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AN EXPONENTIAL SUBFAMILY WHICH ADMITS UMPU TESTS
BASED ON A SINGLE TEST STATISTIC

By SHAUL K. BAR-LEV AND BENJAMIN REISER!
University of Haifa, Israel

Let f(x:0) = a(x)exp(6iui(x) + O2uz(x) + c(0)}, 0 = (61, 62:) €O C R? be
a density with respect to the Lebesgue measure on the real line which
characterizes a two-parameter exponential family of distributions. Let (6,, 12)
be the mixed parameters, where 7. = E{u2(X)}. Assume that 6. can be
represented as 6> = —61¢’(n2) where ¢’(n2) = de(n2)/dn2 for some function
@(n2). Let (X, ---, X,.) be independent random variables having a common
density f(x:6) and set T, = ¥j=1 u.(X)), i = 1, 2. It is shown that if u2(x) is a
1-1 function then the random variables T> and Z, = Ty — ne(T:/n) are
independent and that the statistic Z, is ancillary for 6, in the presence of 6,
(i.e. the density of Z, depends on 6, only). Furthermore, the density of Z,
belongs to the one-parameter exponential family with natural parameter 6,.
These results enable us to construct uniformly most powerful unbiased
(UMPU) tests for various hypotheses concerning the parameter ¢; which are
based on the statistic Z,.

1. Introduction. Let
(1.1) f(x:0) = a(x)exp{Oiu;(x) + b2uz(x) + c(0)}, 6= (61, 62),

be a density function with respect to (w.r.t.) the Lebesgue measure on the real line which
characterizes a two-parameter exponential family of distributions. In this case it is required
that a(x) > 0 and that u;(x), { = 1, 2 be absolutely continuous on the interior of the convex-
support of (1.1) with u{(x) = du;(x)/dx # 0, i = 1, 2. The natural parameter space O is
defined as the effective domain of %(6), denoted by dom %(f) (Barndorff-Nielsen, 1978,
page 77), where

k(0) = exp{—c(6)} = J a(x)exp{fui(x) + Ous(x)} dx.

It is assumed that © has a non-empty interior in R* and that u; and u, are affinely
independent w.r.t. the Lebesgue measure.

Let (X3, -+, X,), n > 1, be independent r.v.’s having a common density of the form
(1.1), and set T;: = Y51 w;(X;), i = 1, 2. Then the following results can be shown to hold
(c.f. Lehmann, 1959):

(i) The joint distribution of (T, T:) is a two-parameter exponential family with density
(w.r.t. the Lebesgue measure on R?) of the form

fr.n,(t, t2:0) = h(t)exp{6:t, + 62t: + nc(dy, 62)}, t= (4, &).

(ii) The conditional distribution of T} given T = ¢; is a one-parameter exponential family
with conditional density function of the form

(1.2)  frr,(¢] t2:01) = h(t)exp{6:t; —log b6, )}, b1, &) =j h(t)exp(6:1¢1) dt,.
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(iii) The marginal density function of 7% is of the form
(1.3) fr,(t2:0) = exp{atz + nc(6:, 62) + log b(61, t)}.

Lehmann and Scheffe (1950, 1955) developed procedures for constructing UMPU tests
for testing various composite hypotheses concerning one of the natural parameters, say
;. Those UMPU tests are essentially derived by using the conditional density function of
T, given T, = t.. However, Lehmann (1959, Chapter 5) remarked that such derivations of
UMPU tests “turn out to be inconvenient in application to normal and certain other
families of continuous distributions.” He stated that in these applications the tests can be
given a more convenient form in which they no longer appear as conditional tests in terms
of T} given T = t,, but are expressed in terms of a single test statistic. For example, if (X,
..., X,) are independent r.v.’s having a common N(g, ¢*) density, then for testing 0® <
o2 vs. 62> o} (o} is specified), one might reduce the UMPU test to depend on the marginal
distribution of S? rather than the conditional distribution of ¥'%-1 X7 given X,.

For identifying the cases where such reduction is valid, Lehmann introduced a theorem
(Lehmann, 1959, Theorem 1 in Chapter 5) which gives sufficient conditions for this purpose
and enables us to achieve such optimal tests through the marginal distribution of a single
test statistic. Such a reduction essentially depends on the existence of a statistic Z, = h(T1,
T;,) which is independent of T for any value of 6 belonging to the boundary parameter set
(in the above example, S? is independent of X, for any values of u and 0”), and such that
h(t., t2) is a monotone increasing function of ¢ for each value ¢,. However, applications of
such a theorem are known in the literature only for particular distributions.

Although our interest in conditions for the existence of the statistic Z, was originally
motivated by hypothesis testing considerations, the problem of delineating cases where
statistics are available whose distributions depend only on a subparameter is of more
general interest.

In this paper we introduce a subfamily of exponential distributions which satisfy the
appropriate Lehmann’s conditions simultaneously for various composite hypotheses con-
nected with 8; and has interesting properties of itself. This subfamily is characterized by
easily checkable functional relationships between its parameters and includes many of the
usually discussed members of (1.1). In characterizing this subfamily we use the mixed
parameterization (Barndorff-Nielsen, 1978) of the exponential family.

Let 72 = E{uz(X)}. If 6 can be represented as a function of the mixed parameters 6;
and 72 such that ; = —6,¢’(n2), where @’(2) = dp(n2)/dn. for some function ¢(n2), then
it is proved in the sequel that the r.v.’s T; and Z, = T: — no(T:/n) are independent such
that the marginal distribution of Z, depends only on 6; and possesses a density function
which characterizes a one-parameter exponential family. These properties of Z,, are shown
to satisfy Lehmann’s conditions for the construction of UMPU tests based on its marginal
distribution.

For the representation of this subfamily we introduce in Section 2 some of the known
properties of the exponential family that we need for our purposes. In Sections 3 and 4 we
describe our model and discuss its main properties. Several illustrative examples will
appear in Section 5. In Section 6 these results are applied to the construction of UMPU
tests based on the marginal distribution of Z,.

A further application of the results of this paper in the direction of the asymptotic
properties of maximum conditional likelihood estimates is presented by Bar-Lev (1981).

2. Preliminaries. Many references deal with the properties of the exponential family.
We shall make use of those appearing in Lehmann (1959), Bildikar and Patil (1968), Berk
(1972) and Barndorff-Nielsen (1978).

ASSUMPTION 2.1. O =int 6.
Although we assume that O is open, i.e. that (1.1) is regular in the sense of Barndorff-
Nielsen (1978), our results still hold for steep exponential families on int © (see the remark
at the end of Section 4).



UMPU TESTS 981

LEmMMA 2.1. (Lehmann, 1959; Barndorff-Nielsen, 1978; Bildikar and Patil, 1968).
(i) O is a convex set in R
(ii) c(8), 8 = (6., 62) is an analytic function of § € O.
(iii) For any 0 € O the statistic u = (uz, uz) has moments of all orders. In particular

(2~1) Eo(u) = (?11, 712), n= _ac(o)/aol: 1= 1) 2.

Let Vy(u) denote the covariance matrix of u. Then Vy(u) is positive definite (p.d.) for
all § € © and is given by

(22) Vg(u) = (O’ij), 0 = COVo(ui, u]‘) = - 320(0)/60,‘60]‘, l,j = ]., 2.
(iv) Let T = (T,, T:), then
(2.3) Ey(T) = (nn1, nnz), Vo(T) = (noy), i,j=1,2.

(v) The following two conditions are equivalent: .
(1) COVﬂ(Tl, Tz) = — nazc(ﬂ)/aﬂlaﬂg = 0, g€ 0.
(2) The r.v.’s Ty and T are independent, and each constitutes a one-parameter
exponential family with the natural parameter 6, and 8, respectively. 0

In order to avoid trivial cases which follow when one of the conditions in (v) is satisfied,
we make the following assumption,

ASSUMPTION 2.2. cove(Ty, To) £0, € 6;

otherwise the marginal density of T} itself depends only on 6; and is independent of T%.

LEMMA 2.2. (Barndorff-Nielsen, 1978). Under Assumption 2.1 the following results
hold:
(i) The mapping (61, 6:) — (61, n2) defined on © is a homeomorphism. (Thus, (01, n2)
furnishes a parameterization of the exponential family called a mixed parameterization).
(ii) The components (0:, n2) in the mixed parameterization are variation independent. 0

Thus the domain of variation of (61, nz) is of the form 6, X H,, where H; is connected
(using the connectedness of ©) and ©; X H, is open.

3. The model and the main results.

AsSSUMPTION 3.1. 6; can be represented as:

(3.1) 0; = — 619 (n2).

The existence of such a representation for 6, is easily checked since by Lemma 2.1 (iii),
12 = —dc(61, 02)/36; is a strictly monotone increasing function of 6, for each fixed 6; € 6,
and thus an expression for 6 is easily derived.

REMARK 1. If 6, is of the form —(6; + d)¢’(n2) + e, with d and e arbitrary constants
then the results in the sequel hold for this case too, by redefining 0 = 6, + d, 65 = 62 —
e as our new natural parameters.

REMARK 2. It can be shown quite easily that if we are expressing 6, c(:, 62) and
11(01, 62) by means of 6; and 72, then these functions possess partial derivatives of all
orders w.r.t. (61, n2) € ©; X H,. For the sake of brevity we omit the proof.

REMARK 3. A dual representation of §; by means of 6; and 7; as 6, = a(6;) + B(n2) for
some functions a(-) and B(-) is given by Barndorff-Nielsen (1978, Theorem 10.4) in
connection with the existence of cuts in the exponential family.
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LEMMA 3.1.
(1) @’(n2) is not identically constant.
(ii) The functions c (01, 82) and 1:(6:, 6;) when expressed by means of the mixed parameters
0, and n; are of the following forms:

(3.2) (61, m2) = O1x (n2) — M(61)

where x(n2) = 129’(n2) — @(n2)

(3.3) m =) + M'(6:), M'(6:) = dM(6,)/db:

and M(6,) is an infinitely differentiable function on © for which

(3.4) M”(6:) = d*M(6,)/d6} >0, V6, € 6,.
Proor.

(i) Assuming that ¢’(n2) = ¢ where c is an arbitrary constant, then by (3.1), 6 = —c#f: i.e.
6: and 0 are linearly dependent, in contradiction to the assumption that © is a non-empty

open subset of RZ,
(ii) The general solution of the differential equation n2(61, 2) = — dc(61, 62)/80; is of the

form

(3.5) —c(b:, 6;) = f 12(601, 62) dbs + M(6:).

Consider 7 in the relation (3.1) as a functioh of (6, 62), then differentiating w.r.t. §; both
sides of (3.1) results in

(3.6) 1= —0:9"(n2)(3m2/302), me/302 = 622(8) >0, VOE O.

Using (3.6) in (3.5) and changing the variable of integration in (3.5) to 7. instead of 6,
gives

—c(6y, 6:) = —0, J' n2¢” (n2) dnz + M(61)

and integration by parts of the integral in the right-hand side of the last equation yields
—c(01, 62) = — O1x(n2) + M(01) = —0:19'(2)n2 + O19(n2) + M(6:)
= Gome + 619(n2) + M(6,).
But
M = —dc(01, 0;) /861 = 02(3m2/86:) + @(n2) + 019" (n2)(dm2/361) + M'(6:).
The result (3.3) follows through use of Assumption 3.1.
As a first step towards proving (3.4) we show that

3.7) M"(6:) = 611(8) — 6%:(6)/022(0).

Using (3.3) we express o11(0) as

(3.8) 011(0) = a1(0)/86, = @’ (n2)(dn2/361) + M”(6:).

Differentiation of both sides of (3.1) w.r.t. §; yields 0 = —¢’(n2) — 019" (n2)(dn2/86:) or
3.9 —¢'(12) = 019" (n2)(n2/36:).

From (3.6), —0:¢"” (y2) = 1/(8n2(0)/36:). Substituting this into (3.9) one has
@' (n2) = {812(0)/36:}/{9n2(6)/30:} = 012(6)/ 022(6)

or

(3.10) 612(0) = @' (n2)022(0).

Finally, by using (3.8) and (3.10) we obtain 011(f) — 632(0)/022(6) as exactly M”(6:). Since
Vy(u) is p.d. (Lemma 2.1) it follows that M”(6;) > 0.0
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It follows from (3.6) that 6; cannot be 0 and that 8; < 0(>0) < ¢”(n2) > 0(<0), and
hence, by connectedness of ©; X H;, that either

O:CR-, H,C {n2:9"(n2) >0}
or
O:CR*, HyC {n2:9"(n2) <O0}.

Thus the division by 6; of both sides of equation (3.1) is allowed, resulting in — ¢’(n2)
=60, /6.; 1.e., 2 is a function of (6;, 6;) only through the ratio 8, /6;. This property of n; leads
to the following theorem.

THEOREM 3.1. Under Assumptions 2.1 and 2.2 the distribution of the statistic T, =
T:/n is equivalent to that of ux(X) but with parameters nb,, nf, (instead of 6., 6.,
respectively) if and only if ns is a function of (0., 6:) only through the ratio 6./0;.

REMARK 4. Notice that when we are dealing practically with the construction of
UMPU tests through the conditional distribution of 7} given T: = ¢, then the main
technical difficulty arises in finding the marginal distribution of 7. Theorem 3.1 provides
a simple solution since the marginal distribution of #2(X) can be found from (1.1) by a
simple transformation.

ProoFr. (i) Assume that 7, is a function of (01, 62) only through the ratio 6./6, =
—@’(n2). Hence c(6:, 6:) is of the form (3.2):
(3.11) (b1, 62) = 01x{n=2(02/61)} — M(61).

Denote by u,(s), ¢r,(s) and @7,(s) the characteristic functions (c.f.’s) of us, T> and T
respectively. Using (1.1), one obtains the following general expressions of these c.f.’s:

(3.12) @Qu,(s) = exp{c(0y, 62) — c(8y, 6> + is)}
(3.13) or,(s) = exp{nc(6:, 6:) — nc(y, 6> + is)}.
Now o7,(s) = ¢r,(s/n) = exp{nc(6:, 6;) — nc(6y, 02 + is/n)}, but for c(6:, 62) of the form
(3.11) we have
Pu,(s) = exp{61x[n2(62/61)] — 61x[n2((62 + is)/6:)]}

and

0 .
=2 (25

By comparing the last two c.f’s one obtains the c.f. of T: as that of u,(X) but with
parameters nf; and né. (instead of 6; and 6. respectively), and thus the desired result.

(ii) Assume that the c.f. of T} is as that of u; but with parameters né; and né..

Using (3.12), it follows that

o7,(s) = exp{c(nb, nbz) — c(nb, nb, + is)}
and therefore
(3.14) or,(s) = pr(ns) = exp{c(nby, nbz) — c(nd, nb; + nis)}.
By comparing (3.13) and (3.14) it can be seen that
nc(., ) — nc(6y, 0: + is) = c(nb., nbz) — c(nb;, n(6: + is)).
Differentiating w.r.t. s and then dividing both sides of the last équation by n gives

ac(by, 0, + is) _ ac(nb, n(@; + is))
36 +is)  o[n(8 + is)]
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In the last equation substitute s = 0, obtaining
ac(by, 62)  dc(u, v)
802 av

u=nb;,v=nby

Hence dc(6, 6;)/80; is a homogeneous function of zero degree with general solution of the
form (Franklin, 1940)

dc(by, 62)/86: = ¢ (0:/6,).
The result follows since the left hand side of the last equation is exactly —m(6;, 62). O

In the following we assume that u»(-) is a 1-1 function. Nevertheless, notice that the
above results hold without the restriction made by such an assumption.

ASSUMPTION 3.2. u, = g(x) where g(x) is a 1-1 functien on the convex support of (1.1).

If we denote the appropriate inverse function by g~!(.), it can be shown that the
distribution of u; belongs to a two-parameter exponential family with density function of
the form

(3.15) fur(U2:0) = r(uz)exp{0rui[ g (uz2)] + a1z + c(81, 05)},

where r(u;) = a[ g7 (12)]| dg'(u2)/duz | and c(6, 6;) is determined by (3.2).
As a consequence of Theorem 3.1 it follows that the r.v. T has the following density
function

(3.16) fr(t2:0) = r(t)exp{nbiu[ g7\ ()] + nbsts + nfix (n2) — M(nb;)}.

In the following theorem we present one of the main results of this paper.

THEOREM 3.2. Under Assumptions 3.1 and 3.2 the following properties hold:
(1) lh[g_l(f'z)] = (p(Tz) a.s.

(ii) The distribution of the statistic Z, = T: — ne(T:) belongs to a one-parameter
exponential family with natural parameter 6, and density of the form,

(3.17) fz,(2n:01) = d(2n)exp{6:2, — [nM(6,) — M(n6:)]}, 6, € .
(iii) For any 6 € © the r.v.’s Z, and T, are independent.

Proor.
(i). This result is proved below in Lemma 4.1.

(ii) and (iii). Denote by ¢r,(s: ¢;) the c.f. of the conditional distribution of T given Ts = ¢,.
Then by (1.2) it follows that

(318) (pTl(Sitz) = E{exp(isTl) I T2 = tz} = b(01 + iS, tz)/b(ﬂh tz).

An expression for b(6;, £;) in our model will be derived in the following manner. Using
(3.16) one finds that the density function of T can be written as

fr,(t2:0) = [r(t:)/nlexp{6at; + n[fix(nz) — M(6:)] + nbyu[ g ' (22)] + nM(6;) — M(nb;)}.
Then, by comparing the last equation with (1.3), it follows that
(3.19) log b(61, ;) = nbiu[ g7(%:)] — [M(n6:) — nM(8:)] + log[r(tz)/n].
Substituting (3.19) in (3.18), and using the notation

H,(6,) = nM(6:) — M(né,),

we obtain
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or,(s:t:) = E{exp(isT:) | Tz = t:} = exp{(is)nu[ g7 ()] + H. (61 + is) — H,(6:1)}
(which holds for almost all values of ¢;), and thereforé
E{exp(is{Ts — nenl g™ (T)]]} | T: = 1)
= E{exp(isZ,) | T> = t;} = exp{H, (61 + is) — H,(0:)}.
Hence Z, and T, are independent. From the last equation we obtain
¢z,(s) = E{E[exp(isZ,) | T21} = exp{H, (6 + is) — H.(61)}.

Therefore, the distribution of Z, depends on 6, only. The marginal density function of Z,
can be shown to be of the form (3.17) by using the 1-1 two-dimensional transformation
(T, T:) = (Z,, T>). For the sake of brevity, details are omitted.

4. Other properties of the statistic Z,. In the next two lemmas we prove the
existence of some additional properties of the functions ¢(n2) and M(6;). Those properties
enable us to characterize those of Z,,.

LEMMA 4.1. Let C; denote the convex support of the marginal distribution of T:,
which coincides with that of uz(X). Then, under Assumptions 3.1 and 3.2,

(4.1) ox) =w[g(x)] + ¢; VxE int C;,

where c is an unspecified constant which can be chosen without loss of generality as 0.

Proor. We first show that H, = int C;. Denote by S the support of the joint
distribution of (T;, T) n > 1, by C the convex support of S (i.e. C = ¢l conv S) and by H,
n(int ©). Theorem 9.2 of Barndorff-Nielsen (1978) states that the exponential model given
by (1.1) is steep iff H = int C. By Assumption 2.1, (1.1) is regular which implies the
steepness of the model (Barndorff-Nielsen, 1978, Theorem 8.2). Let II,(B) denote the
projection of a set B C R? onto the coordinate y. Then C; and H; can be expressed as C;
= cl conv II5,(S), H; = Il7,(int C) = IIF,(int conv S). By applying Lemma 5.4 of Barndorff-
Nielsen (1978) and noting that, from (i) of Section 1, int S # ¢, the desired result follows.

As noted above, the conditional distribution of T\ for given T: = ¢, constitutes a one-
parameter exponential family having conditional density function of the form (1.2). So
that for each fixed £, log b(6:, t;) plays the same role in the conditional density (1.2) as
that of the function —nc (@) in the joint density of (T, T:). Therefore we can immediately
state the following properties of log &(6:, £;) analogous to the properties of —nc(f) and
valid for all §; € 6, and almost all #,:

Eo,(T1|t2) =4 log b(01, tg)/aoh
Vo (T | 8:) = * log b(6y, t;)/86% > 0,

where the notations Ey (T1|t:), Vo (T1|t:) stand for Eo(Ti| Tz = t2), Vo (T1| T2 = ;)
respectively.
It is claimed that in general we have the following result:

(4.2) (1/n)(d log b(6:, T2)/86:) »pm1 as n—>

whatever be the value of 6.
The convergence in probability in (4.2) is valid since

E{(1/n)(31og b(6:, T2)/86:)} = (1/n)Es{Es,(T1| T2)} = Eo(w1) =1,
and by using the known identity
Vo(T1) = Vo{Es(Ti| T2)} + Eo{ Vo (T1| T2)}
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it follows that
Vo{(1/n)(d log b(6:, T2)/361)} = (1/n?) Ve{Ee (T1| T2)} < (1/n*)Vo(T1) = 011(0)/n — 0

as n — o, which implies the result (4.2).
Under our model, (1/n)d log b(8:, T2)/86: has the form

(4.3)  (1/n)d log b(6:, T2)/06: = wi[g™ (T2)] + M'(6)) — M'(nb;), M'(nb:) = M'(x) |x=rs, -

Since u; (x) and s (x) are continuous (see the discussion following equation (1.1)) and u,
= g(x)is 1-1 (Assumption 3.2) then u;[ g '(u2)] is continuous on H; = int C;, and it is
implied that

(4.4) g M(T2)] =as wi[87 " (2)].

(T —as. 72 as the mean of independent r.v.’s having common expectation 7). Finally by
using (3.3) we conclude from (4.2) and (4.4) that
(i) lim,_, M'(n6;) = F(6,), say, exists for any 6; € ©y;

(ii) @(n2) = ui[g7'(m2)] — F(6v).

It follows from (ii) that F(6;) = ¢, an arbitrary constant; otherwise 72 can be expressed
as a function of 6; only, and this fact implies that 622(8) = dn2/80; = 0 which contradicts
our assumption that © has a non-empty interior in R% ie. wi[g7'(n2)] = @pn2) + c. If ¢
does not equal 0 it can be made so by the following construction of the exponential family:
substituting in (3.15), w:[ g '(u2)] = @(u2) + ¢, u2 € int C; = Hy, one gets

fu,(u2:0) = r(uz)exp{01¢(uz) + Oauz + 01x(n2) — M1(61)},

where M;(6;) = M(0,) — cb.. If we now repeat the whole process that leads to the
conclusion (i), one obtains lim,_,. Mj(nf;) = 0. Thus if ¢ # 0 we assume that such a
construction has been made. 0

The following result deals with the form of the convex support of the distribution of Z,,
and uses the fact that either 8; CR™ or 6; C R™.

LEMMA 4.2.
(@) If6,CR thenZ,>0as. (i) If©0;CR" thenZ,<0as.

Proor. (i) If ©; C R~ then H, is a non-empty open interval in R which is contained
in {n2:9”(n2) > 0} (see discussion immediately following Lemma 3.1). Thus @(7:) is a
strictly convex function on H,. Let ub, i = 1, ---, n be independent observations from
(3.15). Since H; = int C; it follows that with probability one, ub€ Hyyi=1,.--,n,and
Y%, ub/n € H,. Using the fact that ¢ (1) is a strictly convex function on Hz, one gets that,
with probability one,

p(f) = (Y1 us/n} < (1/n) (T @(uh)} = (1/n){(Ti ui} = ti/n
ie.
Z,=T—no(T:) >0 as.

(i) The proof of (ii) is analogous, using the fact that ¢ (52) is a strictly concave function on
H, 0O

REMARK. All the results derived above under the assumption that the model is regular
(6 open) hold on int © for steep models. For steep models it can be shown that (Barndorff-
Nielsen, 1978, Theorem 9.1 (ii), Theorem 9.3 and the discussion immediately preceeding
Theorem 5.34) the mapping (6, 62) — (0, 12) defined on int © = int(dom k(4)) is a
homeomorphism and that 6; and 7, are variation independent. These conditions are
sufficient for our derivations.
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5. Example

ExAMPLE 5.1. Normal distribution.
Q)  f(x:p, 6% = 2m) Y 2exp{—(x — n)*/206%}, x,nER,c*ER™;
() 6=-1/20%0:=p/620=R XR u(X) =X, us(X) =X, T1 =¥ X}, To =
1 Xi;
(iii) c(6y, 62) = 63/46: + (Yo)log(—26y);
(iv) N = —02/201, 0, = —201112;
v) m=n3-1/20,, @) =n3 M'(6)=—1/26;;
~vi) Z,=Ti — no(T:) = (n—1)S*>0 as, Z,and T: are independent and the
distribution of Z, depends on 6; = —1/2¢% only. 0O

ExXAMPLE 5.2. Gamma distribution.
i) flx:A, a) = (=A% /T (), x,a ER*"AER";
(11) 01=a, 02=A, 6=R+><R_, uI(X)=logX, uz(X)=X,
(iii) e(a, A) = alog(— A) — logT'(a);
(iv) m2=—a/\, A= —a/n, m =logn: + dlogl'(a)/da — loga, ¢(n:) = logn,, M'(a)
= d logl'(a)/da — loga;
) Z,=Ti—ne(Te/n)=n-log{[IT%, X;]*/X,} <0a.s. and Z, and X,, are independent.
The independence of the sample mean and the ratio between the geometric mean and the
sample mean for the Gamma distribution is well known. (Cox and Lewis, 1966; Glaser,
1976; Bain and Engelhardt, 1975). O ‘

ExaMPLE 5.3. Inverse Gaussian distribution. We write the distribution as
() flxia, N) = 27) 2x 2\ 2exp{—ax/2 — A/2x + (aN)?}, x,AE R*,a € R* U {0};
(i) 6,=-N/2, O,=-a/2, 6=R™ X (R U {0}), wi(X)=1/X, u.(X)=X;
(iii) c(fs, 6;) = 2(6:62)"* + (¥)log(—26y);
(iv) m2 = —(6:1/62)"% 6 = Oi/m3, m = (1/m2) — (1/261), o@(n2) = 1/mg M'(6) =
—1/201;
V) Z.=Y%L (/X)) — (n/X,) >0as., Z,andX, are independent for all § € int O (i.e.
a > 0, A > 0) using the steepness of the model (Barndorff-Nielsen, 1978, Example 8.4). This
property of the Inverse Gaussian distribution has been shown by Tweedie (1957a,
1957b). O

Other examples include the Log-Normal, Log-Gamma and random walk distribution
(Johnson and Kotz, 1970, page 149).

The referee has conjectured that the above three examples (and of course 1-1 transfor-
mations of them) exhaust the domain of application of Theorem 3.2. This is equivalent to
saying that u,(X) must have one of those three distributions for Theorem 3.2 to hold. We
have been unable to confirm or disprove this conjecture.

It can be shown that similar results to those developed above in Sections 3 and 4 hold
under analogous assumptions for the bivariate case, i.e. when (1.1) is a bivariate density
function w.r.t. the Lebesgue measure on R? Assume that (X, Y) is a random vector which
has a bivariate density function of the form

(5.1) fx.v(x, y:0) = a(x, y)exp{fiui(x, y) + us(x, y) + c(0)},

where T;stands for ¥ 7y w; (X;, Y;), i =1,2, with {(X}, Y;)} {(X}, Y;)} /-1 arandom sample
from (5.1). We illustrate such results by the following example.

ExaMPLE 5.4. Bivariate Gamma distribution. A detailed discussion on this distri-
bution is found in Mihram and Hultquist (1967) who termed it a bivariate warning time/
failure time distribution.

(i) f(x,y:a,p, q) = {a”YT(P)T(g)}x"(y —x)" e ®, y>x>0,ap,q>0 We
assume that a and q are the unknown parameters (p is known). Similar results hold when
a and p are the unknown parameters and ¢ is known (see (vi) below).
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(i) 6=gq, 6=—a, O=R*XR”, wlx,y) =log(y—x), ux,y)=y;
(iii) c(6y, 6) = (p + O)log(— 6;) — log T'(6:);
(iv) me=—(p+61)/6:; 0=—(0:/n2) — (p/n2). Here 6 is of the form —8, ¢’ (n2) — pp’(n2)
(see Remark 1 under Assumption 3.1). We therefore define a new natural parameter 6} as
0f = (6: + p) so that 6, = —0% ¢’(n2). In this case, ¢’(n2) = 1/72, @(n2) = log ns, T1 =
Yi-log(Y; — X)), To = ¥} Yj. _ _
v) Z,=T — ne(Te/n) = Y} log(Y; — X;) — n(log Y,) <0 as. Z,and Y, are
independent. Mihram and Hultquist (1967) have shown that X/Y and Y are independent.
This entails the independence between log(1 — X/Y) and Y, thus implying our result for
n=1
(vi) Assume now that a and p are the unknown parameters (q is known). For this case
ui(x, y) = log x, ux(x, y) =y, 61 = p + q, 6. = —a. An analogous development yields the
independence between Z, = Y%, log X; — n(log Y,) and Y,, and furthermore that the
distribution of Z, depends on 8, only. [

6. UMPU tests based on the statistic Z,. We are interested in testing the following
four types of hypotheses concerning 6;:

Hi:0,<8 Ki:6,> 69

Hy;: 0,01 or 6.=0? K,:01<6,<86?

H: 0l <6, <63 Ks: 0, <01 or 6,>63%
H: 6, =69 Ky 6, 69

where 8% € 0,,i =0, 1, 2 are specified values of 6;. It can readily be seen that UMPU tests
for these four hypotheses can be constructed based on the statistic Z, since by use of the
results derived above, Lehmann’s (1959, Chapter 5) Theorem 1 applies. For Examples 5.1,
5.2 and 5.3 this results in tests that are available in the literature (see Lehmann, 1959; Bain
and Engelhardt, 1975; Chhikara and Folks, 1976, respectively). These tests were developed
separately for each case. Our approach provides a unifying element.

Acknowledgment. The authors are grateful to the referee for his constructive
criticisms which resulted in improvements both in content and style.
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