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A BAYES BUT NOT CLASSICALLY SUFFICIENT STATISTIC!

By D. BLACKWELL AND R. V. RAMAMOORTHI

University of California, Berkeley and Indian Statistical Institute, Calcutta

In a Borel setting, every classically sufficient statistic is Bayes sufficient,
but not vice versa. The example is a hypothesis testing problem in which
Bayesians, but not classicists, can achieve zero error probabilities.

Let X be a random variable whose distribution P, depends on the parameter 6, and let
Y be a function of X. According to Fisher (1922), the statistic Y is sufficient if the
distribution of the observation X given Y does not depend on the parameter 6. Another
concept of sufficiency, introduced by Kolmogorov (1942), is that Y is sufficient if for every
prior distribution of 8 the posterior distribution of 6 given X depends on Y only. We shall
call the Fisher concept classical sufficiency and the Kolmogorov concept Bayes sufficiency.

Classical sufficiency implies Bayes sufficiency; a short proof is sketched below. And it
follows easily from the results of Halmos and Savage (1949) that in the dominated case—
all P, absolutely continuous with respect to a single measure—Bayes sufficiency implies
classical sufficiency; one has to check just that pairwise Bayes sufficiency implies pairwise
classical sufficiency. The purpose of this note is to give an example of a Bayes sufficient
statistic Y that is not classically sufficient.

To see that classical sufficiency implies Bayes, note that if Y is classically sufficient,
then for any prior distribution of 8 the triple 8, Y, X is a Markov chain. Since a Markov
chain is Markov in reverse, the distribution of 8 given Y and X (which is obviously also the
distribution of 4 given X) depends on Y only, so that Y is Bayes sufficient.

We first describe our example as a hypothesis testing problem, and then relate it to
sufficiency. The statistic Y is a sequence Y1, Y2, --- of 0-1 variables, and the parameter
set O is the set of all distributions 4 of Y under which {Y,} converges in probability to 0
or 1.

Py{(Y,=1} > L(#) =0o0r1 foreach € O.

We observe Y and want to test the hypothesis H, : L(f) = 0 against the alternative H; : L(6)
= 1. What are the smallest error probabilities we can attain?

Any Bayesian can attain (in his opinion) zero error probabilities of both kinds. For if m
is any prior distribution on 8 that gives positive probability to both H, and Hi, and Po, P;
are the conditional distributions of Y under H,, H; respectively, the problem reduces to
testing the simple hypothesis P, against the simple alternative P;. Since

P{Y.=1}= f Py{Y, =1} dm(0)/m(H.),

H;

i

converges to i (bounded convergence), i.e. Y converges in probability to i under P;, Y has
a subsequence Z that converges with probability 1 to i under P;. So lim Z indicates the
correct hypothesis with probability 1, for i = 0 or 1.

On the other hand, a classical test of H, vs. H; is a (Borel) function f on the sample
space of all infinite sequences of 0’s and 1’s with values 0 (accept Hy) and 1 (accept H:). To
have zero error probabilities under both Hj and H; it would satisfy

Po{f(Y)=i}=1 foral 6€H, i=0,1
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i.e. it would identify, with probability 1, the limit of every sequence Y of 0-1 variables that
converges in probability to a constant limit. It has been shown recently (Blackwell, 1980)
that no such f (called a Borel SPLIF) exists. Thus there is no classical test of H, vs. H;
that achieves zero error probabilities, but every Bayesian is certain of being right.

To relate our example to sufficiency, introduce an additional 0-1 observation Z that
tells us whether H, or H, is true: Z = L(0), and let X be the pair (Y, Z). Then Y is Bayes
sufficient since, as we have already seen, any Bayesian can compute Z with probability 1
from Y. But Y is not classically sufficient, since a classical statistician can test H, vs. H;
with zero errors using X, but not using Y alone.
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