The Annals of Statistics
1982, Vol. 10, No. 3, 895-908

ASYMPTOTIC EXPANSIONS FOR THE ERROR PROBABILITIES OF
SOME REPEATED SIGNIFICANCE TESTS

BY MicHAEL WOODROOFE! AND HAJIME TAKAHASHI

University of Michigan and Boston University

Asymptotic expansions for the error probabilities of repeated significance
tests about a normal mean are developed. Use of the expansions appears to
result in substantially improved numerical accuracy, when compared to the
use of the leading term, at least in some important special cases. The
expansions are sufficiently refined to show the effect of some simple modifi-
cations of the basic procedure, such as requiring an initial sample size.

1. Introduction. Let X;, Xz, - - be i.i.d normally distributed random variables with
unknown mean 6, —o < @ < o, and unit variance; and consider the problem of testing Hy:
0 = 0. In recent work on sequential tests of H,, there has been continuing interest in
repeated significance tests, which were introduced by Armitage (1975) and by Robbins
(1970), in a slightly different form. These may be described as follows: for a >0 and ¢ = 0,
let

T=1Tec=inf{n=1:|S,| > V2a(n + ¢)},

where S, = X; + ..+ + X,,, n = 1, and the infimum of the empty set is «; if N > 1, then
repeated significance tests with parameters a, ¢, and N take T' = min(r, N) observations
and reject Hy iff 7 < N.

Exact expressions for the error probabilities and expected sample sizes of repeated
significance tests are extremely complicated: but asymptotic values as a — o« may be
deduced from non-linear renewal theory, as developed by Woodroofe (1976a) and Lai and
Siegmund (1977, 1979). In particular, Siegmund (1977) has developed the following
approximation to the Type I error: let P, denote the probability measure under which X,
Xz, - -+ are ii.d normally distributed random variables with mean 6, —o < § < 0. If N =
N, — o as a — o with N ~ 2a/8%, where 0 < §, < o, then

1) Py{r <N} ~ KVae™
as a — %, where
K=—
Va
o o 1 1
v(x) = 2x "expq —2 Z’FIZ@ —Ex«/l; , x>0,

2 f v(x)exp(—cx?/2) dx
N x

and @ denotes the standard normal distribution function.

Siegmund (1977) conducted a substantial study of the numerical accuracy of (1) and
related approximations. In the study, he compared his approximations to exact values
computed by repeated numerical integrations by McPherson and Armitage (1971) for
selected special cases. Siegmund expressed general satisfaction with the approximation (1)
when the offset parameter is ¢ = 0, but found that it could substantially underestimate the
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real Type I error probability when c # 0. He then suggested including an additional term,
derived from a Wiener process approximation, in (1).

Here we continue the study of numerical accuracy by presenting an asymptotic expan-
sion for the Type I error probability, up to terms which are of order a™'/?¢~* as @ — . For
selected ¢ # 0, the asymptotic expansion provides a substantial improvement over the
basic approximation (1). In addition, we consider two modifications of 7, requiring an initial
sample size and adding a lower stopping boundary. The latter is suggested by Schwarz’s
(1962, 1968) asymptotic shapes. In both cases, the effect of the modification is of order
a~%¢~%, the same as the correction to (1).

The paper proceeds as follows: in Section 2, we present an asymptotic expansion which
was recently developed by Takahashi and Woodroofe (1981) for certain conditional
probabilities; in Section 3, we show how this asymptotic expansion may be converted into
an asymptotic expansion for the Type I error probability; in Section 4, we investigate the
Type I error probability of the related procedure in which one is required to take m
observations initially; in Section 5, we adapt our techniques to'study the error probabilities
which result from using Schwarz’s (1962) asymptotic shapes; and Section 6 contains
remarks.

2. Conditional probabilities. It is simpler to work with the one-sided version of 7,
(2 t=t,c=inf{n=1:S,> vV2a(n + ¢)}.
Let '
Ya(n,r) = P{t=n|S, = «/2(1(n—+c)+r}, —o<r<eoa>0n=1;

then
Yo, 7) = Po{Su < B, 1<k=n-1},
where
Snk=Sk_§Sn, 1<k=<n,
and

BZk=v2a(n—k+c)—(1—;)[~/2a(n+c)+r], 1<k=<n.

Indeed, this follows from the independence of S, from the vector Spx, k=1, ..., n—1,
and obvious symmetries of the latter. Now, as n = n, — « and a — » withv(2a/n) — ¢,
0<e< o, B — Y%ek — r, and S, — S, w.p.1 (Po) for each fixed %2 = 1. This suggests
approximating the conditional probabilities Y, (n, ) by

Y(e,r) = Po(Sp=<Yek —r, forall k=1}, —w<r<m,e>0.

Moreover, while it is not obvious from Siegmund’s (1977) derivation, (1) follows easily
from this approximation (cf. Woodroofe, 1976b).

There are two major sources of error in approximating . (n, r) by Y(e, r): Bax is not
quite equal to %ek — r; and Sy is not quite equal to S. It is straightforward to generate an
asymptotic expansion for 8%; and it is not difficult to obtain an asymptotic expansion for
the likelihood ratio of the distribution of S,i, - -+, Sus to that of Si, ---, S, for suitable
chosen b. If these expansions are used in place of the simple limits above, then the
following expansion for Y, (n, r) results: if n = n, — « as a — « with ¢, =v(2a/n) bounded
away from 0 and bounded above by O(a'’®), then

3) Yaln, 1) = Y(et, 1) _%pc(gn,r) + O(%)
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where

= * gf — \I/,(f;', O) l _§ ’ ”
&= V(2a/n), ef=¢, + o pc(e, r) = [‘P(S, ) +2r 208]\1/ (e, r) + " (g, 1),

and’ denotes differentiation with respect to e. The relation (3) holds uniformly on compacts
in r, —o0 < r < . Moreover, letting Ay > 0, 0 < A, = o[exp(Vlog n )], and

Da(n, r) = nl[{a(n, r) — (e, 1] + pelen, 1),
|Da(n, r)| < Cepy, —0 <r<A,,
and
| Do(n, r)| < Cexp(—nel) + 6(n™"), —w<r<o

for some constants C and 7, where 6(n~>) denotes a term of smaller order of magnitude
n* for every k = 1.

The proof of these assertions when ¢ = 0 is given by Takahashi and Woodroofe (1981).
The extension to ¢ > 0 is straightforward and has been omitted.

3. The Type I Error. Given an integer N > 1, let
a=a(a,c, N).=Py{t< N}.

Then the Type I error of the repeated significance tests is easily seen to be 2o + o(a®) as
a — o for some A > 1. In this section we obtain an asymptotic expansion for « as N and
a — o« with N/a bounded away from 0 and .

Our approach to the expansion is quite simple. Write

(4  a=Y\iPft=n)=YN, f Ya(n, r) L ¢[V{2a(1 + cn™")} + rn7?] dr,
A N/

where ¢ denotes the standard normal density function. If the expansion (3) for Yo(n, r) is
substituted into (4), then an expansion for « results. To describe the latter expansion, let

U, s) = j Y, e ™ dr, e s>0,
0

and

¥, 0)

Vel =160

3 1
Uio(e, €) + 5 Uli(e, &) + E Usz(e, €)

1
+ Usxo(e, €) — 3 ce[Uoi(e, &) + 8Uio(e, €)], €>0,

where U, (¢, s) = 3" U(e, s)/de'ds’ for g, s > 0. Then it may be shown that
1 1
=———¢
2vr Va

where &, = V(2a/n); see Appendix 1. Moreover, the summations may be compared to
integrals to yield the alternative form

6) a= i Jae™ {f 2U (e, e)e—(1/2ee’e™2 g — if Ve(e)e—(/2)ce® de + o<i)} )
Jr A al, a

0

1 ,
5) «a e {2711\;1 enUlen, &,)e~(1/2cei — o Yot eh Velen)e-(/2eeh + 0(1)} ,
a

where

R
ed= 2a/(N + E) and e?=4a.
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TABLE 1
The Type 1 Error*

c=4 N a exact 1st order  2nd order diffusion
185 3.65 0.050 0.045 0.048 0.048
100 3.35 0.050 0.043 0.048 0.049
42 2.88 0.049 0.037 0.047 0.050
24 2,51 0.048 0.033 0.046 0.052
c=1
140 5.54 0.0098 0.0095 0.0097 0.0095
61 5.18 0.0096 0.0089 0.0095 0.0094
33 4.87 0.0093 0.0083 0.0091 0.0093
21 4.66 0.0093 0.0081 0.0092 0.0096

* The exact figure is from the numerical integrations of McPherson and Armitage (1971); the first
order approximation is computed from (1) with & = a/N; the second order approximation is
computed from (6); and the diffusion approximation is taken from Siegmund (1977).

The function U may be computed from Spitzer’s Formula as
1 1 1 el (1
U(s,s)=;exp —275=1% 0} —58\/; + F 0 A JE ,

1 1
F= 9(£,s)=exp(—§es+§sz), g 5> 0;

where

and V. may then be computed by straightforward differentiation. See Takahashi and
Woodroofe (1981) for details. Finally, it is straightforward to compute (6) by numerical
integration, or to compute (5) directly.

Table 1 compares the approximations (1) and (6) with the exact values of McPherson
and Armitage (1971) and with Siegmund’s (1977) corrected approximation. Observe that
(6) provides a much better approximation than (1) when ¢ # 0, especially for small values
of N.

4. An initial sample size. In some cases, one may want to take a fixed sample of size
m initially and then perform repeated significance tests. Then one is led to study

tw = tmac =Inf{(n=m:S, > v2ain + c)}.

Let
an = an(a, ¢, N) = Po{t, = N}

for integers N > m. Then #, and «; are the ¢ and « of the previous section. Next, let
an=Py{m=t= N}.
Then «a;, is given by (6) with e; replaced by e} = v{2a/(m — %)} . Thus, a;, may be

regarded as known. Now

am — k= ,,N=mj Yam(n, 1) 1 o[V{2a(l + cn™")} + rn*] dr,
y vn

where
Yam(n,r) = P{tn=n and t<m|S,= v2a(n +c) +r}
=Py{S,; =B for 1=j=n—m,and

S,, > B forsome j>n-—m}.
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If m, N, and n — ® as a —  in such a manner that
7 m~2a/8%, N~2a/83, and n—m—Fk
where 0 < 8, < 8; < « and & = 0 is an integer, then {, (n, r) converges to
Yr(81,7) = Po{S;=%8:j—r for j<k and S;>%8,j—r forsome j>Fk}.

Since

-1 —1/2 ~__}__ _ _1 2 _
o[v{2a(l + cn™')} + rn™%] \/2_Wexp a 2081 &r

under the limiting operation (7), the asymptotic relation

(8) Om — a;rz ~

1 1 ”
expl —a — = 082} )y J Yr(81, r)e " dr
J@mm) { PR e A
is suggested; and (8) may be proved rigorously along the lines of Woodroofe (1976b). See
also Section 5 for a related proof.
Denote the summation on the right side of (8) by K; = K:(8:). Then, as explained below,

9) K, = (SflSl(Sl)eXp{—So(Sl)}
where Sole) = Yi-1 % ?(s)"@{(% & — 8) \/I;}
and Si(e) = Yot 9«*(8)’@{(% 8 — e) J/Z}

with & (¢) = exp(—%8:¢ + %e?) for € > 0. Observe that Sy(e) and Si(e) simplify when & =
8:. It is straightforward to compute K; from (9).

In the proof of (9) we write § for &, let F' denote the normal distribution with mean
—1%§ and unit variance, and write P for P_zs. Thus, X1, X5, - -+ are i.i.d. with common
distribution F, and P. Observe that # is the moment generating function of F. Let

=inf{n =1:S,>r}, Go(r) = P{r.< o}, Gi(r) = J dP, —wo<r<oo.
T, <00
o 0
Then K, = j Gi(—=r)e ™ dr = J Gi(r)e* dr.
0 —o0

Now Gi(r)=1-F(r) + J’ {Go(s) + Gi(s)}f(r — s) ds
0

for all r, —0 < r < o, where f = F’ denotes the density of F. It follows easily that, for 0
<e<§,

J Gi(r)e” dr=¢"'F(e) + J {Go(s) + Gi(s)}e” ds-F (e)
—o 0
= 'F(e) + {%(e) + %i(e)} F (o),
say. Thus,
0 00
J Gi(r)e” dr = J Gi(r)e” dr — % (e)

(10)
= ' Fe) + Go(e) F(e) — {1 — F(e)} %ile).

Let o denote the first (strict, ascending) ladder epoch; let Y denote the first ladder
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height; let H denote the (defective) distribution of Y; and let

L(r)=J odP, r>0.
Y=r

Then Go(r) = H() — H(r) + j Go(r — s) dH(s)
0

r r

Go(r — s) dL(s) +f Gi(r — s) dH(s)

0

and Gi(r) = L(») — L(r) + f

0

for r > 0 by the renewal equation. Thus, letting # and ¥ denote the moment generating
functions of the distributions H and L,

Gole) = 7' H(e) + FGole) H (¢)
and Yi(e) = e " L(e) + Gole) Le) + éﬁl(e)%(e), 0<e<é.
Next,
1— H(e) = {1 - F(e)}exp{So(e)} and L(e) =[F(e) — {1 — F(e)}Si(e)Jexp{So(e)}

for 0 < ¢ < §, where Sy and S; are as in (9), by a simple application of Spitzer’s Formula.
See, for example, Feller (1966, pages 569-570). Substituting these relations into (10) and
rearranging the terms, we find

’ (772
f Gi(r)e” dr=i_1_{97(e) — 2() i - /(e)}

e 1 — #le) )
B ":' {: - :ZZ;}SI &) — -;— Si(8)exp{—So(8)}, ase?d.

This completes the proof of (9).

Table 2 lists values of Sy(81), S1(8:), and K;(8;) for selected &;, and Table 3 compares
the approximation (8) with some simulations for selected values of a, N, and m.

The column entitled “lst order” lists the leading term in (6), with e; =
v{2a/(m — '%)}; the column entitled ‘“2nd order” lists all of (6) plus (8). Observe that the
second order approximations are closer to the simulated values in all cases considered, and
substantially closer in most cases. Observe also that the first order approximations are
uniformly less than the simulated values, while the second order approximations are
frequently greater. The next column lists an approximation suggested by David Siegmund
(personal communication), which consists of adding

#(v2a) ( 1 m)
——(2—-=log—
V2a 2°°N
to the leading term in (6), with ey = v(2a/N) and e; = v(2a/m) . The latter approximation

works exceptionally well. It would be interesting to have a theoretical explanation of this
excellent agreement.

(11)

5. Asymptotic shapes. Relation (3) may be used to refine Woodroofe’s (1976b)
approximations to the error probabilities which result from using Schwarz’s (1962) asymp-
totic shapes. The latter may be defined as follows. Let > 0 and consider the problem of
testing Ho:0 < — § vs. H1:0 = §. Suppose that there is a prior distribution 7 with full
support, a positive bounded loss for a wrong decision when |#| = 8, no loss for either
decision when | 8| < §, and a cost ¢ > 0 for each observation X;, X;, - - .. Then there is an
optimal Bayesian procedure which continues sampling as long as the sufficient sequence
(n, S»), n = 1, stays in a subset 4,(c), called the Bayesian continuation region. Schwarz
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TABLE 2
Values of Sy (8), S (8), and K (8) *
) So S, K
.10 2.6783 199.7542 137.1908
15 2.2874 88.6452 60.0010
.20 2.0143 49.1583 33.1936
.25 1.8057 31.7604 20.8812
.30 1.6378 21.9847 14.2453
.35 1.4983 16.0910 10.2760
40 1.3793 12.2666 7.7206
45 1.2760 9.6452 5.9832
.50 1.1852 7.7707 4.7510
.55 1.1043 6.3843 3.8472
.60 1.0318 5.3304 3.1659
.65 0.9662 4.5106 2.6406
.70 0.9066 3.8606 . 2.2276
.75 0.8520 3.3366 1.8977
.80 0.8019 2.9081 1.6303
.85 0.7556 2.56533 1.4109
.90 0.7128 2.2563 1.2290
.95 0.6731 2.0053 1.0768
1.00 0.6362 1.7913 0.9482
1.25 0.4842 - 1.0814 0.5331
1.50 0.3723 0.7004 0.3218
1.75 0.2876 0.4745 0.2034
2.00 0.2225 0.3312 0.1326

* The normal distribution function was computed using subroutine MDNORD of
IMSL. The first 100/8° terms in each series was computed for 0.1 < § < 1.0 and the first
100 terms for § = 1.0.

TaBLE 3
Error probabilities with an initial sample*

a N m O}'(sitsr 021-1(11((131' Siegmund Monte Carlo + S.D.
4.35 200 20 .0141 .0162 .0154 .0155 + .00030
4.18 111 11 .0152 .0169 .0170 .0170 £ .00032
3.73 28 3 .0183 .0199 .0202 .0204 + .00038
3.65 185 19 .0261 .0310 .0292 .0299 £ .00049
3.35 100 10 .0321 .0368 .0362 .0372 = .00060
2.88 42 4 .0445 .0495 .0500 .0516 £ .00083
2.51 24 2 .0590 .0652 .0654 .0692 = .00108
4.35 200 40 .0103 .0140 .0122 .0122 £+ .00019
4.18 111 22 0114 .0145 .0137 .0137 £ .00021
3.73 28 6 .0136 .0162 .0172 .0172 £ .00027
3.65 185 38 .0188 .0278 .0234 .0233 £ .00033
3.35 100 20 .0235 .0321 .0297 10293 £ .00042
2.88 42 8 .0332 0425 .0429 .0433 £ .00060
2.51 24 4 0456 .0557 .0586 0542 £ .00076

* Approximations to a. are reported. The first order approximations are the leading term in (6)
with e, replaced by v{2a/(m — )} ; the second order approximations use (6) plus (8); Siegmund’s
approximations use the leading term in (6) plus (11); the simulations used a version of Siegmund’s
(1976) importance sampling.
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(1962) showed that
Ba(c)/log ¢! = {(x,¥):]y]| = V(2x) — 8x, x = 0}

as ¢ — 0. Note the independence of the limit from 7 and the loss function. Of course, this
suggests the approximate procedure which takes

o=inf{n=1:|8S,|> V(2an) — né}

observations, where a = log ¢', and decides in favor of H; iff S, > 0. Observe that o is
bounded by the least integer which is greater than or equal to 2aé 2

Here a is regarded as a design parameter; and approximations to the error probabilities
are developed for large a. Let

Ba(0) = Py(S,>0), —0<f<o, a>0,

denote the power function of the test. Then B,(6) is continuous and strictly increasing in
6 for each a > 0 (cf. Lehmann, 1959, pages 101-102); so, the maximum error probabilities
are ,(—8) = 1 — B.(8), a > 0. Suppose, for simplicity, that N =2a6? is an integer. Then

(12) Ba(—8) = Po(t =< N) — Py(s < t=< N),
where ¢ = inf(n =1:8S, > v(2an) }, as in (2) with ¢ = 0, and
s=inf{n =1:S, < —V(2an) + 26n}.

The first term on the right side of (12) was computed up to terms which are 0(1/«/5)
exp(—a) in (6). Thus, the second term is of primary interest.
As in (4), we may write

Pofs<t=N} =Z'7—2f0 va(n, r)%n¢>(~/2_a+%> dr,

where
Vi, r) = P(s<n=<t|S,= V(2an) + r}
=P(S,,=B%,1<j=n-1, and S,;<ys,Ij<n-1)
with

yri=— V{2a(n —j)} +26(n —j) - (1 —%){V@an) +r},
2 =v{2a(n—-j)} — 1 —j/n){v(2an) +r},and S,; =S, — jS./n,1=j=n—1,asin
Section 2. It is easily seen that if n = n, — o as ¢ — o with N — n — £ = 0, then
a 1 .
—y,,j—>§8]+8k+r
for each fixed j = 1. Since S,; — S, w.p.1 (Py), this certainly suggests

1
Ya(n,r)— Po{lS,5§8j— r,Vj=1, and
(13)

1 ,
,S,<—§81—8k—r,3]2 1}=ak(r), say,

and

(14) P(s<t=N)~K*a %™
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with

1.1
28—
2

The justification for (13) and (14) is more complicated than that required for (8) and is
discussed below. When combined with (6), (14) provides refined approximations to the
error probabilities which result from using Schwarz’s (1962) asymptotic shapes.

The approximation (14) is of theoretical interest, since the first order asymptotics
neglect the lower boundary entirely, and (14) shows the interplay between the two
boundaries (cf. Woodroofe, 1976b). Observe that effect of the lower boundary is of order
a"?e™% the same as the correction to (1) in (6). Unfortunately, the constant K* is
extremely complicated; so, the numerical usefulness of (14) may be limited.

We use a diffusion approximation to approximate K* of (14). Let W(¢), 0 < ¢t < oo,
denote a standard Wiener process; and, for positive b, ¢, ¢, and ¢z, let

g(b, C1, c2) = P{—bt —C = W(t) = bt + c,Vit= O}

K* = ZLOI ax(r)e™ dr.
0

and
hb,c)=P{W{t)=bt+c,V t=0}.

Then h(d, ¢) = 1 — exp(—2bc) and an infinite series expansion of g is given by Doob
(1949). The Wiener process is used to approximate the random walk S; — S, j = 1, as
follows:

—(1/2)8-8k—r 1
ak(r)=J PO{S,—Sls§8j—r—x,Vj2 l}qb(x) dx

1/2)8-r 1
+f P{S,»—SISESj—r—x,VjZI, and

—(1/2)8—8k—r

1
-S,-—Sl<—§8j—8k—r—x,3j21}¢(x)dx

—ame-sk-r 0
:J_m h<§8,§8—r—x)¢(x)dx

(1/2)8—r
+f {h(ls,ls_r_x)
—(1/2)6—6k—r 22
- 1816+8k+ +x18—r—x (x) dx
g 5%3 r+ag ¢ .

Using this approximation, with the result of Doob (1949) used to compute g, it is
straightforward to compute numerical approximations to K*.
Table 4 lists the values of K* for selected values of &; and Table 5 compares the first

TABLE 4

Approximate value of K* = % 8V1/7 T3 f ar(y)e ™ dy
0

é 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
K* 0.1339 0.1335 0.1298 0.1262 0.1225 0.1188 0.1151 0.1113 0.1076 0.1037

8 11 1.2 13 14 1.5 1.6 1.7 18 1.9 2.0
K* 0.09976  0.09560  0.09119  0.08653 0.08169 0.07674 0.07174 0.06693  0.06222  0.05769
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TABLE 5
Approximate error probabilities for asymptotic shapes*

a 8 1st Order 2nd Order Monte Carlo = S.D.
3.45 1 0767 .0702 .0662 £ .0017
3.45 2 .0554 .0515 .0499 £ .0015
3.45 3 .0437 0411 .0400 = .0014
3.45 .5 .0301 .0287 .0285 £ .0012
3.45 1.0 .0155 .0149 .0146 = .0009
2.50 1 .1669 .1469 1354 £+ .00242
2.50 2 1204 .1033 .1040 £ .00216
2.50 3 .0945 .0863 .0850 + .00192
2.50 5 .0651 .0605 .0622 £+ .00171

* The first order approximation is the leading term in (12), Po(t = N); the second order approxi-
mation is Py(t < N) — Py(s<t=< N).

and second order asymptotics with some simulations. Observe that the second order
asymptotics yield approximations which are substantially closer to the simulations than
do the first order asymptotics for small values of §, although even the second order
approximations are frequently larger than the simulations.

It remains to prove (13) and (14). First, a simple picture shows that

1
Po<s <t= ZN) =o0(a %), asa—
so, it suffices to prove (14) with Py(s < ¢ = N) replaced by Py(s < ¢ < N, t > %N). Now,

<r+

J_

P0<S<t<N t>-— N) Z(l/4)N<n<NJ' "Pa(n 7’) \/—)
n

1 w
= ey, 1/4)N<nsNJ’ Ya(n,r)
oVma A

Yéin,ry=P{s=sn—1Lt=n|S,= v(2an) + r}

Let

for integers I < 1. Then, clearly, y¥(n, r) — ¢*,(n, r) = a.(r) as first a — o with N — n
— k and then [ — o; and ¥¥(n, r) = Y¥,(n, r). Thus, it suffices to show that there are
constants C and £ > 0 for which

(15) Y¥i(n,r) < Cexp{—e(N —n + 1)}

for all r =0, /=1, and n > YN for (15) implies that ¢ ,(n, r) — 0 as first @ — o and then
!l — oo and that Y3 (n, r) < C'exp{—e(N — n)}. To establish (15), let 62, = j(n — j)/n be the
variance of S,,;, 1 =j =< n — 1. Then, since v2an = én forn < N,

=00 ¥ni = 07, [V{2a(n = j)} = 8(n - j)] ' Nent
| VG o).
J

for all j = n — 1, n = YN, and sufficiently large a; so
Vai(n, r) = Y75 P(Sh; < yny) = C Y72} exp{—e(N — n + j)}
for appropriate C and e. The inequality (15) follows immediately.



REPEATED SIGNIFICANCE TESTS 905

6. Remarks. The expansion (3) may be used to develop expansions for the probability
of a Type II error for repeated significance tests too. This application was included in
Takahashi and Woodroofe (1981).

Similarly, the expansion (3) may be used to generate asymptotic expansions for the
distribution of (S; — t8) /\/Z, where ¢ is as in (2). Siegmund (1978) noted that the asymptotic
normality of (S, — ¢9) /vt was not fast enough for use in setting confidence intervals after
sequential testing; and he proposed using the relationship between tests and confidence
intervals instead. The asymptotic expansion for the distribution of (S, — ¢6) Nt may be
sufficiently accurate to compute (approximate) confidence coefficients of intervals of the
form X; — ¢; = § = X, + c;. This question is still under investigation.

The assumed normality has been used extensively, and may appear to have been used
crucially. However, a careful reading of the derivations, including Takahashi and Wood-
roofe (1981), reveals the major uses to have been the following: (i) to assert that S, is
sufficient for Xi, - .., X,,; (ii) to compute the conditional distyibution of X;, ..., X,; and
(iii) to bound some tail probabilities. In addition, normality was used to simplify certain
complicated expressions which occurred in the coefficients of the expansions. Clearly, (i)
and (iii) are common to all exponential families; and expansions for the conditional
distribution of Xj, ..., X, given S, may be generated from expansions for the density of
S,, provided that the distribution of S, is sufficiently smooth. See Feller (1966, Section
16.2). Thus, our results may be extendable to smooth exponential families.

APPENDIX

The proof of (5) and (6) is outlined. Let N = N (a) — o as @ — ® in such a manner that
a~'N remains bounded away from zero and oo; write &, =+ (2an™") and ¢% = ¢, + 2n7'r;
and divide « into two parts

a=Y\, %nfo (Waln, ) — V(e r)}qb{ \/2a<1 +§> +%} dr
(A1) + Z'I’Ll%fo Yiek, r)qb{\/2a<1 +§) +-j—;} dr

= Sum; + Sumg,

say. To analyse Sum;, write it in the form

11 1 ®
Sum; = -—=—e€% 3 snf {(Yaln, r) — Y(ex, r)}
' 2 rVa [Z A
1, 1r? / c

. — Z ce2— - —re, ) I d
exp( 2cs,, re,,)]exp[ 27 re{ 1+n 1 r
11 1

=—-——e ‘Sum?*, say,
2 Vr Va b

and then we divide the range of summation into n < m and n > m, where m = m(a) =
[a¥*]. Observe that &, < 2a/® for n > m and that ¢, > @'/® for n < m for sufficiently large
a>0.

LEMMA 1. =16 Jo (Yaln,r) —Y(eX, r)}e ™ dr=0(a™) as a— .

Proor. First observe that

0 1
1
f |Ya(n, r) —Y(ex,r)| e dr= J’ |Yaln, r) —Y(ek, r)|e™" dr +8— e
0 0 n
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for all n = 1. Since &, > a'/® for n < m and sufficiently large a, the second term is at most
exp(—a'®) = 6(a™). To estimate the first, observe that for n =< m, 0 = r = 1, and
sufficiently large a,

Ya(n,r) —Yles, r)<=1—4(es,r) =P<Sk >%£nk —r,dk= 1) = Cexp(—%eﬁ)

for some constant C > 0. A similar lower bound may also be obtained. The lemma follows
easily.

LEMMA 2. Asa—

1 "(en, O 1
Sumf = —<%> Z;V:l 82 {\f;/((:ﬁ;— Uio(en, &) — E Ui (en, &)

- § Cep Ulo(en, en) + UZO(Eﬂy En)}eu/ma% + 0(1);
where Ulg, s) and Uij(e, s),1,7 =0, 1, 2 are as in Section 3.

Proor. By Lemma 1 and by (3),

bl 2
Sumf = —(i> SN et €5 J oc(€n, r)e"’“exp[— ir_ re,
2a R 2n

(G-
n
1 s [© 1r’
+ <%> Zlnvzm+1 8’,}1 J:) Du(n, r)e"’"exp[— § —;

n{[5) v

= Sumf; + Sum¥ + o(a™™),

say, where p. and D, are as in Section 2. Since n~'r*— 0 and n"'c — 0 as @ — o for n >
m, the dominated convergence theorem yields

(A.3) Sum}; = —<—1—> o1 E5 J pclen, rYe " dr-e” 2wk 4+ 0(1).
2a b

Moreover, the sums in (A.2) and (A.3) differ by at most o(1); so, it suffices to show that

Sum?*; — 0 as @ — . To see this divide the range of integration into three subintervals,

0<7r=<2»A,N <r=<A\,and r>A,, where Ay > 0 and A, = exp{’.v(logn)} ,n=1. It is

clear that the integral over (0, A] tend to zero as a — o, since D, | n, r| — 0 uniformly on

compacts. By the inequalities following (3),

)\’l
J’ | Da(n, r)|e™" dr = K exp(—Aotr)
A

for m < n < N. Finally there is a constant K* > 0 for which | D.(n, r)| = K*(n + r + &)
for all » = 0 and m < n < N; see Takahashi and Woodroofe (1981) for the infinite series
representation of p.. Therefore

n &n

) 1 A+
j | Da(n, r)|e " dr= K*(_2 + n + 1>ejm
&
An

for m < n < N. Combining the latter three bounds and letting a — o, we find
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lim sup Sum*; = 2KJ exp(—Aoe) de
0

which tends to zero as Ag — .

LEMMA 3. Asa— o

11 1
Sum2=§

vy 1
TT e_a{ZrI:Ll £n U(E,,,, sn)e—CS,,/Z — % Z,I,Y:l 82[2(]11(8", 8,,,)
(A4) mva

1 1
+ 3 Uoz (€n, €2) — 5 cen Uos (&n, s,,):,e_“z/2 + 0(1)} ,

where Ule, s) and Uy, (e, s) i,j = 0, 1, 2 are as in Section 3.

Proor. By Taylor’s theorem,

1 1 " v
Sum; = — Va e*"(— S J Y(en, r)e ™" dr.e /2
Ve aa e |

1y’ v o[ ot 1] Cen
+(%) n=1£nfo [27‘\1/(8,,,7’)—5{7‘ +\/(_1—Fn—)r}

A(en, r)e " [e " dr.e o2

3 00
1 cen . ,
—\5z ) Zmien J {r3 + ——rz}ll/'(sZ, rye e~ " dr e‘%/?)
<2“ ) b Ja+6,

\/(; e “(Sumg; + Sumy, + Sum23),

_ 1
Vr
say, where e, <e, <&f,0=<r; = ¥%n r’+ re,(v(1+n'c¢) — 1} and 0 < 4, < n"'c. By
Remark 3 of Takahashi and Woodroofe (1981), (e, r) < K~ 'r + ¢~') for some constant
K > 0. Hence,

3 0
1 2
| Sumys | < (%) I 33[ K{J(r/ex) + 1/e.}(r’ + cer®)e ™" dr.e /2
0

3
= (%) IR K[I‘(s—;) +T'(4) + {I‘(%) + I‘(3)}e,% ]e*“ﬁﬂ
= —1— I2K T g +I'4) + T z +T'(3) e le 2. e "2 de + 0(a™?)
2a 3 2 2

= 0(a™,

where e} = 2a(N + %) "' and e} = 4a. To estimate Sums,, divide the range of the summation
inton =m and m < n < N. As in Lemma 1, it is not difficult to see that the contribution
of n = m is of the order o(a™"), so by the dominated convergence theorem

2
1 1 1
Sum,, = —<%> 2'1:/=1 83{2U11(€n, &) + 3 Uoz (&r, &) — 3 ce, Upi (&n, En)}eﬁ 2+ o0(a).

Since Sums; = (2a) ™" Yh-1 €, U (en, €2)exp(— Yace?), the lemma follows by substitution.
Equation (5) now follows immediately from (A.2) and (A.4). Equation (6) follows easily

from (5) by trapezoid rule. For example in Sum;;, make the change of variables z, = ;2

Let W(z) = 27'2U(27"2, 27"/%), 2 > 0 and observe that W”(z) remains bounded as z — 0.
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Then the trapezoid rule yields

Sum,, = <2—Z—> N Wiz, = J’ W(z)dz+ O@? = 2J U, e)e 2 de + O(a™?).

0
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