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STEIN’S PARADOX IS IMPOSSIBLE IN PROBLEMS
WITH FINITE SAMPLE SPACE

By Sam GUTMANN

Northeastern University

The use of admissible procedures in each of several problems may be
inadmissible when the problems are combined, in the sense of summed loss.
Thus apparently irrelevant information can sometimes be used to reduce risk
over the entire parameter space. This is known as Stein’s Paradox. We prove
here that this cannot occur when the sample spaces for the problems are
finite.

The inadmissibility of the usual estimator for three normal means (Stein, 1956) provides
an example of three procedures (the MLE’s for the individual means) each of which is
admissible (with squared error loss) but which are inadmissible when the problems are
combined. Johnson (1971) showed that this does not happen in binomial estimation, that
the MLE for any number of binomial parameters is admissible (e.g. for squared error loss).
In both cases the “connection” between individual problems is that the loss function in the
joint problem is the sum of the individual losses.

The purpose of this note is to show that Stein’s Paradox does not occur in any problem
with finite sample space. Problems with finite sample space have been singled out by
Brown (1981), who proved complete class theorems for many such problems. When the
loss functions in the problems are strictly convex and bounded (or suitably normalizable)
Brown’s result can be used to derive the present result.

A statistical decision problem will be written (as in Brown, 1976, for example)

1) P =(X, 0, o SX), #(6), S(A), Fo, L),

where X, ©, and &/ are sample, parameter, and action spaces with given o-algebras (X),
#(0), and L(), Fy is a measure on F(X) for each § € O such that Fy(S) is £(0)-
measurable for each S € ¥(X), and the loss

L::0 X o/ - [0, ]

is #(0) X ¥()-measurable. Risk functions in this problem are real valued functions of
the form

fFo(dx) f L,(8, a)é(x, da),
X o

where for each x, 8(x, -) is a measure on #(%/) and for fixed S € ¥(&), 8(-, S) is F(X)-
measurable.
Given a second problem

(2) P, =(Y,®, B, #(Y), L (D), #(B), Gy, L2)
we define the joint problem P; P; by
XXY,0X® X B, SX)X PAY), L(O)X LP), AAL) X F(B), Fo X Gy, L)
where the loss L is given by
L((8, ¢), (a, b)) = L.(0, a) + L2(¢, b).
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The product measure Fy X G, is used, of course, to make the data in the two problems
independent. Similarly the joint problem P, P; ... Px can be defined given problems P;,
Py, ..., Pg.

We can now state the main result.

THEOREM. Let P and P, be two statistical decision problems, and assume that the
sample space in P, is finite. Let §; be admissible procedures in P;, i = 1, 2. Then the joint
procedure (81, 82) is admissible in the joint problem P, P;,.

Formally, the joint procedure (8:, 82) is given by

(81, 82)((x, ¥), ) = du(x, ) X 82(y, -).

COROLLARY. Let Py, ---, Px be statistical problems and assume that the sample
spaces in Py, P, - .., Px_», and Pk, are finite. Let §; be admissible in P;,i =1, ---, K.
Then the joint procedure (8;, 8z, - - -, 0x) is admissible in the joint problem P,P; - -. Pg.

The corollary follows immediately from the theorem by induction on K. Using this
corollary, Johnson’s (1971) result that the MLE is admissible for %2 binomial means follows
immediately from the admissibility of the MLE for 1 binomial mean. Also, the MLE is
admissible for estimating £ binomial and 2 normal means, with summed squared error
loss, for example. .

The proof of the theorem will be given after one lemma, in which we use the following
notion.

DEFINITION. Let R be a risk function in a problem with parameter space ®. Then for
T C @, R is admissible relative to T iff for any other risk function R’,

R'(¢p)=<R(¢p) VH€ET implies R'(¢p) =R(¢) VoeET.

LEMMA. Let R be an admissible risk function in a problem with finitely many
nonrandomized risk functions, but infinite parameter space ®. Then there exists a finite
set H C ® such that for any T D H, R is admissible relative to T.

The set of risk functions is compact, and for each ¢ the set of R’ for which R(¢) < R’(¢)
is open. But these sets do not cover the set of risk functions because R is in none of them.
The finite dimensionality as well as the compactness must be used.

Proor. (LEMMA). Let Ry, - - -, Ry be the nonrandomized risk functions. Let d; denote
the vector

(R(¢) — Ri(9), R(¢) — R2(9), - - -, R(¢) — Rn(9)).

The admissibility of R is then equivalent to the assertion that for every vector ¢ = (¢, c2,
oo, CN) with C;i = 0, Eci = 1,

3) if c.dy=0 Vo €® then c-d,=0 Vo € D.

Let C denote the simplex {c:c; = 0, Yc; = 1}. Let V be the smallest subspace containing
{ds: ¢ € ®}. If P is projection onto V, then by (3) we have for any v € PC,

4) if v-d,=0 V¢ EP® then v-dy=0 Vo € O.

But if v € PC and v-d, = 0 V¢ € ®, then v must be 0. Thus for every v € PC\{0} there
must be some ¢ such that

v

(5) v-dy <0 or alternatively m

d, <0.
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Since PC is a convex polyhedron,
M= {v/|v]|:v € PC\{0}}
is a compact subset of the unit sphere. By (5),
{({fueM:u.d, <0}, ¢ € D}

is an open cover of M. Let H be a finite subset of ® corresponding to a finite subcover.
Let T D H. Assume

R(¢p) = Yc:iRi(¢) Vo €ET.

Thus c-dy, = 0 V¢ € H, and either Pc = 0 or Pc # 0 and Pc/|Pc|-d, = 0 V¢ € H. The
second alternative is excluded by the choice of H. If Pc = 0 then

R(¢) =3c:Ri$) VHED,
a fortiori for all ¢ € T. Hence R is admissible relative to 7.

ProOF (THEOREM). Let P; and P; be as in (1) and (2) respectively. Let () and R(¢)
be the risk functions corresponding to 8; and &, respectively. Then the risk function
corresponding to (8, 8:) in the problem P, P, is r(f) + R(¢). If p(0, ¢) is any other risk
function in the problem P, P,, we must show that

r0) + R@) = p(6,9) V6,6

cannot hold with strict inequality for some pair 6, ¢.
Any risk function p(6,¢) can be written

rs(0) + J' Fo(dx)R.(¢),

where r, and R, are risk functions in P; for each ¢ and in P, for all x, respectively. If §*((x,
), -) denotes the procedure corresponding to p, and if 8§ *((x, y), -) denotes the projection
measure of §* onto &/ for i = 1 and onto £ for i = 2, then r, corresponds to the procedure

j G, (dy)8t((x, y), -)
Y

and R, corresponds to the procedure 83 ((x, y), -). The (easy) details may be found in
Gutmann (1981); what is crucial is that the loss in the joint problem is the sum of the
individual losses.

Since X, the sample space in P;, was assumed finite, we can write

p(6, ) = rs(0) + X fo(x)R()

where f3(x) = Fo({x}). We now assume

(6) r5(8) + Y fo(x)R:(¢) = r(0) + R(¢p) V0, ¢,

with strict inequality for some pair 6, ¢, and derive a contradiction. For convenience, set X
= {192, "',N}'

R is admissible in the original problem, hence also in the problem consisting of
nonrandomized risk functions R, R, ---, Ry. Let 2 denote the set of all convex combi-
nations of R, Ry, - - -, Rn. Choose H as in the lemma. In addition, choose ¢, in @ such that
for some 6§ € O,

T4,(0) + Y fo(x)Raldo) < 1(6) + Rigo).
Let T = HU {¢o}. By the lemma, R is admissible relative to T. The problem has now been
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reduced to one with finitely many nonrandomized risk functions and a finite parameter
space T. For such a problem, every admissible R must be Bayes with respect to some prior
a7 which puts positive mass at every point of 7' (Blackwell and Girschick, 1954, page 130).
That is,

(7 Yr m(@)R($) = Y1 m($)R'($) VR' € 2.
Now integrate (6) with respect to =, obtaining
(8) Yr m(@)rs(0) + Y7 m(9) Y folx)R2(9) = r(8) + Yr m(p)R(¢),

which holds for all . In fact, since 7(¢) > 0 V¢ € T and since (6) was a strict inequality for
¢o € T for some 6, the inequality (8) must also be strict for some 8. For each 8, Y'.. fo(x) R.(¢)
isin 2, so by (7) and (8), we must have

9) Yr w(P)ry(6) < r(f) vé E‘G

with strict inequality for some 6. Since every r, corresponds to a procedure 8,(-, -), the
left-hand side of (9) is a risk function corresponding to the procedure Y7 7($)8,(-, -) and
thus (9) contradicts the admissibility of r(8).

In the language of Gutmann (1981), we have proved that any admissible risk function
in a problem with finite sample space is immune, by proving the superimmunity of any
admissible risk function in a problem with finitely many nonrandomized risk functions.

Perhaps the usual caveat is in order. Admissibility is no guarantee of a procedure’s
usefulness. For the problems considered here, e.g. estimating several binomial parameters
or several normal means in a “discretized” setting, we would expect Stein-like estimators
to improve over our admissible estimators for large parts of the parameter space at little
cost over the rest, if the loss is reasonable.

Acknowledgment. L. D. Brown suggested looking at these questions in the finite
sample space case. An Associate Editor and referees suggested valuable improvements.
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