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ADAPTIVE PROCEDURES IN MULTIPLE DECISION PROBLEMS
AND HYPOTHESIS TESTING'

By ANDREW L. RUKHIN

Purdue University

Necessary and sufficient conditions for the existence of adaptive proce-
dures for identification of one of several probability distributions or for testing
a simple hypothesis against a simple alternative are obtained. By definition,
adaptive procedures are required to exhibit the same asymptotic behavior for
several parametric families as do the optimal (minimax) estimators for each
of these families. The proofs are based on a multivariate version of Chernoff’s
theorem, providing asymptotic formulas for probabilities of large deviations
for sums of ii.d. random vectors. Some examples of adaptive procedures are
considered, and the non-existence of such rules is established in certain
situations.

1. Introduction. We start with the simple multiple decision problem where both the
action space and the parameter space coincide and are finite, say, ® = {0, 1, --- , m}, m
= 1. Thus a family of (different) probability distributions = {Py, -+, P»} over a space
& is given, and statistical inference about the finite-valued parameter is desired on the
basis of a random sample X = (x;, - - - , x,) which is obtained as realizations of a random
variable X having one of these distributions.

If §(x) is an estimator of this parameter, then the probability of incorrect decision
P,(8(x) # ) is the most important characteristic of the procedure 8. The asymptotic
behavior of this probability for the minimax estimator 6* has been studied by many
scholars (see Bahadur, 1971, Krafft and Puri, 1974, Ghosh and Subramanyam, 1975). The
main result here has the form

(L) lim,_,.maxs Py"(8* (x) # ) = max,«gsinf=0E p’(X)ps'(X)

= max,xginfr=o j pix)pi‘(x) du(x) = p(2),
where py is the probability density of the distribution Py, § € ©, with respect to a o-finite
measure p on Z. Notice that p (%) < 1, since all elements of 2 are distinct. It follows from
(1.1) that for any procedure §

(1.2) lim inf,_,.max; Py™(8 (x) # 8) = p(P).

A parallel result holds for hypothesis testing problems. Let us consider the case of
testing a simple hypothesis P against the simple alternative Q. It is known (cf. Chernoff,
1956, Bahadur, 1971) that if a, = a, (¢*) denotes the minimal size of the most powerful test
¢*(x) of this hypothesis which has a fixed power 8,0 < 8 < 1, then

(1.3) o/ = {Ef$*(x)}/" — exp{—K(Q, P)}.
Here K(Q, P) = E° log {(dQ/dP) (X)} is the Kullback-Leibler information number
(Kullback, 1959). Moreover, for any test ¢ of the same or larger power

(1.4) lim inf,_.ay"(¢) = exp{—K (@, P)}.

Received December 1980; revised May 1982.

! Research supported by NSF Grant MCS 78-02300.

AMS 1970 subject classifications. Primary 62F35; secondary 62F12, 62F05, 60F10.

Key words and phrases. Multiple decision problem with finite parameter space, testing of simple
hypothesis, probability of incorrect decision, adaptive procedures, multivariate Chernoff’s theorem.

1148

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access

The Annals of Statistics. RIKOJIS

%5

o 2

i

to

®

WWw.jstor.org



ADAPTIVE DECISIONS 1149

Formula (1.3) has been generalized to the case of testing a hypothesis consisting of a finite
number of distributions by Plachky and Steinebach (1977).

The proofs of both mentioned results are closely related to Chernoff’s theorem (Cher-
noff, 1952, Bahadur, 1971) and can be obtained with its help.

Formulas (1.3) and (1.4) as well as (1.2) and (1.1) lead to the following question. What
are suitable conditions on two pairs of distributions (P;, @:) and (P;, @) such that there
exists an “adaptive” test ¢ possessing the following properties? Its power as a test of P;
against @ and as a test of P, versus @ is equal to a fixed number 3, 0 < 8 < 1 and its level
behaves asymptotically as that of the most powerful test for both testing problems, i.e., for
i=12

E%(x) =B

and
{E"¢(x)}" — exp{—K(Q;, P:)}.

In this paper we obtain a necessary condition and a sufficient condition for the existence
of such an adaptive test. These conditions can be interpreted as an expression for the
degree of closeness between (P;, @:) and (P:, @:) in terms of an information type
divergence.

In the multiple decision problem we will be interested in conditions on two (or several)
parametric families 2, = {P{", § € ©} and 2, = {P{, § € ©} under which there exists an
adaptive estimator §, i.e. such that for i =1, 2

maxy { PP (8(x) # )}/ — p(P).

In other terms an adaptive estimator § serves both families 2, and %, in an asymptoti-
cally optimal (minimax) way. The existence of such an estimator in the case when 4 is a
real location parameter, and asymptotic optimality is defined by means of asymptotic
variance, has been established in various settings (see Beran, 1974, Sacks, 1975, Stone
1975).

We remark that if in the definition of adaptive estimator one replaces the probability of
incorrect decision by an arbitrary risk, R (6, §) = E,W (4, 6(x)), where W(6, ) = 0 and
W0, ) # 0, 8 %~ m, all results of this article remain valid. Our results also hold for the
Bayesian setting of the problem of adaptive estimation. Indeed if 7, are positive prior
probabilities then

lim inf,.o (¥, 7P (8(x) # 6)}"/" = lim inf,_,.max, P§’"(8(x) # 6).

Therefore instead of minimax estimators one can speak about Bayes estimators and
replace in the definition of an adaptive procedure the maximum of the risk by the Bayes
risk.

In Section 3, we give a necessary condition and a sufficient condition for the existence
of adaptive procedures in multiple decision problems and hypothesis testing problems.
These conditions are obtained by studying most powerful tests and minimax estimators
for the model described by a mixture of experiments defined by families 2 and %,. This
study is performed in Section 2. The basic mathematical tool needed is a multivariate
version of Chernoff’s theorem, providing an asymptotic formula for probabilities of large
deviations of sums of iid. random vectors. In Section 4, we illustrate the necessary
condition and the sufficient condition for the existence of adaptive procedures by several
examples. In typical cases, adaptive estimators do not exist if the distributions P§’ and
P®, ik, § 5 7 are more “similar” than the distributions Py and PY .

2. The asymptotic behavior of optimal procedures for mixtures. In this section
we will be interested in the asymptotic behavior of statistical procedures based on a
likelihood function of the form Y %-; w: [[1 fx(x;) where fi, k =1, ..., Zare probability
densities, and w;, are positive weights. We start with the following key result.
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LEmMMA. Letc,,n=1,2, --- be a sequence of positive numbers such that n”" log c,
converges to a finite limit L. Then if f;, gi, i = 1, -+ - , 4 are strictly positive probability
densities, w1, -+, w,=0, w; + -+ + w,= 1 and for all positive probabilities qi, - - , q,
andi=1,.-.,4

2.1) Pr[¥{ qx log{fi(X)/g:(X)} > L] >0,
then
2.2) Pr/(3{ wy T[T fe(x)) = cn 21 wi [T 8r(x,)}

—> MaXj<i<¢ infsl. .. ,slzoe_(sﬁh . +s’)LEﬁ¢sl+4 - +s'(X) { gz_s'(X).

Proor. We prove the Lemma for /= 2. Notice that
Pr{2 max[w, []? fi(x,), w2 []1 fa(x,)] = cn max[w: [7 &1(x,), w, [T &2(x,)]}
(2.3) = Pr{w: [[? fi(x)) + w []1 fo(x,) = calwn [T £1(x,) + w2 [[1 &2(%) ]}
= Pr{max[w: [[7 fi(x,), w: [[7 fo(x,)] = 2c, max[w: [[T g1(x,), w2 [T &2(x,)]} -

One has
max[Pr{[]7 fi(x;) = 2¢. [[? &1(x), [1? i (x)) = 2c,wT'w: []7 &2(x)},
Pr{[[% fo(x)) = 2cawriwz" [[% &1(x)), [T fa(x)) = 2¢n []7 &2(x7)}]
= Pr{max[w; [] fi(x), w2 [T fo(x))] = 2c.max[w; [T &1 (%)), w2 []7 &2(x,) ]}
= Pr([[7 filx) = 2¢. [[F &1(x;), T[% filx;) = 2cwi'w: [} g2(x5)}
+ Pr{I]% fo(x)) = 2cowrwz’ []% &1(x), [1% falx;) = 2¢, []1 £2(x))},
so that
Pr/"{max[w: []7 fi(x), we []1 fo(x))] = 2cnmax[w: [ &1 (%)), w2 [T &2(x,)]1}
~ max[Pr'/*{T]7 fi(x;) = 2¢. [[% &1(x) [} A(x) = 2cwi'we [T &2(x))3,
Pr/™{I]? fo(x)) = 2cowiwz’ [17 &1(x)), TI1 fo(x;) = 2¢, []1 g2(x)} ]

To find the asymptotic behavior of these latter probabilities we use a two-dimensional
version of Chernoff’s theorem; see Groeneboom, Oosterhoff and Ruymgaart (1979), Ba-
hadur and Zabell (1979) or Bartfai (1978). According to this theorem, if (Y1, Z1), (Y2, Z,),
... is a sequence of i.i.d. random vectors in R? then

@d) P TRV, Zy 4 ann TEZ 2 2 + B) = infueo 070 B,
Here a, — 0, 8, — 0, y and z are real numbers such that

(2.5) Pr(sY, +tZi=sy+tz) >0

for all nonnegative s, ¢, (s, t) # (0, 0). Condition (2.5) guarantees the continuity in y and 2z
of the right-hand side of (2.4). It implies that (y, 2) is an inner point of the set A, from the
condition of Theorem 5.1 of Groeneboom et al (1979). '

We apply this theorem with y = z = lim n""log ¢, = L and Y, = log{ fi(x;)/&1(x))}, Z;
=log{ fi(x,)/&:(x,)}, or for Y, = log{ f2(x;)/g1(x,)}, Z, = log{ fo(x;) /&2(x;)}. In both of these
cases, Condition (2.5) is met because of Assumption (2.1).

Thus

Pr'/{[T1 fi(x) = 2¢x T11 &1(x), T filay) = 2cow7” w: [T £2(x)))
— infymoe " EfH(X)g1(X) g2 (X),
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and
Pr[IE folx) = 2enwnws [T £1(x), T11 Folx) = 2¢. [17 £2(x)))
= infomoe T TEfT(X)g 1 (X) g2 (X).
Therefore
Pr'/*{max[w: [[7 fi(x,), we [T} fo(x))] = 2comax[w; [[7 &1 (%)), we [[% &2(x,)]}
— max;-2inf;0e “TLEF Y X)gT(X) g7 (X),

and the left-hand side of (2.3) has the same limiting value. Thus the Lemma is proven.

REMARK 1. If, say, /=2 and

Pr(I¥ fo() = 2enwios’ [T £1(x), TT% fol) = 26, [T g2(%)) _
Pr(IT} /i(x) = 26, TTF & (), TTF fiC) = 2e,w3 s T3 £2(57))

then condition (2.1) for i = 1 can be omitted. Indeed in this case
lim, .. Pr'" {max[w: [[7 fi(x;), w2 [I7 fo(x)] = 2c,max[w; []% g1 (x;), we 117 &(x) ]}
= limn. Pr'/{I]% fi(x)) = 2. [T &1(x)), [I1 /(%)) = 2c,07'w; [[7 g2(x;)}.

If for some a, 5=0,a + b=1
fi(X) £(X)
—_ ——t=<L|=1
P[a lOg{gl(X)} +b log{gZ(X)} ] s
then

0 = inf,;=0e “ P EfT(X) g7°(X) g2 (X) = infizoe TEfs(X) g™ (X )g:%(X) = 0.

lim sup

Therefore
max—12inf; =0e T EfTU(X) g1°(X) g7 U(X) = inf, i=0e “TPEfM(X) g7 (X) g7 (X)),
and the assertion of the Lemma holds true.

REMARK 2. Under the conditions of the Lemma
Pr'/™w: TI1 filx) + w2 [[T fo(x)) = calun [17 g1(x)) + we [7 go(x))]}
~Pr/™w TI1 () + w2 1 folm) > calwr [[7 g1(x) + ws 17 g2(x)]3.

We recall now the following classical result concerning the estimation with zero-one loss
of a finite parameter 6 in a family of mutually absolutely continuous distributions Qy (see
Wald, 1950, pages 125-128). There exists a least favorable distribution with positive
probabilities such that the corresponding Bayes procedure 6* is minimax and Qo (5% (x) #
#) does not depend on 6. /

Let #, = {PP,0€ 0}, PP = PPforf#n,k=1,-..., £ be ¢ parametric families given
on X with densities p (-, §). Also let w1, ---, w,be positive weights w; + -+ + w,=1 and
assume all measures P§” to be equivalent. The next result gives an asymptotic formula for
the probability of incorrect decision for a minimax procedure 6* based on an observation
x from a distribution @, which has the density of the form Yrwe [17 pr(x), 6).

(2.6)

THEOREM 2.1. If all densities pi(-,0), k=1, .. -, Zare positive and 8* is a minimax
estimator, then

lim,_ .maxe[ Y, wp PP (8*(x) 5= " = lim,_,.maxg [ PP (§*(x) # a1
2.7) /
= MaX1=ik=MAXguninfy, ... o =0 B[ p.(X, )12 [[21 pro(X, 6),

where E{ stands for expected value with respect to P{.
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PROOF We prove Theorem 2.1 only in the case ¢£= 2. The general case is quite similar.

Let § be a maximum likelihood estimator. We shall see that if 8 is not uniquely defined,
i.e. when ties occur, then the asymptotic behavior of this estimator does not depend on the
way in which these ties are broken. Thus for 2 = 1, 2

PPEx) # 8) = PP (wr [12 p1(x, 1) + ws 15 0oy, m) > wi [[% pr(xy, 8) + w2 [[2 o, 6)
for some 7 #6)
= Yoo PP {w1 [17 p1(xj, m) + we []7 palxy, 1) > wy 11 p1(x), 6)
+ ws []1 pa(x), 6)}
= (m — 1) max,,=o PP (w1 [[7 p1(x,, ) + w; [7 po(x), n)
> w; [T pi(x;, 0) + ws [[7 pa(x;, 6)3.
Also
PP (8(x) # 8) = max .o PP (w1 [[7 p1(x,, m) + we [[7 p2(x,, )
> w; [11 pi(x;, 8) + ws [[1 p2(x), 6)}.
Thus because of our Lemma,
lim,..[ PP S(x) # 6)]V" = p,(0)
29 = MaXy=eMax;-12infs =0 EF'p (X, n)p7°(X, 0)p3°(X, 9).

Notice that conditions (2.1) and (2.2) are satisfied since because of the equivalence of our
distributions

PiP{a log[ p:(X, n)/p1(X, 6)] + b log[ pi (X, 1) /p=(X, 6)] > 0} > 0
if and only if
P {alog[p:(X, n)/p:(X, 6)] + blog[pi(X, n)/p:(X, §)] > 0} > 0.
The latter inequality must hold since for all @, 6 =0, a + b > 0,
E}{alog[p.(X, n)/p1(X, )] + blog[ p.(X,1)/p2 (X, 6)]} > 0.
It follows from (2.8) that
lim,.[wi PP (8(x) # 0) + wo PP (§(x) # 0)]Y" = max—rolim,..[ P (§(x) # §)]
= max(p1(6), p2(2)).
Thus if §* is a minimax procedure then

(2.9)  lim sup maxy[w; P’ (8*(x) # 6) + w, PP (8*(x) # 6)]Y" < max,—;..maxepx (6).

To complete the proof assume for sake of concreteness that maxp;(6) = maxep»(f) and
max,p;(6) = max,—12infs =0 E{'p!* (X, Opi*(X, £)pz'(X, £).

In this case we define the prior distribution A to be concentrated on {& S, A =A() =
% and let &5 be the corresponding Bayes estimator. Then for any procedure 8

max,[w; P’ (8(x) # 0) + w.PP(8(x) # 0)]
= %{wi[P(3(x) # &) + PP (8(x) # §)] +we[ PP (8(x) # &) + PP (3(x) # 9]}
= Y{wi[P{(85(x) # §) + PP (85(x) #£)] + wo[ PP (3p(x) # £) + PP (35(x) # O)]).

Using the Lemma again we see that
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[P (8s(x) # §)]/" = [P (p(x) = O]
= [P{w: [I7 pr(x, §) + w: [T7 po(x), §) > wi []5 pr(xy, €) + w2 [[1 pa(x;, 631"
— max,-12inf, =0 EFpi (X, Hp1°(X, Hp2'(X, §).
Also
[P (65 (x) # §)]"" — max,—1zinfu=0 Efp™ (X, H)p1°(X, Op2 (X, §)
and for any &
lim,_.inf max,[w; P§(8(x) # 8) + w, PP (5(x) # 6)]'/"
= max -1 smax {lim,.[ P (85 (x) # &)1, lim ... [P (85 (x) # $)]7")
= max {lim,.[P{"(85(x) # £)]"", lim,_..[P{" (85 (x) # {)]"/"}
= max;-1.maxgpz(6).

This inequality combined with (2.9) proves the Theorem.

COROLLARY 2.1. Under the assumptions of Theorem 2.1 fork=1, ..., ¢

(2.10) p( 2,) < max,max,xoinfs ..., =0 E[ p.(X, )"+ [[/=1 0% (X, 8).

Now we assume that m = 2 and the hypothesis testing problem is considered. Let ¢ *(x)
be a most powerful test of the simple hypothesis w; [[7 p1(x;) + w [[T p2(x;) against the
simple alternative w; [T ¢:1(x)) + w: [[T gz2(x;)).

THEOREM 2.2. Assume that ¢* has a fixed power B (independent of the sample size
n) and let a,f denote its level. Then
(2.11) ax'" — maxi<, pesinfymoe” KE Mg (X)p(X)pz (X)),

where K = max(K;, K,),
(2.12) K = min[EQ‘log{ﬁ (X)}, EQ‘log{g—l (X)}] . i=12
P2 P

and it is assumed that K, > K, implies 1 > w, > 8, and K, < K, implies 1 > w, =1 — w,

> B.

Proor. It is well known that a most powerful test ¢* of our hypothesis is given by
formula
1w [I7 i) + we [T7 ga(ay) > ealwn IT1 pr(x) + we I]7 p2(x)],
$*®) =< v wiII{ a1(x) + w2 [1 @2(%) = ealwr ITH pr(x) + w2 T p2(x)],
0w [[¥ q1(x) + w2 17 q2(x) < enw: T]7 pi(x) + wo [17 pa(x)],
with some cor ants ¢, > 0,0 =< y, < 1. Thus
W E%¢*(x) + wE%p*(x) =
and
w EP¢*(x) + wo EP¢*(X) = aft.
It follows that
Y=z wQ {w: TIT qi(x,) + we [T qa(x) > cn[w: [11 pilx) + w2 [[71 po(x))]} = B
=Y w @ {wi [[1 q1(x;) + we [[1 g2(x,) = calw: [11 p1(x)) + we [ pa(x,) ]}



1154 ANDREW L. RUKHIN

As in the proof of the Lemma one has for i = 1, 2
Q.(2 max[w [[1 q1(x)), w2 [[1 g2(x))] = exmax[w: [[1 pi(x), w: [T pa(x)])
Z Q. ([w: [I1 q1(x) + w2 [T g2(x))] = enlwr [T7 p1(x)) + w2 [11 p2(x)])
= Q. (max[w: [[1 q1(x)), w2 [T g2(x,)] = 2¢c,max[w: [[T pi(x,), wa [11 p2(x)]),
so that
Y=z w QT q1(x,) = 2¢n [[1 p1(x), [T1 q1(x,) = 2chtw i w2 [[1 pa(x)))
(2.13) + Q.17 q2(x) = 2cwiwz" TT1 pr(xy), [1% ga(x)) = 2¢. []1 p2(x))]1 < B
=P wlQC T a:(5) = e [[1 p1®), 2 111 1) = catwt'ws T3 po()
+ Q2 [T q2(%) = cawnwz' [ p1(x,), 2 [T1 q2(x)) = ¢ []7 p2(x))].
Let Y, = loglq:(x,))/p1(x,)], U, =log[qi(x))/p2(xj)],  V, = loglga(x,)/p1(x)],
W, =loglg:(x,)/p2(x))],  y,=j""log(c,/2),  wi=j 'log(wi'ws),
v =y +j logwiws"), j=1,2---.
Since n™' 31 Y, converges in @;-probability to E<Y;,
lim_.inf Q. (37 Y, = niyn, Y% U, = nuy) = 0,
if y = lim,_,..sup y, = lim,_osup #, > min(E®Y;, E?U,), and
lim,esup .1 Y, = ny,, 31 U, = nu,) =1,
if
u = lim,,_,oinf y, = lim,_,.inf u, < min(E %Y1, E®U;).

Since at least one of the probabilities in the right hand-side of (2.13) does not tend to
zero we conclude that

y < max,~1,[min(E®Y;, E®U;), min(E®V, E%W1)] = max(K}, K3),
where
K = max[min{E®log(q:/p1), E®log(q:/p2)},  min{E%log(q/p:)E%log(q>/p2)}].
We prove that K; = K,, where K, is as defined in (2.12). Let us show for instance that
(214)  min{E%log(q:/p1), E®log(q1/p=)} = min{E%log(g2/p1), E?log(q:/p2)).

If E9log(p2/p1) < 0, then E®log(q:/p:) < E%log(gz/p2) and E%log(g:/p1) < E®log(q:/
p2). But E®log(g2/p1) = E®log(q:/p1) so that in this situation (2.14) is true.
The case E“log(p:/p1) > 0 can be treated analogously. Moreover

min{E ®log(qz/p1), E%log(qz/p:)} = min{E%log(q:/p:), E%log(q:/p2)),

sothat K/ =K,,1=1, 2.
It follows from (2.13) that

Yi=12 Wlim,sup[@.F1 Yi=nu, YT U, = nuw) + @it V, = nu, Y1 W, = nu)] < .
If u < K and, say, K; > K,, then
lim,,.sup @ (X7 Y, =nu, Y7 U, = nu) =1,

which is impossible because of (2.13).
Therefore u < K and



ADAPTIVE DECISIONS 1155

lim,_on"tloge, = lim, .oyn = liMuootty = limpowU, = K.
Now we study the asymptotic behavior of the level a,¥ of test ¢*. Observe that
e wiPi(wr [7 q1(x) + w2 [T ga(x)) > calwr [11 p1(x,) + w2 []1 pa(x)]) = ai
= V=2 w P (wi [T q1x) + w: [[1 g2(x) = cnlwr [I1 p1(x)) + w2 []1 p2(x,))]).
Since all measures P,, @, i = 1,2 are equivalent and fora, b=0,a + b=1
aE® log(q./p1) + bE%log(q./p2) > K;,
one deduces
P.(a log(q./p1) + blog(q./p2) > Ki) > 0.
Iffork#iandalla, b=0,a+b=1,
P.(a log(qx/p1) + blog(qx/p2) > Ki) >0,
then we can use the Lemma to derive the following limiting relation
" (wi TTT q1(x) + we TTT g2(x) = ealwn TT1 pr(xy) + w2 IT1 pa(x)]}
— max,—y,inf; ;m0e CTEEP G (X)p (X )p2(X).
If, say, Ky > K, and fori=1,2,a+ b=1
P, (a log(g2/p1) + blog(qz/p2) > K1) =0,
then for all sufficiently large n
P2 111 q2(x,) = cawrwz [[1 p1(x)), 2 T[T q2(x) = ¢a [ p2(x))}
= P.2]]% q1(x) = cawrwz [[1 p1(x), 2 TT% q1(x,) = ¢ [T pa(x;))}.

Remark 1 shows that (2.11) holds in this case as well, and therefore Theorem 2.2 is
proven.

COROLLARY 2.2. If K, =K,, then
e—K(Ql,Pl) = maxk=I,Zinfs,lzoe_(s+t)KlEP‘qi+t(X)p1_s(X)p2_t(X).
Indeed it follows from proof of Theorem 2.2 that K; > K, implies E %¢* — 0, E™¢* —

0 and E9¢* — wi! < 1. Thus ¢ * is a test of hypothesis P versus @ of asymptotic power
at least 3. Because of (1.3)

e K@P) < lim,, . (ED¢p*)™.
But it also follows from the proof that
(E1$*)"" — max,—1zinf, =0 € T FE g (X)p1*(X)p2 " (X).
If K, = K,, then for i = 1, 2 lim inf E9¢* > 0, and

maxe-12inf,moe”NE g (X)ps(X) = limp.. (B¢ *)V" = 7K@ 1,

3. Necessary and sufficient conditions for the existence of adaptive proce-
dures. Let #,={P® € ®)},k=1,--., /be ¢/families given over the same space Z and
indexed by a finite parameter §. An estimator §(x) based on a random sample x =
(%1, - -+, Xx) is said to be adaptive for these families if for alkk =1, - -, #

3.1) max,[ PP (8(x) # )] — p( Ps).

Here p( 2) is defined by formula (1.1) and (3.1) means that §(x) is asymptotically minimax
with respect to each family 2.
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THEOREM 3.1. If an adaptive estimator exists for families #, = {P*, § € ©} with
pairwise equivaleni distributions then

—s,

(32) max <r=/p( Pr) = MaX1<ipp< MaAXguninfs ... s B[ p (X, ) 1E7 [[1=1 pr (X, 9),

where p,(x, 8) denotes the density of P If forallk =1, -+, ¢
(3.3) 0( P%) = Max,.«xMaXgsyinfs, ..., =0 EF[p.(X, )1 [[7=1 pr7 (X, 9),

then an adaptive estimator exists.
Proor. Let w,, ---, w, be positive probabilities. Also let §*(x) be the minimax
estimator based on the density Y w: [[T px(x,, 8). Then if § is an adaptive estimator,
max=x= ,maxsP§” (8(x) # 0) = max, ¥, wx PP (8(x) # ) = max, ¥ w:P§ (8*(x)  6).
Theorem 2.1 and formula (3.1) imply that

—s,

(3.4) maxi<p=,p( Pi) = Max =, k= MaXgrninfs, ... s = EF[ p.(X, 1)1 [[7=1 pr (X, 6).

But
(35)  maxps,inf, ... =0 EF[pe(X, )™ [I/=1 p (X, 0)

= maxy,inf=o E{” pi(X, n)pr*X, 0) = p(P),

so that (3.4) is equivalent to (3.2).
If condition (3.3) is met then the estimator 8 *(x) is adaptive. Indeed it follows from the
proof of Theorem 2.1 that

maxs[ PP (8*(x) # 6)]"/" — maxi=.= Maxsxyinfs, ..o 20 E§"[ p (X, 7) 12 [[/=1 pr(X, 0).
But because of (3.5) the latter relation implies that
lim max,[ P (8*(x) # 6)]"" < p( ),

so that §* is adaptive.

COROLLARY 3.1. If an adaptive estimator exists then (3.4) is actually an equality, as
follows from Corollary 2.1.

COROLLARY 3.2. If /= 2 and for some 6 # 0, p:(x, §) = p:(x, n), then adaptive
estimators do not exist.

This fact follows from the identity
inf, =0 E"ps™ (X, p1° (X, 0)p:'(X, 0) = inf=0 E{"pi(X, 0)p:'(X, 0) = 1,

which is true since E{'p*(X, 8)ps'(X, 8) is a convex function of ¢ and its derivative at zero

is positive:
EPlog[ pi(X, 0)/p2(X, 6)] > 0.

It follows from Theorem 2.1 (see (2.8)) that the maximum likelihood estimator & or the
Bayes estimator §p corresponding to the prior concentrated at two parametric points {£,
¢} are asymptotically minimax for ¥, w:. [[T pr(x,, 8) for any fixed positive weights w;,
«++, w. Therefore under Condition (3.3) both estimators are adaptive.

Another example of an adaptive procedure under (3.3) is the overall maximum likelihood
estimator §(x) : §(x) = n iff

max; [T pr(x;, ) = maxemax; [[1 px(x;, 0)

with ties broken in any (random) way.
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Clearly
max,[ P§ (5(x)8)17" ~ maxg, { P (max [[ipx(x,, n) > max [[? px(x,, 8))}/"

=5

— MaXi << ,MaXgeginfs, ... =0 E V[ pr(X, MN1E% [[L=1 pro(X, 8) = maxyp, (9),

so that § is adaptive.
Thus we can formulate the following result.

THEOREM 3.2. If Condition (3.3) is satisfied then the following estimators are adap-
tive:
(i) maximum likelihood estimators S(X) defined by

S(x) = n iff 3 we [[% pr (%, 1) = maxy ¥ { ws [[% pe(x,, 0),

where ws, - - -, w, are fixed positive weights;
(i1) overall maximum likelihood estimator defined by

S(x) = 7 iff max, [[1 pr(x,, n) = maxgsmax; [[T pr(x,, 0).
Now let us consider hypothesis testing problems and adaptive tests.

THEOREM 3.3. If an adaptive test of hypothesis P; versus @ and P versus Q- exists,
then

(36) max(e—K(Ql,Pl), e_K(szPz)) > maxz#kinfs,tzo e—(s+t)KEP,qz+t(X)pl—s(X)p2—l(X)’

where K= max(K;, K,) and K,, i = 1, 2 are given by (2.12).
IfKi=K,=Kandfori=1,2

(3.7) Mmaxsqinf, moe Y XE i  (X)pri(X)ps(X) = e K@),

then an adaptive test exists.

Proor. Let ¢ be an adaptive test for hypotheses P; against €, and P, against @ of
power 8. Then

W E9¢ + w.E%¢p = B,
so that ¢ as a test of hypothesis w:P; + w. P, against w,Q, + w:Q: has power B for any
positive w1, ws, w1 + we = 1. Therefore

max(e—K(QhPl)’ e—K(szpz))

= max(lim,—.«(E"'¢)"", lim,_.(E"$)"")
(3.8) = lim, (1 ET'¢ + wo ET2¢) " = lim, o (w1 EP'¢* + woE 29 *)'"

= max, xinf, moe “X¥E g (X )prt(X)p2(X).
Here ¢* is the optimal test of hypothesis w;P; + w2 Ps versus w1 @, + w2Q2, and the weights
w, w; are assumed to satisfy the condition of Theorem 2.2.

Alsofori=1,2
3.9) infumoe” “FE g (X )pr (X )p2 (X)) < infomoe” T RE P (X )p (X))
< infoeFEPq (X )pis(X) = e X@P),

Therefore (3.8) implies (3.6).
Now assume that K; = K, = K. Let
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1w 7 qux) + ws [T1 go(x) > e[w: [T1 pr(x) + ws [T4 pa(x)],
ou(x) =< v wi [I7 qu(x) + we []1 ga(x) = c¢P[wi [[7 pr(x)) + ws []7 pax)],
0w [IT ¢1i(x) + we [I1 qo(x)) < e[wn TI7 pr(x) + we []% palx)],

where ¢ and v, 0 < y\’ < 1 are chosen in such a way that for i = 1, 2

E%,(x) = 8.
It follows from the proof of Theorem 2.2 that lim{rn"'log ¢’} = K. Define a new test
b:0=¢1if c\’ = c\? and ¢ = ¢» otherwise. Then E®¢(x) = 8 and

lim, .. { EP'¢(x)} " = max=, p=oinfs =0 T OXE g i (X )pr8(X )p3i(X).

Because of (3.9) the latter relation implies that
lim, e { EP(x)} /" < e K@P),

which proves the Theorem.
CoROLLARY 3.2. If an adaptive test exists then (3.8) is actually an equality.

4. Examples. In this Section we illustrate Theorem 3.1 by two examples, assuming
for simplicity that ® = {0, 1}.

EXAMPLE 1. One-parameter exponential families. Let measures P be defined over
an abstract space 2 and let their densities with respect to some o-finite measure u be of
the form

Pr(x, ) = {C(ar(6))) "exp{ar(@)v(x)},

ax(0) # a,(8) for k 5 i. Here C(a) = [, e du(x) and « belongs to the natural parameter
space, which is, of course, an interval with endpoints «a-, a.. We assume that the common
support of all measures P has at least two points. It is well known that in this case f(a)
= log C(a) is a strictly convex function. We define for k=1, ..., ¢

H(ar(8), ax(n))

infocse in‘s(x, 0)pi(x, n) du(x)
(4.1)

exp infocsai flar(n)s + ax(@)(1 — 8)) — sf(ex(n)) — (1 — 8) f(a(0))],
so that
p(24) = exp(maxyoH(ax(6), au(n))).
To check the conditions of Theorem 3.1 assume that /= 2. Then we have to evaluate
inf, =B {"ps™(x, npr*(X, 0)p2'(X, 6)
4.2) = exp{inf, o[ f(az(n) (s + ¢) + (@)1 — 5) — a2(0)2) — (s + t) flax(m))
— (1 = 8)f(au(8)) + tf(2(6))]}
and
inf, i=oE Ppi™(X, Npr*(X, 0)pz (X, 0)
4.3) = exp{inf=ol flaa(n)(s + ¢) + a2(0)(1 — ¢) — a1 (8)s) — (s + ¢) f(er(n))
= (1 = Of(a2(8)) + sf(aa(@)]}
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for 6 % 7.

Notice first of all that the vector of partial derivatives of the functions in (4.2) and (4.3)
does not vanish in the open quadrant {(s, t), s > 0, ¢ > 0}. (Actually only the subset of this
region, where a_ < (s + t)az(n) + (1 — s)a1(f) — taz(f) < as, has to be considered.) Indeed,
in the case of the function in (4.2), this vector vanishes if and only if

{az(n) — a1(0)} f'(eu(0) + s{az(n) — a1(8)} + t{aa(n) — a(8)}) = flaz(m)) — feu(8))

and

{aa(n) — a2(0)} f'(0a(8) + s{az(n) — c(0)} + t{ea(n) — a2(8)}) = flaz(n)) — fle2(6)),
which implies that
4.4)  {flaz(m) — f@(8)}{oe(n) — a:1(8)} " = { flax(m)) — f(a2(8))} {c(n) — a2(6)} 7"

Since { f(az(n)) — f(a)}{az(n) — a} ™" as a function of a is strictly monotone, (4.4) means
that a;(8) = a2(8), which contradicts our assumption. Therefore

inf i=of flaz(n) (s + t) + a1(8)(1 — s) — a2(0)¢)
— (s + t)flaa(n)) — (1 — 8) flau () + tf(02(0))]
= min{infeol f(az(n)s + a1(8)(1 — 5)) — sf(ax(n)) — (1 — 8)f(er(@))],
infiol f(a1(8) + (a2(n) — a2(0))t) — f(au(6)) — tf(ax(m)) + tf(e2(6))]}.
= min{H(ax(n), :(0)), H(1(0), a=(n))}.
Thus condition (3.3) of Theorem 3.1 means: for 2 =1, 2
maXe,[ H(ax(8), ar(n))] = max;.«emaxsH(a:(0), ar(n)).
The Condition (3.2) takes the form
max,—1 smaXg«,H(a(0), a;i(n)) = max«maxp,H(al(f), a.(n)).
These results can be easily extended to the case of arbitrary finite £ We formulate them
as
THEOREM 4.1. Let
(4.5) pr(x, 0) = {C(ar(8))) 'exp{ax(@)v(x)}, k=1,--+,¢

be densities of a one-parameter exponential family a,(8) # ax(0) for i # k. Assume that
the common support of px, k = 1, -+, £ contains more than one point. If an adaptive
estimator exists, then

(4.6) Max; <p<MaXge,H(ar(0), ax(n)) = max<, << maxg,H(a:(8), ar(n)),
where H(ay(8), an(n)) is defined in (4.1). If for k=1, ---, ¢
4.7) maxg,H(ax(0), ar(n)) = max,«maxgH(c.(8), ar(n)).

then an adaptive estimator exits.

The heuristic interpretation of (4.6) is that an adaptive estimator cannot exist if all
measures P and P\°, i # k, 8 % 7 are “closer to each other” than measures P§" and P\".

Theorem 4.1 contains many interesting cases.

(i) Normal distributions with unknown means ax(8) and known variance o In this
case u(x) = x/0%, Cla) = exp{a®/(20%)}, f(a) = o*/(20°). Easy calculation shows that
H(a, B) = —(a — B)?/(80%). According to Theorem 4.1 an adaptive estimator exists if for 2
=1,...,¢

(4.8) N MiNgsy | ai(0) — or(n) | = Mings, | ax(8) — ar(n)].
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If an adaptive estimator exists then
(4.9) MiNi <<, Milgsy | () — (1) | = Minxming, | a.(8) — ax(n)|.

This example shows that the sufficient condition of Theorem 3.1 is actually stronger
than the necessary condition. If, say, m = 1, —a;(0) = a;(1) = « > 0 and a2(0) < 0 < ax(1)
then Condition (4.9) means that « < min{] a2(0) |, a2(1)}, but Condition (4.8) just means
that az(1) = a = —a3(0). Other examples of such kind can be obtained from (ii) and (iii).

(ii) Scale parameter families. Here we have densities of the form
Pil(x, 0) = C{a(6)) exp{—a(8) | x|},  —o < x <o,
or of the form
Dprlx, 0) = C{a(0)}° exp {—a(f)x"""}, x=0.

(These families include normal, exponential and double exponential distributions with
unknown scale parameter.) In this case C(a) = a ¢, f(a) = —a log a,a > 0, a > 0. Also

H(a, B) = ainfio[slog a + (1 — s)log B — log{as + (1 — s)B}]
= a infe>o[s log y — log(1 — s + sy)],
where y = a/b. For y # 1
inf.o[slog y — log(1 — s + sy)] = (y — 1 = log v)(y — 1) — log{(y — 1)/log v} = A(y).

It is easy to check that A(y~') = A(y) and that A(y) is a unimodal function which attains
its maximum at y = 1 and is increasing for 0 < y < 1.
Therefore inequalities (4.7) in this case mean that

1 < maxgp;max[az(6) /ar(n), ar(n)/ar(0)] = max, «rmaxg.,max[a.(6)/ar(n), ar(n)/a.(6)],

in which situation an adaptive estimator exists.
Also because of (4.6) an adaptive estimator does not exist if

maxi<e<, maXge,max[ax(6)/ax(m), ar(n)/ax(n)]

> MaXi<sr=,MaXgemaxa,(8)/ar(n), ar(n)/a(8)].

(ii1) Binomial distribution. Here
N —X
prlx, 0) = <x>{pk(0)}"{1 —pr(0)}" 7, x=0,--+,N,

a(f) = log p(8)[log {1 — p(#)} T"". Although this example is of the type treated in Theorem
4.1 it is more convenient to evaluate the function H( px(0), pz(1)) directly:

exp H(p:(0), pr(1))
= inf=o Y2lo (ZZ>[Pk(0)]sx[Qk(0)]S(Nx)[pk(l)](l_S)x[Qk(1)](1_3)(1\,x)

= infeo{[ P (0) [P (D] + [gx(0)] [gx (D]} = p(2),
k=14  q)=1-—p(6), 6=01
For a fixed % let
Hi(y) = infeo[ pi*(Dy° + 211 = 7)°]
0 = y = 1. The function H;(y) is unimodal with a maximum at y = px(1). The condition

H(pk(o)y Pk(l)) = maxl:z#kH(pl(0)7 Pk(l))’
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which is equivalent to (3.3), means that
H.(pr(0)) = max, ..« He(pi(0)).

This condition, of course, signifies that p,(0) is “closer” to p.(1) than p;(0), i # k, and if this
holds for all %, an adaptive estimator exists. If it exists, then

max;, Hy. (px(0)) = maxicme< Hr(p:(0)).

Similar examples can be given for Theorem 3.3.

ExaMPLE 2. Location parameter families on a cyclic group. Assume that %' = 0=
{0, 1}, pr(x, 8) = pr(x — 8), k=1, - - -, £, where difference x — fis understood to be modulo
two. Thus p(0) + px(1) = 1 and

o(2:) = infizo { pA(VPA(0) + pi(0)pE (1)} = 2{ pa(O)pa(1)}"”.
Also if, say, /= 2,05# 1
inf, =0 E{'p3*(X, n)p1*(X, 0)pz'(X, 0)
= infi=o[ P35 ()Pi~*(0)p2'(8) + ps*@)p1*()pz'(m)]
= min {infiea [ P17°(O)p3(n) + P17 ()P3(O)],
infien2[ p1(0)p1 ()]~ p2(8)p2(n) I7*},
where
A = {s:5>0,p1°(0)p3(n) > pi~(n)p3(6))},

and B is the complement of A.
If p1(6) < pi(n), then the set B contains zero and

inf,es2[ p1(9)p1(n)1*7772[ p2(@)p2 ()17 < 2[ p1(O)p1 () ]? = p(A).
If p1(6) > pi(n) and p2(n)p=() = p2(0)p2(1) < p1(0)p:1(1), then
infuen2l p1(0)p1 ()] p2(8)p2(n)]”* = .
If p1(8) > p1(n) and p2(0)p2(1) > p1(0)p:1(1), the set A contains the interval [0, 1] and
infiea[P17°(0)p3(n) + p17°(n)p3(6)] = infien2] p1(8)p1(n)]1" ™2 p2(0)p2(n)]*°.
LetforO<p<1
Hy(p) = infoze=1 [ pi(0)p° + pi (1)1 — p)°].

Then H(p) is a unimodal function with a unique maximum at p = p,(0), and it is
increasing in the interval (0, px(0)). The inequality

infea[ pI~°0)p3() + P17 M)3(0)] < p(Z:)
means that
H,(p2(1)) = Hi(p:(1)).
Also if p2(n) < p2(8)
inf, = E{"p$*(X, n)p1°(x, O)pz'(x, 6)
= min {infies[ p1*(0)p3(n) + pi~*()p3(0)], infica2[ p1(@)p1 ()12 p2(8)p2 () 1*}.

The latter quantity is less than p(2) if p1(8) > pi1(n) or if p1(8) < p:1(n) and p2(0)p2(1) <
p1(0)p1(1). When p1(6) < pi(n) and p2(0)p2(1) > p:(0)p:(1), this inequality means that

H(p>(n)) = Hi(p:1(1)).
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Thus
o(2) < maxgeint, =0 E§'p5 (X, n)p1°X, 0)pz'(X, 6),

if p2(0)p2(1) > p1(0)p:1(1) and pi(1) > p1(0), p2(0) > p2(1), H(p2(1)) > H(p:(1)), or p:(0) >
pi(1), pa(1) > p2(0), Hi(p2(1)) > Hi(p:1(1)).

Because of the mentioned properties of the function H inequalities p;(1) > p1(0), p2(0)
> po(1) and | p2(0) — % | > | p1(1) — %| (which is tantamount to p2(0)p2(1) > p1(0)p:(1))
imply that H(p2(0)) > H(p:i(1)). Also inequalities p;(0) > p1(1), p2(1) > p2(0) and | p2(1)
— %|>|p:(1) — %| imply that H(p2(1)) > Hi(p:1(1)).

Therefore, in general, an adaptive estimator exists if and only if px(1) > p:(0) & =1,
«ee, for pr(l) < pr(0), B =1, .-, £ In these cases the estimator which takes the value
corresponding to the minimal (maximal) observed frequency is adaptive.
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