness) and develops a
geometry for I-projections by using an analogue of Pythagoras’ Theorem. Now let % =
{f,:y €T} be a set of real valued functions on I and &7 = {a,:y € I'} be real constants.
Define .Z+to be span (). A linear set, &, can be constructed by considering the set of p
for which :

Yerp(@)-f,) =a,, y€ET.

When we consider s to be an observed probability function and
a,=Yers@®f,), y€T,
then the duality between maximum likelihood and minimum discriminant estimation
states that if
g = Ps(r)
then
In(§) € M5+ In (r)

and
Gg—-sedz,

i.e. ¢ is the mle (under Poisson sampling) for the corresponding log-affine model.
Csiszar’s principal theorem says that if & is the finite intersection of the linear sets &
(i.e. &= Niex &) then ¢ = Ps(r) is the pointwise limit of g, = Ps (gn-1), R =1,2, - - - where
go=rand & = &, ifi=nmod | K|.

ExaMPLE 1. Ordered categories. Let p be an observed 3 X 3 probability function
obtained via multinomial sampling and consider the ordered categories model

E (p,) = q.,, In(g,)) =+ B, +j-v.+1-9§, ,j=1,23.

For a discussion of this class of models see Goodman (1979).

The linear manifold for this model is spanned by a set of tables, f%&, for, fc foc; i, ] =
1, 2, 3. The subscripts R, OR, C and OC indicate that the vector corresponds to Row,
Ordered Row, Column or Ordered Column parts of the model, while the superscript
indicates the row or column number, where [ (or fc) is a table of zeros except for the ith
row (jth column) which contains ones, i.e.,

. _ 1 k=l, ol _ k-1 l:])
fR(k,l)—{O k?él, fOC(kyl)_‘{O l;éj~

We now group the spanning tables into sets of related constraints. Let
%z{f%rbe:i=1)2r3}7 ‘%={fj(77fjocj:lr2r3}'

The sets of constants, o/ and ./, are determined by the inner products of p with the
spanning vectors.
The linear spaces of p.m.f.’s corresponding to these constraints and constants are:

6r={pmf’spst. Y falk, ) -plk, 1) =as,A=R,O0R,i=1,2, 3}
bc={pmf’spst. i fhk 1) -pk,l)=a% B=C, 0C,j=1,2 3).

In order to find the mle’s of cell probabilities for this model we need to be able to compute
q = Ps(r) for r =1 and & = &8 N &c. The theory tells us that this I-projection can be
obtained by cyclically projecting onto &z and &c. 0O
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3. Motivation for transformations. As algorithms for the basic IPFP are widely
available, it is often advantageous for us to be able to pose a problem in a way that makes
it amenable to attack by means of these programs. A very simple example, which is
prototypical of those that will arise in our later discussion, can be constructed as follows.

ExaMpPLE 2. Consider a triple of observed counts z = (z;, 23, 23) from 3 independent
Poisson random variables with mean m = (mi, m,, ms) and having observed values (1, 3, 5).
Suppose we wish to fit the log-affine model,

1 2 0
Inm) Eln{ 2 | + #, where A =spanj{1],{1]¢.
3 0 2

It is a simple matter to verify that the mle is i = (.694, 3.611, 4.694). Now consider the
related contingency table

2% = 221 z2 | _ 2 3
- 2 223 10

(]

and the model for the mean, m*,

In(m*) € #*, where #* = span

O O
= -0 O
O = O
— O = O

the “independence” manifold. This model has a closed-form mle., namely

ag 5% 5/18 5%X13/18 | _ 1.389 3.611
m=1"Ex 13/18 13 x 13/18 | 3.611 9.389
Now note the numerical equivalence
P 21ty me
7;02 27&3

In other words it is possible to fit the “difficult” model, 4, by transforming the table and
fitting the “easy” model, #*, to the transformed table. In the process of doing this
transformation we have also recognized that the original log-affine model actually had
closed-form estimates.

This example is clearly contrived to please Dr. Pangloss. We shall later present a more
realistic version with similar consequences. [

In the preceding example we transformed the data into a form where it was much easier
to compute the mle of the vector of expected values. Of course we have yet to prove that
the above manipulation is any more than a numerical coincidence; such proofs are the
subject of this paper. .

The idea of modifying a problem so that it is amenable to analysis by existing or easier
methods is not at all new. An old example of this phenomenon is the method of filling in
missing values to transform an “unbalanced” analysis of variance into a ‘“balanced”
problem. Although fitting an ANOVA model to an incomplete data array is conceptually
easy, the calculations are much simpler when the missing values are filled in. The same is
true of Example 2. Fitting the model ./ is not difficult but the model .# * is much simpler.

For such a small problem as Example 2 there is little practical advantage to be gained
from the transformation technique. The motivation for this research lies in some very large
problems considered by Fienberg and Wasserman (1981). We discuss their examples and
some related theory in Section 5.

Thus far we have not given any motivation for the data transformation of Example 2.
We now continue the example and give a heuristic justification of the method and at the
same time present a more realistic version of this problem.
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ExXAMPLE 2 (continued). Let us consider a general log-affine model for the Poisson
data, z, with mean value, m, namely

In(m) € In(d) + 4,

where d is any fixed triple of positive numbers and .# is as before. Note that if d is the
vector of all ones then this reduces to a simple log-linear model. Regardless of d, a version
of the sufficient statistics for this model are

U = 221 -+ Z2, Vo = 29 + 223.

Now consider the table z* as a linear transformation, g, of z, i.e. g maps Z> — Z>? such

that
zH 2 0 0
25y _ [0 10 j
zh ] Lo 10 22
z% 00 2 3

We now note that zf. = z¥; = v; and 2z, = z%, = vs. In other words the sufficient
statistics for the data z with model .# are represented twice in the margins of z*. Thus if
we fit the row and column margins model, .Z *, to z* we might expect that the likelihood
equation for model ./ is also satisfied. This turns out to be the case, but we have ignored
the question of whether m satisfies the log-affine model. We shall see that if we fit the log-
affine model

(3.1.1) In(m*) € In(g(d)) + 4 *

to the data z* then the mle, i, can be recovered. The simple IPFP, with starting table
g(d), will converge to the mle. [

In Section 4 we discuss what conditions are necessary to justify procedures such as
those discussed above.

4. A transformation theorem. We present a collection of conditions relating to how
one may transform estimation problems. First we consider a very weak condition which
will be used in the theorem and which is itself sometimes useful.

The idea of this first result is that it is often possible to fortuitously solve a difficult
estimation problem by “accidentally” satisfying the conditions. Consider the problem

maximize f(m | z) subject tom € 9

where 2 is some constraint space. Assume f has a unique maximum over 2 and denote the
maximizing m by . Now consider the problem

maximize f(m|z) K subjectto m € 72

where 9" D 2. Denote the maximizing m by ', It is a trivial observation that if mea
then 7" = 7. In other words, if the maximizing value, 7!, under the weaker conditions,
', happens to satisfy the stronger conditions, &, then it is also the maximizer under the
stronger conditions. Notice also that we did not require it to be unique as the uniqueness
of 771 implies there is at most one 7' in 2. This idea could be used anywhere a constrained
maximum is required but there is no guarantee that ' will be in 9. We will use this
general idea in frequency data circumstances where we can prove that ! will be in 2 and
where the constraints 2" are easier to deal with than the constraints 2.

We now turn to a more refined version of this method. The statement of the result is in
terms of the Kullback-Leibler distance but could equally be stated in terms of the (dual)
likelihood function. We first need to consider the transformation of a linear set of p.m.f.’s.
If £is a linear set of p.m.f.’s then define g(&) = {g(p):p € &}.
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THEOREM. Let g be a one-to-one mapping of the p.m.£.’s on a set I into the p.m.f.’s on
a set I* and suppose & and &* are linear sets of p.m.f.’s on I and I* respectively for
which g(&) C &*. If g is such that

(4.1) I(pllg) = k-1(g(p)| g(q)) for p,q € &,
and if Ps+(g(r)) €E g(8), then Ps(r) =g ' (Ps(g(r))). O

The condition (4.1) could be generalized to allow I(p | q) = f(I(g(p)| g(q))) where fis any
monotone one-to-one mapping. We have no need for such generality here.

The theorem shows that under certain conditions it is possible to calculate an I-
projection in a transformed table and then invert the transformation to obtain the I-
projection in the original setting. Verifying the conditions of the theorem may itself be a
difficult task. There are at least two ways of using the theorem. In some situations it may
be possible to define the linear set £* so that g(&) = &*. This is the easier case and it
essentially just relabels the problem. However even such simple relabeling can be helpful
in interpreting the model or recognizing, say, a model in the transformed space for which
closed-form estimates are known to exist. The second application of the theorem requires
more work to verify the conditions, but is also more generally applicable. Here we take a
linear set £* which is much larger than g( &), but we then need to prove that Ps(g(r))
€ g(&). In other words, even though &* contains g(&) we need to show that the I-
projection onto &* is always an element of g( &). For a particular set of data and model it
may be easy to verify this condition. All we need do is fit the transformed model and see
if the I-projection is in g( &). To prove this type of result for a general class of problems is
more difficult. We will illustrate the simple case of the theorem with the following
examples. Section 5 will be devoted to a discussion of a set of examples where g(&) C
&*.

ExampLE 3. This example is a continuation of Example 1. The problem concerns a
3 X 3 table where the classifying variables have a natural ordering. The specific model we
consider fits row and column margins and linearly-weighted row and column margins.

We have previously shown that the row and column constraints can be considered in
pairs and each of the pairs of constraints can be individually fit. Thus if (w:, w., ws) are
the current fitted values for, say, the first row, we need to adjust this triple so that its row
and ordered row margins match some specified constants.

Define the row and ordered row constants as as = 2as — abr and a; = abg. Now let
&s be the set of positive triples which satisfy the row and ordered row constraints for the
first row, i.e.,

&s = {positive triples ¢:2¢q; + g2 = as, g2 + 295 = a.4).

Now consider the function

wy « % W2
Yo Wa Wws

gw—

and define

aldb
cld

&* = g(8s) = {tables

:a+b=a+c=1/2a3,d+c=d+b=1/za4}.

Note that the constraints on 6* imply that b equals ¢ which means that g~ is well defined
on &*, It is not a difficult calculation to verify that I(q |w) = I(g(q) |lg (w)). Our theorem
now allows us to calculate Py (w) as g™ Ps(g(w)).

The constraints which define &£* are just simple row and column margins. Thus the I-
projection, Ps+(g(w)), can be calculated by the usual IPFP (i.e., adjusting row and column
margins), or, as it is a 2 X 2 table, by direct calculation. As the logarithms of the starting
values, w, do not necessarily satisfy the model, the IPFP will in general require several
iterations to converge. Thus to obtain the I-projection, Py, (gn), where &% is the space of
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p.m.f’s which satisfy all of the row constraints, we could transform each row of the 3 X 3
table into a 2 X 2 table, calculate with the 2 X 2 table and then use g to return a triple
of fitted values. The approach for the columns would be similar.

There is another g, which transforms the entire 3 X 3 table into a 2 X 2 X 2 X 2 table.
In this case &* = g(&) becomes the model of no fourth order interaction for the 2* table.

Specifically,

a % b % b c
a b
%d Yse Yie Y f
g d e
Y%d YVie YVie Y% f
£ g | %h 1% h i

It is not difficult to check that the model of no fourth order interaction corresponds to
g(&) and that I(p|q) = I(g(p) | g(q)). Therefore the usual IPFP, with starting values
£(1) and the model of no fourth order interaction applied to g(g.) will yield a 2% table of
fitted values which can in turn be transformed (by g?) into a 8 X 3 table for the original
problem. [0

5. Social networks. Inrecent years there has been an increasing interest in models
for the analysis of data from social networks. A line of research described by Holland and
Leinhardt (1981) and further developed by Fienberg and Wasserman (1981) and Fienberg,
Meyer and Wasserman (1981) has been particularly fruitful.

The basic data for these models consist of observations on the arcs of a directed graph
(digraph) on g nodes. The nodes, often taken to represent individuals or organizations in
a community, are called actors. The directed arcs linking the actors represent such notions
as the attitudes of an individual toward another or the flows of resources between
organizations.

Our example concerns a class of loglinear models for multivariate directed graphs as
described in Fienberg, Meyer and Wasserman (1981). They consider a set of data concern-
ing the interrelationships between 73 organizations in a small community. Three types of
relationships were observed for each of the pairs of organizations, but for simplicity we
restrict our attention to two of these criteria, support and money. For each criterion the
organizations were asked to respond to the questions:

(1) to which organizations do you give support (money)?
(ii) from which organizations do you receive support (money)?
A particular directed relationship (i.e., giving or receiving) is regarded to be present if
either or both the organizations in a pair perceived the relationship. For each pair of
organizations it is possible to construct a four-vector of zeros and ones indicating the
presence or absence of (support out, support in, money out, money in). Consider for the
moment just the support relationship. A pair of organizations are said to have a Mutual
relationship if they support each other (i.e., (support out, support in) = (1, 1)), a Null
relationship if neither supports the other (i.e., (0, 0)), or an Asymmetric relationship if

support is unreciprocated (i.e., (0, 1) or (1, 0)). If we aggregate over all 723 = 2628 pairs

of organizations there are ten distinguishable support-money relationships, namely,

MM with four vector (1,1,1, 1)
MA (1,1,0,1) or (1,1, 1,0)
MN (1,1,0,0)
AM 0,1,1,1) or (1,0,1, 1)
AA (0,1,0,1) or (1,0, 1,0)
AA 0,1,1,0) or (1,0,0,1)
AN (0,1,0,0) or (1, 0,0, 0)
NM 0,0,1,1)
NA 0,0,1,0) or (0,0,0,1)

NN 0,0,0,0)
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Notice that when both relationships are asymmetric there are two different cases, corre-
sponding to whether the relationships flow in the same or in different ways. Table 1 shows
the observed probabilities, z, where for example zpu is the number of mutual-mutual

relationships divided by 723> . The table is represented by

TABLE 1
M O N E Y

M A N
S M ZMM ZMa 2ZMN
U
P Zaa
z= p A 2am 2aN
o) 2AA
R
N 2ZNM 2NA ZNN
T

Fienberg, Meyer and Wasserman (1981) model the probability, ¢ = {qas; a, b = M, A,
N} that a randomly selected pair of organizations will be assigned to a certain cell. They
consider linear models for ¢ = {&u; @, b = M, A, N} where

log(qes) if a, b each equal M or N
b =
log(gas/2) if either a or b equals A.

These models are affine translations of loglinear models for g. The arguments presented
above apply to all of their models.

The model we consider takes as a linear space, &, of p.m.f.’s the set of tables, s, which
have margins s, and s;5, @, b = M, A, N, which are the same as the corresponding margins
for the z-table. For example we require

Sa+ = Sam + Saa + Sax + San = 2Zam + 2aa + 242+ 2an = 2a+.

In order to have the model be linear in £, we need
G=Psr)
where ‘

1 if a, beachequal Mor N

Fap =
if either a or b equal A.

2
As the model space can be spanned by vectors consisting of 0’s and 1’s, the simple IPFP,
which takes an initial table, r, and successively adjusts the row and column “margins” to
match those in the observed table, can be used. This algorithm is easy to do by hand, but
because the z-table is not rectangular (i.e., it has 10 cells rather than the 9 one would
expect), and consequently has an extended interpretation of margin totals, many standard
IPFP computer programs would not be able to analyze this table. Moreover, for many of
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the models considered by Fienberg, Meyer and Wasserman the models are not so simple
and the computations on the z-table require more than the simple IPFP. For this reason
we prefer to work with a transformed problem, where the sufficient statistics for the
models can be represented by simple marginal totals.

An alternate, though somewhat deceptive, description of the data is to consider four-

vectors for each of the 723 X 2 ordered pairs of organizations and to aggregate this into

a 2% table, y = yyu, i, J, k, | = 1, 2, where a 1 indicates the presence of a flow and a 2
indicates the absence of a flow. Thus yi111 is the number of mutual-mutual relationships
divided by 5256. The y table duplicates certain relationships and gives double weight to
certain others. The y-table is shown in Table 2.

TABLE 2
money out 1 2
money in 1 2 1 2
supp out supp in
L 1 Yun Y Yuz Yuzz
2
9 1
2

The transformation which maps the z-table into the y-table is shown in Table 3.

TABLE 3
2zmm 2Ma 2Ma 2zmun
2aM 244 2AA 2AN
gz % =4y,
2aMm 2AA 24 2AN
22NM 2NA 2NA 2ﬂ?v'NN

We denote the factors support (out, in), money (out, in) by the numbers 1, 2, 3, and 4. It
is now easy to see that the marginal sums considered for the z-table can all be found
(twice) in the [12] and [34] margins of the y-table. Also note that the y-table has a strong
symmetry, yiu = yjur Vijkl. Now g(&) is just the set of tables which have (i) the correct
[12] and [34] margins and (ii) preserve the observed symmetry in the y-table. Consider
just the first of these conditions ignoring the symmetry constraint. It is this model which
we shall consider to be &*. As we have relaxed some conditions it is clear that g(&) C
&*.

From here on the argument proceeds in the same manner as in the single relationship
case. It is convenient now to explicitly define the space &* and the conditions we need to
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TABLE 4

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0
fi= fi=

0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1

1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1
fs= fo=

1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1

verify to show that P (g(r)) is in g(&). Consider #* = {fi, -+, fs} where fi, - - -, fs are
defined in Table 4 and constants &/* = {a, - -, as} where q, is the pointwise product of
[, with g(z). Note that because of symmetry in the transformed table a; = as and as = a-.
We define &* to be the space of P.D.’s defined by % * and .« *. Now consider the symmetry
transformation

h:yzjkl —> Yulk.
For Ps+(g(r))) to be in g(&) we require
h(Ps(g(r))) = Ps+(g(1)).

It is possible to assert this because the space &* is invariant under A. Specifically A( f,)
=ffori=1,4,58and A(f2) = f3, h(fs) = f2, h(f:) = fs and h(fs) = f;. Because a; = a3 and
as = a; the linear space i(&) generated by A(# *) and h(/*) is the same as £*. We also
note that £(g(r)) = g(r), because of the nature of g functior. That is, the starting values
necessarily satisfy the symmetry constraints. Now let

G* = Ps(g(r),  §* = Pue(h(g(r) = Ps (8(r)).
But note that ¢* = h(§*), as all we have done is relabel the co-ordinates. Thus
§* = §* = (")

i.e, the fitted p.m.f. is (i) invariant under A and (ii) is in €*. Thus ¢* is in g(&) and
g71(g*) is the fitted P.D. in the space of Z-tables.

For any of the other models considered by Fienberg, Meyer and Wasserman, it is easy
to show that the space, &*, is invariant under A and thus the above argument still works.

In these examples, g(r) is the uniform distribution; thus the IPFP with starting value
all ones is an appropriate algorithm. For some of the models, the appropriate margins of
the y*-table represent a decomposable model, i.e. a model with closed-form maximum
likelihood estimates, see Haberman (1974). In fact the model [12], [34] is itself decompos-
able. Thus we have not only found an easy computational procedure, but have also
discovered closed-form estimates for some of the models. The existence and nature of
closed-form estimates varies with the number of relationships between actors which are
modeled. The analysis of the multiple relationship data that we have considered has been
for the data aggregated over all the actors. In some situations it may be desirable to
aggregate over only groups of actors, in which case there is a 2* (or with 3 relationships, 2°)
table for each group of actors. In this manner it is possible for the number of entries in the
table, and the number of parameters in the corresponding models, to grow very large.
Under these circumstances the transformation techniques outlined in this chapter prove
to be of considerable practical use.

Further examples drawn from the theory of social networks can be found in Meyer
(1981).
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6. Concluding remarks. We conclude with a few questions and cautions. The
examples have shown situations where, for reasons of computational ease, it was desirable
to transform a contingency table into a related but larger table. In the transformed table
it was possible to fit a model using the standard IPFP whereas in the original table the
corresponding model would have required a more complicated algorithm. This approach
of using transformed tables is especially important in practice as versions of the standard
IPFP are widely available and easy to use. An additional bonus which can sometimes be
found in the transformed table is the existence of closed-form maximum likelihood
estimates. The theory about when closed-form estimates exist in complete tables with
factorial models is well known and such situations are easily recognized. On the contrary,
when a table is incomplete or has a more complicated structure, very little is known about
the existence of closed form estimates. Our techniques have merely scratched the surface
of the more general question of closed-form estimates. A more general theory of closed-
form estimates for arbitrary loglinear models would seem desirable; perhaps investigations
of the more general IPFP will aid in this.

Throughout our discussion we have ignored the important questions of degree of
freedom calculations and asymptotic covariance estimates for the m.l.e. When g(&) =
&*, that is we are essentially only relabeling the problem, then any degrees of freedom and
covariances calculated in £* can be transformed back to & When g(&) C &*, special care
must be taken to calculate the appropriate d.f. in & We know of no exact procedure for
transforming covariance estimates in &* back to & and suspect that it is not possible.
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