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SEMI TAIL UPPER BOUNDS ON THE CLASS OF ADMISSIBLE
ESTIMATORS IN DISCRETE EXPONENTIAL FAMILIES WITH
APPLICATIONS TO POISSON AND NEGATIVE BINOMIAL
DISTRIBUTIONS'

By JiuNN TzoN HwANG

Cornell University

Admissibility problems involving simultaneous estimation in discrete
_exponential families are studied by solving difference inequalities. It is shown
that if an estimator is admissible under the loss function L (8, a) = Y-, 67"
(8. — a.)? then in the tail (i.e., for large values of the observations), this
estimator has to be less than certain bounds. Specific bounds, called Semi
Tail Upper Bounds (STUB), are given here.

These STUBs are not only of theoretical interest, but also are sharp
enough that they establish many new results. Two of the most interesting
ones are: (i) the establishment of Brown’s conjecture concerning inadmissibil-
ity of some of the estimators proposed by Clevenson and Zidek (1975), and (ii)
the establishment of inadmissibility of Hudson’s (1978) estimator which
improves upon the uniformly minimum variance unbiased estimator in Neg-
ative Binomial families.

1. Introduction. Let X = (Xi, ---, X,) be a random observation having a
distribution characterized by = (6, - - - , §,). Consider the problem of estimating # under
the loss function

(1.1) L (8, 8) = X2, 07(8: — 6.)°

where 8 = (81, - - -, §,) is an estimator of 6. In this paper, the notion of a Semi Tail Upper
Bound (STUB) on the class of admissible estimators is introduced.

To illustrate the idea, we focus on the sum of squared error loss, i.e., Ly, with m = (0,
.+., 0). A statistic or an estimator S(X) = (S$:(X), -, S,(X)) is called a STUB in the
direction d(x) = (di(x), ---, dp(x)) if any estimator 8(X), satisfying 8(x).-d(x) =
S(x)-d(x) for all x outside a compact set in R?, is inadmissible. The existence of a STUB
provides a very efficient way to check whether an estimator is inadmissible. STUBs were
found by Brown (1971) for the case in which the observations X;, i = 1, ..., p, are
independent normal random variables with mean 6, and variance one. By associating the
estimation problem with diffusion processes, Brown proved that the estimator of the
James-Stein type

£
is a STUB in the direction x if /< p — 2. His arguments, although interesting from both
probabilistic and statistical viewpoints, are difficult to generalize to other distributions.

In this paper, by using a different argument outlined at the end of Section 1, a general
type of estimator is shown to give rise to STUBs for the case when the observations X,
i=1, ..., p, are independent random variables from discrete exponential families with
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density
(1.2) fi(x.]0.) = pi(6.)t:(x:)07, x:=0,1,2, - -+

under the loss function Ly,. (The definition of a STUB for L., is similar to the one above,
but with some modification). Special cases of (1.2) are the Poisson distribution (denoted
by Po(6,)), for which p,(6;) =e™* and ¢/(x,) = 1/x,!, and the Negative Binomial distribution
(denoted by NB (r;, 6.), r: known), for which p,(6,) = (1 — 6,)* and t;(x;) = C(r; + x; — 1,
r. — 1) where C(ky, k2) denotes k:!/{ks!(k; - k2)!}.

In particular, for the Poisson case, some of the improved estimators in Clevenson and
Zidek (1975), Peng (1975), and Tsui and Press (1978) are STUBs under certain loss
functions. For the Negative Binomial distributions, some of Hwang’s (1982a) improved
estimators are also STUBs under the sum of squared error loss.

All the directions d corresponding to the STUBs developed here have positive compo-
nents and therefore the existence of a STUB indicates that, in order to be admissible, an
estimator cannot be too large in the tail region. Many new results can be established easily
using the STUBs. In this paper two particularly interesting facts are proved: (i) that
Brown’s conjecture holds concerning inadmissibility of some of the estimators proposed
by Clevenson and Zidek (1975), and (ii) that Hudson’s (1978) estimator, which dominates
the uniformly minimum variance unbiased estimator (UMVUE) in Negative Binomial
families, is inadmissible.

The procedure of proving an estimator S(X) to be a STUB is very similar to the
procedure of improving upon S(X). If, for some ®(x), S(X) + ®(X) dominates S(X), and
®(x) satisfies the conditions in Theorem 2.1, then S(X) is a STUB in some direction d(x);
d(x) = —®(x) for the sum of squared error loss. To find ®(x) satisfying the conditions in
Theorem 2.1, we solve an inequality using the discrete analog of Stein’s (1973, 1981)
identity which appears in Hudson (1978).

2. Definition and sufficient conditions of a STUB. Let X = (Xi, :--, X,) where
the X; are p independent observations having discrete density (1.2). Under the loss L., we
give, in this section, the definition of a STUB and develop a set of conditions sufficient for
a statistic (an inadmissible estimator itself) to be a STUB.

Since our observations take only integer values, all the X; and x, below are assumed to
be integer valued. Let e; be the ith coordinate vector of p components, i.e., the ith
component of e, is one and the rest are zero. We will say that a statement holds for
sufficiently large x, if there exists an M such that the statement is true for all x of which
all the components x, = M, i=1, ..., p. The definition of a STUB is now stated below.

DEFINITION 2.1. Under the loss function L, a statistic 8° (or an estimator of ) is a
STUB in the direction d(x) = (d1(x), - - - , dp(x)), if every estimator & satisfying

(2.1) i1 80(x — mie)di(x) = Yo 8.(x — m.e;)d,(x),

for sufficiently large x, is inadmissible.
By definition, &° itself is clearly an inadmissible estimator. The statistic 8° is called a
STUB because for any admissible estimator 84 = (8¢, - - . , 87), it must be true that

(2.2) Y8t (x — me)di(x) = ¥ 80 (x — mee;)d;(x)

for a certain sequence of x’s approaching (, ..., »). However this inequality does not
necessarily hold for any sufficiently large x. This accounts for the prefix “Semi”.

The definition seems most natural for the sum of squared error loss. In this case,
condition (2.1) reduces to the comparison of the projections of 8°(x) and of 8(x) in the
direction d(x). For general L., we can establish STUBs only in the sense of (2.1). The
following lemma does present one important special case, however, in which m can be
ignored.
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LEMMA 2.1. Under Lu, assume that 8° is a STUB in the direction d, where d;(x) =
0,i=1,---,p. If8:(x) = 8?(x),i=1, - - -, p, for sufficiently large x, then 8 is inadmissible.
0

Before developing sufficient conditions, we describe Stein’s technique (1973, 1981) in
our context. As usual, the risk function of an estimator 8, with respect to L, is denoted by
R (0, 8) = E¢{Ln(0, 8(X))}, where E; denotes the expectation when X is distributed
according to @. Often E, will be denoted simply by E. Let Z be the set of all nonnegative
integers and Z” be the p-fold Cartesian product space of Z.

To attempt to improve on 8°, write the competitor 8 *(X) = 8°(X) + ®(X) where ®(X)
= (®:(X), - -+, D,(X)). The following lemma gives the unbiased estimate of the difference
of the risks of 8* and &°.

LEmMMA 2.2. Under the loss function L, assume that R (0, 8°) < © and E,®4X) <
wforalli=1,2,...,pand all 8. If ®;(x) = 0 whenever x; < —m;, then

(2.3) R(0,8*) — R (8, 8°) = E;2(8°(X), ®(X)), where
2(8°x), P(x)) = Y21 {2 6%(x — mie;))D:(x — me)ti(x; — m;)
(2.4) —2®;(x — (m; + 1)e;)ti(xi —m; — 1)
+ ®FHx — mue;)ti(x: — my) )/t (x;).

Proor. It is proved in Hwang (1979) that for any function g(x) defined on Z” for
which Es| g(X) | < «, the equation

(2.5) Ef7g(X) = E[g(X — mie))t: (X; — mi) /t:(X;)]

holds if g(x1, -+, xi, -+, xp) = 0 whenever x; < — m; special cases can also be found in
Hudson (1975) and Tsui and Press (1982). Expanding the quadratic parts in (1.1) gives

(2.6) R(6,8*) — R(0,8°) = E Y21 {2 07(8?(X) — 6,)9;(X) + 67D (X))
which, together with (2.5), implies this lemma. O

Stein’s idea is to find ®(x) such that 2(8°(x), ®(x)) is nonpositive for all x and is
negative for some x € Z?. Under the assumptions of Lemma 2.2, this clearly implies that
8* dominates 8°. For convenience, 2(8°(x), ®(x)) will be denoted by 2(8°, ®@).

Sufficient conditions for 8° to be a STUB can now be established. Let I/(x) be one if
x; = M for all i and zero otherwise.

THEOREM 2.1. Under the assumptions of Lemma 2.2, if ®;(x) = 0 for all x and
2(8°, ®) < 0 for sufficiently large x, then 8° is a STUB in the direction d(x) with ith
component

di(x) = — Q;(x — me;)ti(xi — my) /ti(x;).

ProOF. Let 8 be as in Definition 2.1. If R (8, 8) = o for all §, then 8 is dominated by
a constant estimator and is inadmissible. Thus suppose R (6, 8) < « for some 8, and
consider this @ in the remainder of the proof. Let M, be a number such that (2.1) is satisfied
for all x = (x1, ---, xp) With x; > My, i =1, --., p. To complete the proof, it suffices to
prove that 8(X) is dominated by 8 *(X) = §%(X) + In(X)®(X) for some M > M,.

From (2.3) and (2.4), R(8, §*) — R(0, 8) = E 2(8, I,®). By the monotonicity of Is(x)
and the fact that

D;(x) < 0, 2(8, In®) = Iy (x)2 (8, ®) < In(x)2(8°, ®).
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By assumption 2(8°, ®) is negative for sufficiently large x, hence an appropriate choice of
M guarantees that 2 (9, I ®) is nonnegative for all x, and negative for sufficiently large x.
This implies that § is dominated by é* and is inadmissible. [

The above proof also establishes the following Corollary.

COROLLARY 2.2. Under the conditions of Theorem 2.1, 8°(X) is inadmissible and is
dominated by 8°(X) + In(X)®(X) for some large enough M.

ProoF. Let 8 = 8° in the proof of Theorem 2.1.

3. Development of STUBs. By Theorem 2.1, in order to prove an estimator 8° to
be a STUB, it is sufficient to find ®; < 0 so that 2(8°, ®) < 0 for sufficiently large x. The
general theory we develop for doing this is, unfortunately, very cumbersome notationally.
The examples following the theory (i.e., after Theorem 3.2) can be read independently,
however.

Let n;, be the Kronecker constant, i.e., n,, = 1 or 0 depending on whether i = j or i # J.
Let a* denote max(a, 0) for any number a. In this section, we will consider an estimator
8° with ith component

tz(Xz - 1)
L(X.)

@) &¥X =

Si(X; + my) {1 — 46B.H? (X, + m)AH (X, + mi) }+

Yo Hj (X, + may)

where we use the notation AG(x,) = G(x;) — G(x, — 1) for any function G(x,). The
constants, B; = 0 and 4, — < 4 < o and the functions S; and H; are arbitrary, and are
assumed to satisfy the following conditions:

(3.2) H,(x,) is nonnegative and strictly increasing;
(33) H,((x;—1)/H,(x,) —> 1 as x; > o;
(34) S.(x,) is nonnegative for all x; and is positive for x, = 0.

It can be seen, as in the following Theorems and Corollaries (3.3 through 3.8), that
many improved estimators are of the form (3.1) and satisfy (3.2), (3.3), and (3.4). Although
Si(x,) = 1 in these theorems, it is probably useful for future study to consider the more
general 8°.

In the remainder of this paper, for any function g, [[i-. g(x) and Yi_. g(u) are
interpreted, respectively, as 1 and 0 if x < a. Define

ti(k)

(3.5) h(x,) = Ekl:(m’ﬂﬁti(k——mz—l)

=0 87! (u),

Dy(x) = ¥¥_y HP(x,) and D(x) = Y?_; h%(x;) for some positive numbers B, --- , B,.
Often D, (x) and D (x) will be denoted by D, and D. Furthermore, define for some constants
4>6,A=0and c >0,

(3.6) D, (x) = q:(X)i(x), . (x) = D§(x + mqe;) [[525" Si'(u),
. (X) = —ch,(x, + m,)/ D x + m;e;).

Now the general inadmissibility result is stated below:

THEOREM 3.1. Suppose that Conditions (3.2), (3.3), and (3.4) hold. If, fori=1, - - -,
D, (i) R(, 8°) < and E®}(x) <  for all 8, (ii) h;(x;)/hi(x; — 1) — 1 as x; — oo, (iii) for
some finite constant K,
ti(x, — m;)

4 2( x:
i=1 hz(xz) ti(x;)

{Il5-0 S7%(u)}D§/D* < K,
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(iv) p > A maxi<=, B, then 8° is inadmissible. Indeed 8°(X) is dominated by 8§°(X) +
LiX)®(X) for some M > 0, and 2(8°, ®) < 0 (as in (2.4)) for sufficiently large x.

Proor. See the Appendix. [
The main theorem of this paper, below, is now a consequence of Theorems 3.1 and 2.1.
THEOREM 3.2. Assume that all the conditions of Theorem 3.1 hold. Under the loss

function L, 8° as in (3.1) is a STUB in the direction d with ith component
di(x:) = b (x)t, (2 — ma) /{t:(x) [Tii=0 S.(w)}.

ProoF. From Theorems 3.1 and 2.1, 8° is a STUB in the direction d* with
d¥(xi) = eDGD ™k, (x:)ti (x: — mu)/ {ti(x.) [[iizo Si(u)}.

Since e¢D§D™ is positive for sufficiently large x and is independent of i, a STUB in the
direction d* is clearly a STUB in the direction d.

We specialize the above general results to some particular distributions below. In
Theorems 3.3, 3.4 and 3.5, X;, ---, X, are assumed to be independent Poisson random
variables with means 6, - - - , 6,. Each of the estimators considered in these theorems was
shown by previous authors to dominate the standard estimator X under a certain loss
function and yet is shown here to be an inadmissible STUB under the same loss function.
Let %, denote the loss function L, as in (1.1) withm = (m, m, --. , m), i.e.,

Ln(0, a) = 3,070 — a:)”.
The proofs of Theorems 3.3 through 3.6 are direct applications of Theorem 3.2 and

therefore are omitted. Note that these theorems hold for any dimension p.

THEOREM 3.3. Let h(x,) = Yic: k7' Under the loss function %, the estimator 8"
glven componentwise by

¢h(X.)

3.7 ¥X) ={Xi— 5o
o 0= (g

} ) f<p - 2)
is inadmissible and is a STUB in the direction d(x) = (h(x1), ++ -, h(x,)).0

Note that 87 is similar to Peng’s (1975) estimator.

THEOREM 3.4. Consider the loss function %,,, with m a negative integer and let h(x;)
= [[xZ (x; + k). The estimator & of Tsui and Press (1982), given componentwise by

(3.8) 87(X) = {X, X, + m) } , < -m(p—1),

3 A&+ many)
is inadmissible and is a STUB in the direction d(x), with d;(x;) = 1.

It was proven in Clevenson and Zidek (1975) that

CZ — _ 2 "
(3.9) 8 (X)—(l p_—1+zxj> X

dominates the standard estimator X under .%,,, with m being any negative integer, if p =
2 and 0 < ¢ < 2(p — 1). However, 8€ is inadmissible for the values of ¢ given in the follow-
ing theorem.
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THEOREM 3.5. Under %,, m being a negative integer, the estimator 8%, with ¢ <
(=m)(p — 1), is inadmissible and is a STUB in the direction d given componentwise by

di(x)) = (x; + )/ (x, —m)! O
Results similar to Theorem 3.5 can also be established for the estimators in Ghosh and

Parsian (1981). Assume in the next theorem that X;, i =1, ..., p, are independent random
variables having NB(r,, §;) distributions. The parameters r, are assumed to be known.

THEOREM 3.6. Let h(x;) = Yi-1 (r, — 1 + k)/k. Let 8"® be the estimator of 0 given
componentwise by

X )
rn—-1+X; Z,hZ(X,)

Under %, 8"® is inadmissible and is a STUB in the direction d(x) with d,(x;) = h(x)). O

(3.10) SVE(X) = { } , £{<p-—2.

Many inadmissibility results of previous authors are immediate consequences of Theo-
rems 3.2 through 3.6 and Lemma 2.1 For the Poisson families, Theorem 3.3 implies that
the UMVUE, X, is inadmissible under %, for p = 3, a result first obtained in Peng (1975).
It is also a corollary of Theorem 3.4 that the same estimator X is inadmissible under %,
if m < 0 and p = 2, a result of Clevenson and Zidek (1975). From Theorem 3.6 it follows,
for Negative Binomial Families, that the UMVUE, (Xi/(ri + X: — 1), -+, X,/ (rp + X, —
1)), is inadmissible under % if p = 3, a result by Hwang (1982a); Hudson (1978) proved a
special case of this result.

More elaborate applications of Theorems 3.2 through 3.6 yield strong new results. Only
the most interesting ones are given below.

In Corollaries 3.7 and 3.8, the observations Xj, - - -, X, are assumed to be independent
Poisson variables with means 6y, - - -, 6,.

COROLLARY 3.7. Under ¥_,, the estimator 8*, given componentwise by
(3.11) 85 (X) = XI-1 X)X/ (B+p -1+ 351 X))

is inadmissible if B < 0.

Proor. Compare 8* with the STUB 8 given in (3.9), where %, = %, and Zis
chosen tobesuchthat B+ p—-1<¢<p—-1. O

Brown (1979) conjectured that &* is admissible if and only if 8 = 0. Here, for the
inadmissibility part, we have shown this conjecture to be true. For 8 = 0, Brown and
Hwang (1981) established the admissibility of 8*. Clevenson and Zidek (1975) proved the
same result for 8 > 1. Therefore, the condition 8 < 0 for the inadmissibility of 8* is as
weak as possible. Thus in this case, Theorem 3.5 provides very sharp STUBs.

Even though 8™ is admissible under £, if 8 = 0, it is inadmissible under some other
loss functions, as the following corollary shows. Therefore, the admissibility property
seems to be fairly sensitive to the loss function used.

CoroLLARY 3.8. Under the loss function %,, m a negative integer, the estimator 8*
is inadmissible if B < (—m — 1)(p — 1).

Proor. This follows from Theorem 3.5 and Lemma 2.1. 0O
The corollary below concerns the case in which the independent observations have

NB(r, 8 distributions where r is assumed to be known. Hudson (1978) developed the
estimator 8", given componentwise by
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X [NG) - 31'hX)
r—-1+X SR X))

where N(X) = # {i:X; > 0}. He proved that 8” dominates the UMVUE of 8 if the loss
function is % and p = 4. However, it is again inadmissible.

(3.12) 87(X) =

s h(x) =Yk (= 1+ k) /&,

COROLLARY 3.9. Ifp = 3, then 8" and its positive part (8”)* are inadmissible under
.

Proor. Compare 8 and (6”)* to the STUB 8"? in (3.10) with /=p — 25 and r; = r
foralli. O

4.Discussion. Ofinterest is the statistical significance of the direction d(x) associated
with a particular STUB, &°. For %, it can be seen that, by moving 8° (which satisfies all
the conditions in Theorem 3.1) toward the direction —d(x), one can improve upon 8°.
Some STUBs can be improved in several directions; the directions lie in a certain limited
range.

In discrete exponential families, the estimator §(X) = (0, - .., 0) is clearly admissible.
Therefore, nontrivial “lower bounds” on the class of admissible estimators do not exist.
However, in the continuous case (e.g., gamma families) under certain loss functions, one
must pull the standard estimator away from (0, 0, - - - , 0) to improve upon it. (See Berger,
1980). In such a situation, nontrivial “lower bounds” do exist; for details, see Hwang
(1982b).

The technique developed here can be used to provide a simpler proof of some of Brown’s
(1973) inadmissiblity results by showing that8?° is in fact a STUB in the direction x = (x;,
-++, x,). These results are again established by proving that 8/° can be improved by
shrinking it toward the direction (xi, - - -, x,). See Hwang (1982b).

Note that Brown (1971) also established, for the case described in Section 1, that
admissible rules have to be generalized Bayes and that any generalized Bayes rule 8%, for
which |8%(X) — X| is uniformly bounded, is admissible, if x-8%(x) = x.87% (x) for
sufficiently large x. These results indicate that {875, /< p — 2} are not only STUBs, but
also approach a “dividing line” 875, (a term borrowed from Strawderman and Cohen, 1971)
between admissible and inadmissible rules. In each problem considered here, it is possible
that the STUBs also approach a dividing line between admissibility and inadmissibility.
Of course, all the results developed here apply not only to simultaneous estimation
problems, but also to the one dimensional case (p = 1) as well.

In applying a STUB to prove inadmissibility of 8 = (8, ---, &), there is an easy
generalization of our result. Clearly, inadmissibility of the “sub-estimator” (e.g., (81, Js,
..+, 8,) where g < p) under the corresponding “sub-loss function” (e.g., Y% 67(8; — 61)%)
implies the inadmissibility of 8 = (81, -+ -, 8,) under L. Therefore, instead of trying to
compare the whole estimator 8 to a STUB, we can deal with a sub-estimator and compare
it with a STUB of the same dimension.

Another generalization is that any estimator which is proved to be inadmissible under
L., in this paper is also inadmissible under the loss function L%,(8, a) = ¥ 2, k67™(6 — a,)*
where k&, > 0. This is true since in the proof of Theorem 3.1 the existence of a nontrivial
solution of (A.4) implies the same for the difference inequality

21 ki{v(x) F(x)Api(x) + wi(x)9pF(x)} = 0.
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want to express my gratitude to Professor L. D. Brown for many interesting discussions.
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APPENDIX

To use Lemma 2.2 to prove Theorem 3.1 (or in general to use the same lemma to
improve upon any inadmissible estimator 8°), one need obtain solutions ® to 2 (8°, ®) <
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0. In order to find nontrivial solutions to this inequality, we derive Theorems A.1 and A.2.
The general scheme is to write ®; = g:¢, and then decompose 2 (8°, ®) into the sum of two
manageable terms as in Theorem A.1 below.

THEOREM A.1. Let 9, be the ith term on the right hand side of (2.4). Then
(A1) Di= D, + 28 p(x — me;) [t (x:)
where

(A2) 9] =2{t(xi—m,—1)/t:(x:)}q:i(x — (m, + 1)e,)A;pi(x — m;e;)
+ {ti(x; — m)/ti(x:)} g (x — mie,) o7 (x — me,)
and

(A3) & =08(x —me)t(x,— m)qg:(x — me) — ti(x; — m; — 1)qi(x — (m; + 1)e,).
ProoOF. Direct calculation. 0O

Assuming ¢;(x) < 0, it is not difficult to choose ¢ (x) independent of ¢ so that &;¢;(x
— mye,) < 0. Therefore to solve 2(8°, ®) < 0, it suffices to find ¢, ¢; < 0 so that ¥ 2/ <0
for such a choice of q. The analogous decomposition for the continuous case was first
demonstrated in Berger (1980).

To solve ¥ 9, < 0, we consider a general difference inequality which has the form

(A4) 2*(¢) = Y21 vlx) Fi(x) A i (x) + w, (x) i (x) < 0,

where v,(x,), F,(x), and w,(x) are nonnegative functions and there exists a nonnegative
integer « such that v,(x,) > 0 whenever x; = «. It is assumed that there exists an M > 0,
such that

(A.5) |Fix) — 1| <e<1
foralli=1, .--, p and all x € Ay, where
(A.6) Av={xx,=M,i=1,---,p}.
We will interpret 0/0 to be 0. Let &, (x,) =Y#, v;'(k). For the definition of I/(x), M an

arbitrary number, see the paragraph before Theorem 2.1.

THEOREM A.2. Suppose that there exist some positive constants 8;, a’ > max(M, «
+ 1), U,, K, and a nonnegative constant A\ such that for x € Ay and i =1, ---, p, (i)
hi(x:)/h.(x, — 1) < U, and (i) Y21 w,(x)h(x,)/D* < K, where D = Y%, h% (x,). Let

B/ = A{maxlgzspﬂl Uﬁﬁ,—l)-*} {maXISLsp Uz(ﬁl()\_ly)}

and ¢(x) = ($1(X), - - -, ¢p(X)), where
(A7) ¢u(x) = —ch,(x;)/ D™

Ifp>pB" (1+¢/(1—¢),then foranyc,0<c<{p(l—¢) —B'(1+¢}/K, I,(X)¢(x) isa
solution to (A.4), and indeed

(A.8) D*(Iy ¢) < —c{p(l —¢) — B’(1 + ¢) —cK} I,(x)/ D
Further 2*(¢) < 0 for sufficiently large x.

ProOF oF THEOREM A.2. Clearly 2*(I,(X)¢(Xx)) = I(x) 2*(¢(x)). To complete the
proof, we need only show that, for x € A,

(A9) 2*(p(x)) < —c{p(1 —¢) —=B’(1 + ¢) —cK}/D".
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In the following arguments, consider only x € A,. Let D, =h% ' (x, — 1) + ¥ ,..h% (x,) and
D’ =3¥%, h¥ (x, — 1). Direct calculation gives

» _ » A Aihi(xi)  hi(xi — 1)A;D*
(A10) v (x) Fu(X) A, (X) = —¢ Y21 vi(x:) Fi(x) { PR DT }
—cp(l—¢€) c(l+e)

(X))o (x — 1 Ai A,
= R DYDY 2, (x:) b (x )A;D

where the last inequality follows from (A.5) and the fact that D; = D’. If we can prove that,
(Al Yiv(x)h(x; — 1)A DY (D) < B,

then, together with (A.10) and assumption (ii) of this theorem, (A.9) will be established.
Now for A = 1, applying the mean value theorem gives

(A.12) v (%) hi(x; — 1) A, D* = ADM v (x;) b (x, — 1) AshB ().
From assumption (i), it follows that

(A.13) Aikf(x,) = BUP B, (x, — 1) /v.(x:)
which, in addition to (A.12), implies that

(A.14) v(x)hi(x, — 1)A,D* < A, U™ hb(x; — 1) D,

For A < 1, (A.12) again holds if, on the right hand side, D*"! is replaced by (D’) .
Together with (A.14), this shows that, for any A,

(A.15) v(x) (i — 1)A,D* < AB; U~ hb(x, — 1)(D')*Y(D/D")* 1",
By assumption (i), D/D’ < max U?. This and (A.15) therefore establish (A.11). O

Although the above theorem appears complicated, the following immediate corollary is
simpler and will be what is actually used to prove Theorem 3.1.

CorOLLARY A.3. Assume that h;(x;)/h.(x, — 1) = 1 as x; — o and for every ¢ > 0,
there exists M > 0 such that (A.5) is satisfied. Suppose that condition (ii) of Theorem A.2
is satisfied for some positive finite constants K, 8, and \. If p > A max B;, then there exists
¢, of the form (A.7), with ¢ > 0, such that 2*(¢) < 0 for sufficiently largex. 0O

To apply Corollary A.3, we choose 8, and A such that D* has the same order as
Yw, (x)h¥(x;), so that assumption (ii) of Theorem A.2 is satisfied. This is the procedure
that is used in establishing Theorem 3.1.

Proor oF THEOREM 3.1. In this proof let 2(8°, @) be as in (2.4) and 8°, ®, ¢;, and ¢
be as defined in the paragraphs between (3.1) and (3.6). By Corollary 2.2, one need only
show that 2(8°, ®) < 0 for sufficiently large x. From Theorem A.1, the inequality follows
if one shows that for sufficiently large x,

(A.16) & =0,i=1,-.--,p,and
(A.17) 2'=29;<0

where &, and 2, are given in (A.2) and (A.3).
To show (A.16), observe that

f,’ = tz(xz -m, — 1){Sz(xz)(FSK)z(x)Qz(x - mzez) - q:(x - (mz + l)et)}
where (FSK), (x) denotes the factor of shrinkage in (3.1), i.e.,
(FSK).(x) = {1 — 4B.H? '(x,)AH,(x,)/Do}".
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Note that from (3.6)
S, (x,)(FSK), (x)q: (x — m.e,) — ¢.(x — (m, + 1)e;)
= [[#5'ST () ((FSK): (x) D§'(x) — D' (x — e;)}.
To establish (A.16), what remains to be shown is that, for sufficiently large x,
(A.18) D§(x)/D§Mx — e,) = 1/(FSK);(x).
Note (FSK),(x) > 0, for sufficiently large x, because
(A.19) 0=<HZ " (x;)AH;(x;) /Do < AH;(x;)/H;(x:),

and AH,(x,)/H,(x,) approaches zero as x, — « by (3.3). Inequality (A.18) is thus equivalent
to
ADG(x) _ 4BH!'(x)AH(x)

A20 = .
(4.20) §(x —e)  Do— BH? '(x;)AH,(x.)

If B, = 0, (A.20) is satisfied for any ¢; (¢ can be negative), since A;D§' (x) = 0.
Assume now that B, > 0. By the mean value theorem, let D}(x) be such that Dy(x — e;)
< D¥(x) < Do(x) and

A, D§(x) = 4(DF(x))'AHP(x,).
Clearly (A.20) is equivalent to ¢; = ¢,/R,(x) where

{AH(x,)}{Do — 4,B:H? ' (x:;) AH,(x.)} (D} (x)} "

(A.21) R(x) = B.HZ Y(x,)AH,(x;) D5 (x — e,)

We now show that R,(x) — 1 as x, — o uniformly in other variables, which, together with
the fact that ¢ > 4o, implies ¢1 = 4R, (x) for sufficiently large x. (The statement is true
even for the case where either or both ¢, and ¢ are negative.) By the mean value theorem
and (3.3), we have

AHP(x;)/{ B:H? ' (x,) AH,(x:)} = 1
as x, — . Hence, in order to establish R;(x) — 1, we need only show that
(A22) {D¥x)} Do — toB:H? '(x,) AH(x:)} /DG (x — €,) = 1
as x; — oo uniformly in all other variables. Now by condition (3.3),

Drx) _ Dox) _ HP(x,)

< < =— -1
Do(x —e,) Do(x—e,) Hi'(x,—1)

(A.23)

as x; — o uniformly in the other variables. Therefore, it follows that
(A.24) {D¥(x)/Do(x — €,)} = 1

in the same way. From (A.19), we have

{(HP N (x:) AHi(x:)/Do(x)} — 0
as x; — o uniformly in other variables, which together with (A.24) implies that
(A.25) {Do — 6oB:HP " '(x:)}/Do(x — &) — 1

in the same manner. Equation (A.24) and (A.25) clearly establish (A.22) and consequently
(A.16) for sufficiently large x.
To show (A.17), by plugging (3.6) into (A.2), one can observe that %’ =2D§ (x)2”,

where
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g = ti(x,—m;— 1) D§(x —e)
- =1

(A.26) t) Deeg e ST Aix = me)

1 ti(xi —my
?% D6 ) (Lo 1/87(u)} ¢¥(x— mies).

It is now sufficient to show that 2” < 0 for sufficiently large x. Now 2 ” has the form (A.4)
with Fi(x) = D§'/D§ (x — e;) satisfying the assumptions of Corollary A.3. This together
with assumptions (ii), (iii) and (iv) of this theorem, implies that, for some ¢ > 0, ¢ as given
componentwise in (3.6) is such that 2” < 0 for sufficiently large x. 0O

REFERENCES

BERGER, J. (1980). Improving on inadmissible estimators in continuous exponential families with
applications to simultaneous estimation of gamma scale parameters. Ann. Statist. 8 545-
571.

Brown, L. D. (1971). Admissible estimators, recurrent diffusions, and insoluble boundary value
problems. Ann. Math. Statist. 42 855-903.

Brown, L. D. (1979). A heuristic method for determining admissibility of estimators with applications.
Ann. Statist. 7T 960-993.

BrowN, L. D. and HwaNG, J. T. (1982). A unified admissibility proof. To appear in Statistical
Decision Theory and Related Topics I11. S. S. Gupta and J. O. Berger (eds.). Academic,
New York.

CLEVENSON, M. L. and ZIDEK, J. V. (1975). Simultaneous estimation of the mean of independent
Poisson laws. J. Amer. Statist. Assoc. 70 698-705.

GHOSH, M. and ParsianN (1981). Bayes minimax estimation of multiple Poisson parameters. J.
Multivariate Anal. 11 280-288.

Hupson, H. M. (1974). Empirical Bayes estimation. Technical Report No. 58, Department of
Statistics, Stanford University.

Hubson, H. M. (1978). A natural identity for exponential families with applications in multiparameter
estimation. Ann. Statist. 6 473-484.

Hwang, J. T. (1979). Improving upon inadmissible estimators in discrete exponential families.
Monograph Series #79-14. Dept. of Statistics, Purdue Univ. Ph.D. Thesis.

Hwang, J. T. (1982a). Improving upon standard estimators in discrete exponential families with
applications to Poisson and Negative Binomial cases. Ann. Statist. 10 857-867.

HwaNG, J. T. (1982b). Certain bounds on the class of admissible estimators in continuous exponential
families. To appear in Statistical Decision Theory and Related Topics III. S. S. Gupta
and J. O. Berger (eds.). Academic, New York.

JaMEs, W. and STEIN, C. (1960). Estimation with quadratic loss. Proc. Fourth Berkeley Symp. Math.
Statist. Prob. 1 361-379. Univ. of California Press.

PENG, J. C. M. (1975). Simultaneous estimation of the parameters of independent Poisson distribu-
tions. Technical Report No. 78, Department of Statistics, Stanford University.

Roy, J. and MiTra, S. K. (1957). Unbiased minimum variance estimation in a class of discrete
distributions. Sankhya 18 371-378.

StEIN, C. (1973). Estimation of the mean of a multivariate distribution. Proc. Prague Symp.
Asymptotic Statist. 345-381.

STEIN, C. (1981). Estimation of the mean of a multivariate distribution. Ann. Statist. 9 1135-1151.

STRAWDERMAN, W. and CoHEN, A. (1971). Admissibility of estimators of the mean vector of a
multivariate normal distribution with‘quadratic loss. Ann. Math. Statist. 42 270-296.

Tsur, K. W. and PrEss, S. J. (1982). Simultaneous estimation of several Poisson parameters under K-
normalized squared error loss. Ann. Statist. 10 93-100.

DEPARTMENT OF MATHEMATICS
WHITE HALL

CORNELL UNIVERSITY

ITHACA, NEW YORK 14853



