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W. E. JOHNSON’S “SUFFICIENTNESS” POSTULATE!

By SANDY L. ZABELL

Northwestern University

How do Bayesians justify using conjugate priors on grounds other than
mathematical convenience? In the 1920’s the Cambridge philosopher William
Ernest Johnson in effect characterized symmetric Dirichlet priors for multi-
nomial sampling in terms of a natural and easily assessed subjective condition.
Johnson’s proof can be generalized to include asymmetric Dirichlet priors and
those finitely exchangeable sequences with linear posterior expectation of
success. Some interesting open problems that Johnson’s result raises, and its
historical and philosophical background, are also discussed.

1. Introduction. In 1932 a posthumously published article by the Cambridge philos-
opher W. E. Johnson showed how symmetric Dirichlet priors for infinitely exchangeable
multinomial sequences could be characterized by a simple property termed “Johnson’s
sufficiency postulate” by I. J. Good (1965). (Good (1967) later shifted to the term
“sufficientness” to avoid confusion with the usual statistical meaning of sufficiency.)
Johnson could prove such a result, prior to the appearance of de Finetti’s work on
exchangeability and the representation theorem, for Johnson had himself already invented
the concept of exchangeability, dubbed by him the “permutation postulate” (see Johnson,
1924, page 183). Johnson’s contributions were largely overlooked by philosophers and
statisticians alike until the publication of Good’s 1965 monograph, which discussed and
made serious use of Johnson’s result.

Due perhaps in part to the posthumous nature of its publication, Johnson’s proof was
only sketched and contains several gaps and ambiguities; the major purpose of this paper
is to present a complete version of Johnson’s proof. This seems of interest both because of
the result’s intrinsic importance for Bayesian statistics and because the proof itself is a
simple and elegant argument which requires little technical apparatus. Furthermore, it
can be easily generalized to characterize both asymmetric Dirichlet priors and finitely
exchangeable sequences with posterior expectation of success linear in the frequency count,
and the proof below is given in this generality.

After sketching the background to Johnson’s result in Section 1, the generalization of
his proof mentioned above is given in Section 2. Section 3 discusses a number of
complements to the result and some open problems it raises, and Section 4 concludes with
a historical note on Johnson and the reception of his work in the philosophical literature.

1. The Bayesian background. Let X;, X;, - - - be an infinite exchangeable sequence
of 0’s and 1’s (to be thought of as indicators of some event E), and let Sy = X; + - - - + Xn.
Then, as first shown by de Finetti, it follows from exchangeability that the limiting
frequency

(1.1) Z = limn_Sn/N
exists almost surely, and that
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1
(12) P(Sw=1h) = (’,;’ ) f p(1 = p)V* dF(p)
0

for every N = 1 and 0 < 2 < N, where F(p) = P(Z < p) is the cumulative distribution
function of Z. If the parameter p is thought of as a propensity or “objective probability,”
then dF may be regarded as the degree of belief about or “subjective probability” of the
true value of p.

Traditionally, the “flat” prior dF(p) = dp was taken to express “complete ignorance”
about p, or the likelihood of the event E (for which the X, serve as indicators). Bayes’s own
justification for this was to take P(Sy = k) = (N + 1)7' as quantifying complete ignorance
about E, observe that (1.2) gave precisely this result (for all 2 and N) when dF(p) = dp,
and then conclude that dF(p) is dp. (The argument can be made rigorous by noting that
dF is uniquely determined by its moments; see, e.g., Murray (1930); Edwards (1974, 1978).
Stigler (1982) traces how Bayes’s argument was systematically distorted by later statisti-
cians to fit their own foundational preconceptions.) Laplace justified the choice somewhat
more directly by invoking the so-called principle of insufficient reason.

This principle came under strong criticism during the latter part of the 19th century
(most notably by Boole, Venn, and Chrystal; unfortunately, Fisher’s account (1956, Chapter
2) of their reservations is seriously flawed; see Zabell, 1982). Some advocates of the
principle’s use (Edgeworth, 1884, page 230; Pearson, 1907) adopted the position that taking
dF(p) = dp was often approximately justifiable on the basis of experience and background
information; a position which suggests that other priors might equally well express and
quantify states of knowledge previous to the receipt of sampling data. It was against this
background that the actuary G. F. Hardy (1889) and the mathematician W. A. Whitworth
(1897, pages 224-225) both proposed the class of beta priors

T'(a + B)

B((x, ,3) =m

pﬂ71(1 - P)B_l, «a, B > O;
as suitable for quantification of prior knowledge.

In 1778 Laplace proposed the obvious multinomial generalization of the Bayes-Laplace
prior (Laplace, 1781, Section 33; cf. De Morgan, 1845, Sections 48-49, Bachelier, 1912, page
503, Lidstone, 1920): if X;, X;, - - -, Xn are the outcomes of a t-category multinomial with
unknown sampling vector p = (ps, - - -, ps), and frequency counts n = (n,, ns, - - -, n;), then

N!
13) P{ny, -+, n} = Tl [1%=: pi* dF(p)

Zp=1
with dF(p) = dp:dp: - - - dp:—1, which implies that

n+1
N+t

(14) P{Xn.1 € ith category|n} =

In 1924, W. E. Johnson gave a justification for (1.4) parallel to that of Bayes: if all
ordered ¢-partitions n; + ny + - - - + n, of N are assumed to be a priori equally likely, then
(1.4) must hold; it follows, as observed by Good (1965, page 25), that the moments of dF,
and hence dF itself, are uniquely determined.

It was against this background that Johnson, not entirely satisfied with his equiproba-
bility (or “combination”) postulate, proposed another, more general one (his
“sufficientness” postulate), which had the consequence of forcing dF to be a member of
the Dirichlet family

(1.5) Dir(ky, «-«, k) =pht . ... pFldp, - ... . dpe,
k; > 0 for all 7.
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2. Finite exchangeable sequences. Let Xi, X5, - .., Xny+1 be a sequence of random
variables, each taking values in the set t = {1, 2, ---, }, N=1 and ¢ < «, such that
(2.1) PXi=1i4, ---,Xn=1in} >0, for all (il,-“,iN)EtN.

Let n = n(Xj, ---, Xn) denote the t-vector of frequency counts, i.e., n = (ny, ng, - - -, ny,
where n, = ni(X;, .-+, Xny) = #{X, = i}. Johnson’s sufficientness postulate assumes that

(2.2) P{ Xy =i| Xy, -, Xn} = filn),

that is, the conditional probability of an outcome in the ith cell given X;, --., Xy only
depends on n,, the number of outcomes in that cell previously. (Note that (2.2) is well-
defined because of (2.1).) If Xi, - - -, Xn+1 is exchangeable, fi(n)) = P{Xn+1 =1|n} = P{Xn+1
=1i|n}.

LEmMa 2.1. Ift>2and (2.1), (2.2) hold, then there exist constants a; =0 and b such
that for all i,
(2.3) f(n) = a, + bn,.

ProoOF. First assume N = 2. Let
n; = (nl’ IERN FREREN AR T ...,nt)

be a fixed ordered partition of N, with i, j, % three fixed distinct indices such that 0 < n,,
n;and n,, n, < N, and let

n, = (n1, cee,n + 1, e, — 1, -.-, ng, -~-,n,)
Ng=(R1, cooy My wooyy—1, e, mp+1, -, n)
n4=(n1, e, mi— 1, e Ny, ey, ne+1, ...,nt)‘
Note that for any n,
(2.4) ¥
hence taking n = n;, n., ns, ny, we obtain
25 filn+1) = filn) =fi(n) — iy — 1) = fue + 1) — fulnr)= fi(n) — fi(n. — 1).
Thus

fe(n) =1,

n,en

fin) = a; + bn,,

where we define a; = f;(0) = 0 and b = Af,(n,) is independent of i (because of (2.5)).
If N =1, let ¢; = £,(1); it then follows from (2.4) that for any i and j, a. + ¢; = a; + ¢,
hencec,—a,=ci—a;=5b. O

REMARK 1. If t = 2, Johnson’s sufficientness postulate is vacuous and (2.3) need not
hold; see Good (1965, page 26). Thus, in the binomial case, it is necessary to make the
additional assumption of linearity. In either case (¢ = 2 or ¢ > 2), Johnson’s argument
requires that a; > 0; the next two remarks address this point and are both applied in
Lemma 2.2 below. .

REMARK 2. If (2.1) holds for N + 1 as well as N, then a; > 0. The reader can, if he

wishes, simply replace (2.1) by this strengthened version in the sequel, and ignore the
following remark on a first reading.

REMARK 3. If X, ---, Xn41 is exchangeable and (2.1) holds for N, then a, > 0 if N = 2.
(If @, = 0 for some i, then f;(1) > 0, hence b > 0. But if a; = 0, then f;(N — 1) = 0 for j # i,
hence b < 0, a contradiction.) This need not hold when N = 1; for example, let ¢t = 2 and
P(1,1) = P(2,2) = 1/2. This is the reason for assuming N, = 3 in Theorem 2.1 below: if N,
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= 1 the statement is vacuous, while, if Ny = 2, £, = 0 can occur (unless the strengthened
version of (2.1) is assumed).
Let A =Y, a,. It follows from (2.3), (2.4) that

(2.6) A+ bN=1,
hence A is finite and
2.7 b= (1-A)/N.
Suppose b # 0. Then letting k2, = a./b and K = Y k;, we see from (2.6) that
b'=N+A/b=N+K,

hence
k+n ni+k;
i(n) = a; + bn; = =T
fin) = it bni= == =Jg
ExaMPLE 2.1 (Sampling without replacement.) Let X; = x1, - - -, Xn+1 = xn+1 denote

a random sample drawn from a finite population with m, = 1 members in each category i.
LetM=m;+ -.- + m,and let N < m,, all i. Then

(2.8) P{Xn+1 € category i|n} = J”l; — :; = (Mnjl N) + (N i M) n,.

Thus a; =m,/(M — N) and b = (N — M) ™' < 0. Note that 2, = —m,; thus %; (and hence K)
is independent of N, although a;, A, and b are not. The next lemma states that this is
always the case if, as here, the X; are exchangeable and b # 0.

Let a{™, 8™, K™, and f,(n;, N) denote the dependence of a;, b, k., and fi(n.) on N.
Thus, if (2.1) and (2.2) are satisfied for a fixed N = 1, then there exist ¢/ and ™’ such
that for all i, fi(n,, N) = @™ + 5™'n,. Note that b™ = 0 if and only if {Xi, .., Xn} and
Xn~+1 are independent.

LEMMA 2.2. Let X1, Xo, «-+, Xn+1, Xni2 be an exchangeable sequence of t-valued
random variables, N = 1 and t = 2, satisfying (2.1) and (2.3) for both N and N + 1.

(@) If o™ . o™ = 0, then b = ¥V =0,

(ii) If 8™ . oY 5£ 0, then b™ - 5™ > 0 and BN = BN, all i.

ProoF. (i) Choose and fix two distinct indices i # j. Let a, = a{™, a/ = ¢, b = s,

b = o™, etc. Suppose b = 0. It follows from exchangeability that for any partition n of
N,

(2.9) P{Xni1 =1, Xne2=] |n} =P{Xni1 =], Xns2 = i[n},

hence

(2.10) (a)(af + b'n) = (a))(a) + b'ny).

First taking n in (2.10) with n, = 0, n, = N, then with n; = N, n, = 0 and subtracting, we
obtain a,b’'N = —a;b’'N, hence b’ = 0 (since a;, @, > 0). Similarly, if 4 = 0 then b = 0.
(ii) Suppose b-b’' # 0. Then it follows from (2.9) that for any partition n of N,

@.11) n+k n +k ([t k n, + kk

) N+K/\N+1+K') \N+K/\N+1+K')
hence
(2.12) kin, + kn; + k.k) = kin, + kyn; + ELk,.

Letting n, = 0, n, = N in (2.12), then n; = N, n; = 0 and subtracting, we obtain %, + k, = &}
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+ k; since ¢ and j were arbitrary, this implies K = K’ and, if ¢ > 2, k; = &/ for all i. Since
a,, a; > 0, clearly b and b must have the same sign.

Suppose t = 2 (so that i = 1, = 2, say, and K = k; + k,). Taking n; =0, n; = N in (2.12),
we obtain k(N + k3) = k{(N + k), hence

k(N + K) = k{(N + K)
from which it follows (since N + K = b~ % 0) that 2, = k{ hence k. = k5. O

Together, Lemmas 2.1 and 2.2 immediately imply the following.

THEOREM 2.1. LetX:,Xs, .-, Xn, (No = 3) be an exchangeable sequence of t-valued
random variables such that for every N < Ny, (i) (2.1) holds, (i) (2.2) holds if t > 2 or
(2.3) holds if t = 2. If the {X;} are not independent (< b 5 0), then there exist constants
ki # 0, either all positive or all negative, such that N + Y k; # 0 and

n+k

(2.13) P{Xn+1 =i|n} =m

for every N < N, partition n of N, and i € t.

CoroLLARY 2.1. If Xi, X5, X3, --- is an infinitely exchangeable sequence which for
every N = 1, satisfies both (i) (2.1), and (ii) either (2.2), if t > 2 or (2.3), if t = 2, then bV
=0.

Proor. Suppose b < 0. But then N + K = 1/6"™ < 0 for all N, which is clearly
impossible. 0

COROLLARY 2.2. For all N = Ny, under the conditions of Theorem 2.1,

. . . = (Il (U + &
P{X1=11)X2=l2)""XN=lN}=H 1{NI:III 0(] r )}
(2.14) 7=0 (J + K)

_ I(K) . [T + k)
"TIN+ KM TR [

Proor. It follows from the product rule for conditional probabilities that it suffices to
prove P{X; =i} = k,/K for all i € t. But

(2.15) PXi=i,X=j) ={a}" + 8V} P{X, =i},

where §, (i) is the indicator function of {i = j}. Summing over i in (2.5) gives P{X, = j}
=a{’ + 8PP{X; = j}, hence by exchangeability P{X, =j} = a/"/(1 — ) = k,/K, since
a’ = kb, 1 - 0" =AY (cf. (2.6)),and K = AP/, 0O

It follows from Corollary 2.2 that {%,:i € t} uniquely determines P = ¥ (X3, X5, - -+,
Xn,). Conversely, for every summable sequence of constants {%;}, all of the same sign,
there exists a maximal sequence of t-valued random variables Xi, X, - - -, X, (No = o)
such that (2.1) and (2.13) hold. The length of this sequence is determined by N*, the
largest value of N such that

_nl+kl
" N+K

PiN

determines a probability measure on t, i.e., No = N* + 1, where
(i) if 2, > 0, all i, and Y, &, < o, then N* = oo, or
(i) if &, <0, all i, and Y | k.| < o, then

N*=max{N=0: N+ K<O; N+ k, =0, all i}.
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Thus, if K <0, N* is the integer part of min{| %, | : i € t}. Hence, if No > 1, then ¢ < o« (since
Y| k.| < o implies &, — 0).

When %, > 0 and ¢ < «, the cylinder set probabilities in (2.14) coincide with those arising
from the Dirichlet distribution in (1.5), and the characterization referred to at the end of
Section 1 follows.

3. Complements and Extensions.

3.1. The Symmetric Dirichlet. Johnson considered the special case where (i) f; is
independent of i, i.e., for each N, there exists a single function f such that

(3.1) P{Xya=1i|n} =f(n,N) foral i

(ii) & is positive (This is the major gap in Johnson’s proof. If {Xi, X,, ...} is infinitely
exchangeable, but not independent, the assumption that b is positive is superfluous; see
Corollary 2.1 above.)

Under these conditionst< o, @, =a, k;=k >0, P{X; =1} = % R
. n;, + k
42 P =iln) =y

and Xi, ---, Xy can be extended to an infinitely exchangeable sequence, whose mixing
measure dF in the de Finetti representation is the symmetric Dirichlet distribution with
parameter k. Good (1965, page 25) suggests that Johnson was “unaware of the connection
between the use of a flattening constant & and the symmetrical Dirichlet distribution.”
However, Johnson was at least aware of the connection when % = 1, for he wrote of his
derivation of (1.4) via the combination postulate,

... I substitute for the mathematician’s use of Gamma functions and the a-
multiple integrals, a comparatively simple piece of algebra, and thus deduce a
formula similar to the mathematician’s, except that instead of for two, my
theorem holds for a alternatives, primarily postulated as equiprobable. [Johnson
(1932, page 418); Johnson’s a corresponds to our ¢.]

3.2 Alternate Approaches. Let A, be the probability simplex {p. =0,i=1, ---, ¢:
Y p, = 1}. Doksum (1974, Corollary 2.1) states in the present setting that a probability
measure dF on A, has a posterior distribution dF(p;| X1, -+ - , X.), which depends on the
sample only through the values of n, and N, if and only if dF is Dirichlet or

(i) dF is degenerate at a point (i.e., Xi, X5, - - - is independent);
(ii) dF concentrates on a random point (i.e., dF is supported on the extreme points
{8:(j):i=1, ---, t} of A, so that (2.1) would not hold);

(ili) dF concentrates on two nonrandom points (i.e., ¢ = 2 or can be taken to be so).

This is a slightly weaker result than Johnson’s, which only makes the corresponding
assumption about the posterior expectations of the p..

Diaconis and Ylvisaker (1979, pages 279-280) prove (using Ericson’s theorem, 1969,
page 323) that the beta family is the unique one allowing linear posterior expectation of
success in exchangeable binomial sampling, i.e., ¢t = 2 and {X,} infinitely exchangeable,
and remark that their method may be extended to similarly characterize the Dirichlet
priors in multinomial sampling. Ericson’s results can even be applied in the finitely
exchangeable case and permit the derivation of alternate expressions for the coefficients a,
and b of (2.3).

3.3. When is Johnson’s postulate inadequate? In practical applications Johnson’s
sufficientness postulate, like exchangeability, may or may not be an adequate description
of our state of knowledge. Johnson himself did not review his postulate as universely
applicable:
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the postulate adopted in a controversial kind of theorem cannot be generalized to
cover all sorts of working problems; so it is the logician’s business, having once
formulated a specific postulate, to indicate very carefully the factual and epistemic
conditions under which it has practical value. [Johnson (1932, pages 418-419).]

Jeffreys (1939, Section 3.23) briefly discusses when such conditions may hold. Good
(1953, page 241; 1965, pages 26-27) remarks that the use of Johnson’s postulate fails to
take advantage of information contained in the “frequencies of frequencies” (often useful
in sampling of species problems), and elsewhere (Good, 1967) advocates mixtures of
symmetric Dirichlets as frequently providing more satisfactory initial distributions in
practice.

3.4. Partition exchangeability. Ifthe cylinder sets {X, =11, - - -, X,, = in} are identified
with the functions g: {1, ---, N} — {1, --., ¢}, then the exchangeable probability
measures P are precisely those P such that

P{gen} =P{g}

for all g and all permutations 7 of N = {1, 2, ... , N}. Equivalently, the exchangeable P’s
are those such that the frequencies n are sufficient statistics with P{- | n} uniform.

The rationale for exchangeability is the assumption that the index set N conveys no
information other than serving to distinguish one element of a sample from another. In the
situation envisaged by Johnson, Carnap (see Section 4 below), and others, a similar state
of knowledge obtains vis-a-vis the index set t (think of the categories as colors). Then it
would be reasonable to require of P that

P{megeom} = P{g}

for all functions g:N — t, and permutations 7; of N, m of t. Call such P’s partition-
exchangeable. The motivation for the name is the following. Let a(n) = {a,:0 =r < N}
denote the frequencies of the frequencies n, i.e., @, = #{n, = r}. Then P is partition-
exchangeable if and only if the a, are sufficient with P{-|a(n)} uniform, i.e. P{g:} =
P{g>} whenever a(n(g:)) = a(n(gz)). The set of partition-exchangeable probabilities is a
convex set containing the symmetric Dirichlets. From this perspective the frequencies of
frequencies emerge as maximally informative statistics and the mixtures of symmetric
Dirichlets as partition-exchangeable.

It would be of interest to have extensions of Johnson’s results to “representative
functions” of the functional form f = f(n, a(n)); for partial results in this direction (f =
f (n,, ao)), see Hintikka and Niiniluoto (1976), Kuipers (1978). It would also be of interest
to have Johnson type results for Markov exchangeable and other classes of partially
exchangeable sequences of random variables; cf. Diaconis and Freedman (1980) for the
definition and further references; Niiniluoto (1980) for an initial attempt.

4. Historical Note. Johnson’s results appear to have attracted little interest during
his lifetime. C. D. Broad, in his review of Johnson’s Logic (vol. 3, 1924), while favorable in
his overall assessment of the book, was highly critical of the appendix on “eduction” (in
which Johnson introduced the concept of exchangeability and characterized the multinom-
ial generalization of the Bayes-Laplace prior!): “About the Appendix all I can do is, with
the utmost respect to Mr. Johnson, to parody Mr. Hobbes’s remark about the treatises of
Milton and Salmasiius: ‘Very good mathematics; I have rarely seen better. And very bad
probability: I have rarely seen worse.”” (Broad (1924, page 379); see generally pages 377-
379.) Other than this, two of the few references to Johnson’s work on the multinomial,
prior to Good (1965), are passing comments in Harold Jeffreys’s Theory of Probability
(1939, Section 3.23), and Good (1953, pages 238-241). This general neglect is all the more
surprising, inasmuch as Johnson could count among his students Keynes, Ramsey, and
Dorothy Wrinch (one of Jeffreys’s collaborators). (For Keynes’s particular indebtedness to
Johnson, see the former’s Treatise on Probability (1921, pages 11 (footnote 1), 68-70, 116,
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124 (footnote 2), 150-155; cf. Broad (1922, pages 72, 78-79), Passmore (1968, pages 345-
346).)

It is ironical that in the decades after Johnson’s death, Rudolph Carnap and his students
would, unknowingly, reproduce much of Johnson’s work. In 1945 Carnap introduced the
function ¢*[= P{Xn+ = i|n}] and proved that it had to have the form (1.4) under the
assumption that all “structure-descriptions” [= partitions n] were a priori equally likely
(see Carnap, 1945; Carnap, 1950, Appendix). And just as Johnson grew uneasy with
his combination postulate, so too Carnap would later introduce the family of functions
{ca: 0 =A<} [= (n,+ k)/N + kt, X corresponding to our %], the so-called “continuum
of inductive methods” (Carnap, 1952). But while Johnson proved that (3.2) followed from
the sufficientness postulate (3.1), Carnap initially assumed both, although his collaborator
John G. Kemeny was soon after able to show their equivalence for ¢ > 2. Subsequently
Carnap generalized these results, first proving (3.2) follows from a linearity assumption
((2.3)) when ¢t = 2 (Carnap and Stegmiiller, 1959), and later, in his last and posthumously
published work on the subject, dropping the equiprobability assumption (3.1) in favor of
(2.2) (Carnap, 1980, Section 19; cf. Kuipers, 1978). For the historical evolution of this
aspect of Carnap’s work, see Schilpp (1963, pages 74-75, 979-980); Carnap and Jeffrey
(1971, pages 1-4, 223); Jeffrey (1980, pages 1-5, 103-104).

For details of Johnson’s life, see Broad (1931), Braithwaite (1949); for assessments of
his philosophical work, Passmore (1968, pages 135-136, 343-346), Smokler (1967), Prior
(1967, page 551). In addition to his work in philosophy, Johnson wrote several papers on
economics, one of which, on utility theory, is of considerable importance; all are reprinted,
with brief commentary, in Baumol and Goldfeld (1968).

Acknowledgment. I thank Persi Diaconis and Stephen Stigler for a number of
helpful comments and references. I am particularly grateful to Dr. Michael A. Halls, of
King’s College Library, for locating and providing a copy of the photograph of Johnson
reproduced here. The photograph may have been taken in 1902, when Johnson became a
Fellow of King’s College.
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