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TESTS WITH PARABOLIC BOUNDARY FOR THE DRIFT OF A
WIENER PROCESS'

BY Brooks FEREBEE

Johann Wolfgang Goethe-Universitdt

We consider sequential tests with parabolic stopping boundary for the
hypothesis that the drift of a Wiener process is positive. Formulas are derived
for the power and expected sample size. The performance of minimax parabolic
tests is compared with that of other tests considered in the literature.

1. Introduction. Let Y(¢) be a Wiener process with unknown drift §. We consider
the problem of testing the hypothesis Hj: § = 0 against the alternative H; : § < 0. We shall
investigate sequential procedures with parabolic boundary, in which the process is observed
up to the stopping time T,

r=inf(¢|| Y ()| = A Ya — ¢},

where @ > 0 and A > 0. This family of tests contains the fixed sample size test and the
sequential probability ratio test as special cases corresponding to A = o and A = 0. We
shall be interested in minimizing the maximum expected sample size

supoE’r
among all tests with prescribed error probability « at the given values § = +6,:
P%{Y(r) <0} =P %{Y(r) >0} = a.

It is well-known that the test of Wald, which accepts H, if Y(r) = b, where 7 =
inf{¢|| Y(¢)| = b}, has smaller expected sample size at +6, than any other test with the
same error probabilities at +6,. But it is also known that the expected sample size is much
less favorable for § between —6, and 6,. This effect becomes more and more pronounced
as the error probability « approaches 0. Indeed, an easy computation shows that, for the
Wald test with error probability « at § = +6,, we have, as a« — 0,

E%r ~ —(log «)/(263)
but
E°r ~ (log «)?/(463).

For comparison, the fixed sample size plan with the same error probabilities has sample
size

t ~—(2log w)/863.

Thus while the test of Wald uses asymptotically only a fourth as many observations as the
fixed sample size test at 8 = 6, it uses —(log «)/8 times as many at § = 0. These
considerations make it plausible that one should be able to modify Wald’s test in such a
way that a modest sacrifice in performance at # = +6, leads to appreciable gains for
intermediate ’s.

Anderson (1960) attacked this problem by considering trapezoidal continuation regions,
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corresponding to stopping times of the form
T=1t N (nf{t|| YY) | =c + dt}),

the hypothesis H, being accepted if Y(r) = 0. Using an explicit series expansion for the
exit density, he adjusted the three parameters t, ¢, and d numerically so as to minimize
E° 7 = supyE’r subject to the condition P*{x(r) < 0} = a.

The problem has been taken up again by Lai (1973), who showed that, as « — 0, the
asymptotic form of the continuation region with minimax expected sample size is essentially
triangular.

It would be of interest to have information on the performance of other test regions.
Unfortunately, for most regions it is at present impossible to compute the probabilities
and expectations of interest other than by simulation or brute force numerical approxi-
mation.

In the present paper we carry out these computations for parabolic regions of the
type described above. We do this by obtaining numerically convenient expansions of
P*{Y(r) > 0} and E’r in terms of certain Hermite functions. The plan of the paper is as
follows. In Section 2 we briefly recapitulate the needed properties of the Hermite functions
which we will use. In Section 3 we define a family of martingales associated with these
functions and obtain from them explicit formulas for E°W"(r) and E°"/% Applying these
formulas to the Radon-Nikodym derivative dP?/dP° then yields the desired series expan-
sions of P’{Y (1) > 0} and E’r (Section 4). These expansions are then applied in Section
5 to the construction of sequential tests with parabolic boundary, whose performance is
compared numerically with the fixed sample size test, the test of Wald, and the trapezoidal
test of Anderson.

NoOTE ADDED IN PROOF. Daniels (1982) has used the method of images to construct
regions of the same general shape as those considered here for which the exit density can
be given explicitly. His numerical results are quite similar to those for parabolas.

2. A class of Hermite functions. In this section we give a simple probabilistic
definition of certain Hermite functions and briefly recall some of their properties. The
treatment is similar to the classical treatment of Hermite functions (see Lebedev, 1965)
and proofs will be omitted.

DEFINITION 1. Let Z be a standard N(0, 1) random variable. For n = 0, 1, .- . let
1
(1) ko(x) = E(Z + x)", 4.(x) = E{(Z + x)" 5 sgn(Z + x)}.

Notice that k. and ¢, are of opposite parity: ks, and Z,+1 are even, while k2.1 and 2, are
odd.

ExAMPLES.

ko(x) = 1, fo(x) = D(x) — %,

ki(x) = x, Hi(x) = x{q)(x) - l} + @(x),
2) 2

ka(x) =x%+1, 4(x) = (x%+ 1){<I>(x) - %} + x(x),

ka(x) = x* + 3x, 4(x) = (x° + 3x){<l)(x) - %} + (%% + 2)p(x).

Here ¢ and ® are the standard normal density and distribution functions, ¢(x) =
exp(—x2/2)/V2m, ®(x) = [*. p(u) du.
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Directly from the definitions, we find the generating functions for k. and 4.

PROPOSITION 1.
n n 1
3)  Yn-o0kn(x) ;L—' = exp(xs + $%/2), Yo £u(x) % = {<I>(x +s) — é}exp(xs + s2/2)

for —o < s < o,

Multiplying both sides by exp(x?/2), differentiating n times with respect to s, and setting
s = 0, we get alternative expressions for %, and 4,.

PROPOSITION 2.

2y db 2y A" 1]
4 n = —x%/2 x%/2 e = e 72 ___ R x*/2 .
(4) kn(x) =e i t(x)=e e [{d)(x) 2}e ]

Comparing these expressions with those for the classical Hermite functions

Ho) = (1)L e g, =4 {e J e du}

dx" ’ 2"n! dx"
we find that

; —1\ron/2 i
() = ﬁ), 60(x) = k(%) +Me-x‘/2H_n_l(i).

1 g (
V2" \V2 N V2

Differentiating the generating functions and expanding, we get the important recurrence
relations for %, and ..

PROPOSITION 3.
®) kn1(x) = xky (x) + nkoo1(x),

bpr1(X) = x4, (x) + nty-1(x), n=1.

COROLLARY 1. Let m,, n = 0 be the sequence of polynomials defined by mo(x) = 0,
m(x) =1,
M1 (%) = xmy (%) + nMp—1(x), n=1.

Then

ln (%) = kn (x){d’(x) - %} + my ()@ (x).

It is interesting to note that m, (x)/k.(x) is the nth partial quotient in the well-known
continued fraction expansion of {1— ®(x)}/¢p(x),

1|+1|+2|+ +n—1|_m,,(x)‘
lx " |x |x | x Fn(x)

see Wall (1948, page 358).
The recurrence relations (5) are important for purposes of practical computation.

3. Moments of the exit time. It is possible to obtain eigen-function expansions for
the exit density from parabolic regions of the kind we are considering (see Sweet and
Hardin, 1970), but these are not suitable for practical computation. On the other hand, it
has long been known that one can obtain explicit formulas for the moments of the exit
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time from parabolas (see Shepp, 1967). In this section we give a simple direct derivation of
such formulas using martingales associated with the Hermite functions. While the present
paper was in preparation we learned from Prof. A. A. Novikov that this idea had already
been employed by him (Novikov, 1971), but our approach is different.

In this section and the following it will be simplest to consider parabolas |y| =A V=t
t < 0, with vertex at the origin, and to let the Wiener process under study start at a general
point (Zo, yo), £t < 0. We consider only the Wiener process without drift. The path functions
will be denoted by W(¢), t = ¢, and the associated probability measure by Py, ,,. The
o-algebra generated by {X(s) | to =< s = ¢} will be denoted as usual by F,.

We begin with a simple method for obtaining martingales of the Wiener process.

LEMMA. Let Z be a standard N(0, 1) random variable and let g be a measurable
function such that E|g(u + ¢Z) | < « for all u, 0. Define G(u, 0) = Eg(u + oZ). Then

M(t) = G(W(), V=t), to<t=0
is a Py, y,)-martingale.

ProoF. For the Wiener process starting at (¢, y), o < ¢ < 0, the random variable W(0)
has the same distribution as y + v—¢ Z. Therefore we have, using the Markov property,

E,50{8(W(0) | F.} = Eqwig(W(0) = G(W(2), V=t).

This shows that M(¢), t, < t < 0, is a uniformly integrable P, )-martingale. 0
We only need the Lemma in the simple cases g(x) = x" and g(x) = x"(sgn x)/2.

ProposITION 4. The stochastic processes
Ka(t) = (=0)"ka(W()/N=1), La() = (=), (W()/V=t)

withty=t=0,n=0,1, --., are Py,,,)-martingales.

Proor. Take g(x) = x" in the Lemma. Then
_ n_ n 4 " — n ®
G(p,0) =E(n+dZ)" =0 E<—+Z) =0 kn(;) R
o
so K, (t) = G(W(¢), «/—_t) is a martingale. In the same way, taking g(x) = x"(sgn x)/2, we
see that L, (¢) is a martingale. 0

Now we come to the main result of this section. Consider the parabola |y| =Av—¢, A
> 0. Let (¢, ) be a point inside the parabola, | y| <Av—t, and let 7 be the first exit time for
the Wiener process starting at (¢, y),

r=inf(s|t=<s, | Y(s)| = A\W=s).

THEOREM 1. Let p = y/~—t with || < \. The following hold forn=0,1, - - - :

(l) E(l,y)(_'r)n = (_t)nan (F:)/an ()\)
(ii) Eup (=12 = (=8)"" V2 lons1 () ] bans1(N)
(iii) E;(— 1)'sgn W(r) = (=t)"len(p)/62n(A)

(iv) Ewy(—1)""?sgn W(r) = ()" *kans1(1) k21 (V).
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Proor. Since the stopping time 7 is bounded, 7 <0, we can apply the optional stopping
theorem E ., M(7) = M(t). For the martingale K,.(s) we get

Ety(= 7Vl W(x) [N =7) = (=) *km(y /N —0).

Using W(r)/v—=r = A sgn W(r) and kn(—x) = (—1)"kn(x) we see that kn(W(r)AN—7) =
km(A){sgn W(r)}™. This proves (i) and (iv). The same argument applied to L, (s), using
lm(—x) = (—1)"*4,(x), proves (ii) and (iii). O

REMARK. Formula (i) has an interesting geometrical interpretation in the case n = 1.
We have

2
y —t
E¢y(-1) = T
or, for the elapsed time (7 — ¢) .
A(=t) — y°
Ey(r—1) =—1jl-)\T

But the horizontal distance (¢* — ¢) from (¢, y) to the parabola, that is, the elapsed time
until the moving boundary crosses the starting point, is just

20\ a2
t*—t=——-—)\l(§\)2 Y.

Thus for all points inside the parabola we have
)\2
Eup(r—1t) = 1T t*—1).
In other words, for all points inside the parabola, the expected time until exit for a Wiener
process is a constant multiple of the time until exit for a motionless point.

Since W(r) = A V=7 sgn W(r) the following corollary follows immediately from the
theorem.

COROLLARY 2.
(a) By W"(r) = N'(=)"*kn(p) /Ren(N)
(b) E,W™(r) sgn W(r) = N*(=8)"*4u(1) /4a(N).

Proor. If nis even, then W" (1) = A*(—7)"% if odd, then W"(r) = A" (—1)"? sgn W(r).
In the first case (a) follows from (i), in the second from (iv). Similarly (b) follows from (ii)
and (iii). O

Since 1wy = (1 + sgnW(7))/2, we get the following result, which we record for
future use.

COROLLARY 3.

2
4. Expectations for the Wiener process with drift. Now we consider a Wiener
process Y (¢) with drift §. To evaluate tests with parabolic boundary we need to be able to
compute P{,,, {Y(r) > 0} and E{,,,7. We do this by applying the results of the previous
section to the Radon-Nikodym derivative dP’/dP°.
It is well known that, for any stopping time 7, P{, ,, is absolutely continuous with respect
to P, on the trace of the o-algebra F, on the event {7 < 0}, and that the Radon-Nikodym
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derivative is given by
dP{,, exp{Y(r)0 — 76°/2)
dPg ) exp(yd — t%/2)
see Robbins and Siegmund (1973), and Liptser and Shiryayev (1977, Section 7.2). In our
case, since 7 is bounded, (6) holds on all of F,. In particular, if f (s, x) is measurable, with
Eq,|f(r, Y(r)) | < , then we can compute E{,,, f(r, Y(r)) as follows:

Elyf(1, Y(1) = E§»f(r, Y())dP(,y/dPl

= exp(—y0 + t6°/2)E{,»f (1, Y (1)) exp{Y (r)0 — r6°/2}.

Using this makes it straightforward to compute the desired expectations.
By a happy coincidence, dP’/dP° can be expanded in the same functions which occur

in the moments of .

(6)

LEMMA.

kn ()\) 0"Y"(1)

exp{Y ()0 — 160%/2) = Yoo —— N

Proor. By (3)

Y(T)} ) - Y(n)\ (0V—1)"
e (0v=1) + (6v=r) /2] =Y k( )———
Xp[{ v—T v—7 n!

GN* (—7)? Fan (A) 0" Y"('r)
\n! = 2o A"

= Y=o kn (M) {sgn Y (1)}"

THEOREM 2. Let T be as above, t <0, p = y/«/—_t, || <A. Then

Ba(\) 4 () (8Y—2)"
£ (\) n

1 1
(7 Piy{Y(1) >0} = 3%3 exp(—y0 + t0°/2) Yr-o

In particular

kane1 () 27n! ( \/—_t)b”l

exp(t8/2) Tio 7 G+ 11

1
(8 Plo{Y (1) >0} = 3+
2V2m

Proor.
©) Pl {Y(r) >0} = ElyLlivemso
= exp(—y0 + t0>/2) EQ. ), exp{Y(7)0 — 70*/2} 1(v(n>0) .
By the Lemma, Corollary 3 and (3) we have

k. (A) 6"
nl A

e Wl (a0 0
5 20 =9 {k (A)*fnm}

El.y exp{Y(1)0 — 10°/2}1iy(>0) = Ym0 ———— = El» Y (1) Livm>0)

—

ka(\) 4u(p) (OV=0)"
2\ n

=3 exp(uv—t — t6%/2) + = ZH,
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TABLE 1a
Parameters of tests with
Pio (Y (1) < 0} = .05.

A -t E:(()t,O) (r—1t)
0 00 216.7
5 1009.2 201.8
9268  417.0 192.7
14 303.6 210.0
2.0 275.5 220.4
00 270.6 270.6

ua.

A = » (fixed sample size) b

A =0 (Wald)

. A=.5 ]
\\\ A = .9268

oo, 6U0. 800.

number of observations

F1c. 1a: Boundaries of tests with 5% error probability at = + .1

Substituting this into (9) we get (7). When y = 0 so that p = 0, we have &, (u) = 0. From
(5) we see by induction that ¢,.;(0) = 2"n!/\/§;. Thus (8) follows from (7). 0

THEOREM 3.

k(W Ensa () (6V—2)"

(10) Ef (=) = (1) exp(—y0 + 10%/2) $mo Fonrz (V) nl

In particular

00 an(A) (2n + 1) n
an El,0/(=7) = (=) exp(t6°/2) EL:OMW(GQ) :

Proor.
El.y (=) = exp(=y8 + t§°/2) E{,,) (—7) exp{Y(r)8 — 76%/2).
As in the proof of Theorem 2,

E{. (—7) exp{Y(r)8 — 70%/2) = T k. (A) 6"

p ﬁE?m Y (1) ().
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Error Probability

FiG. 2a: Error probability as function of 0 for tests with 5% error at § = + .1

TESTS WITH PARABOLIC BOUNDARY

TABLE 2a
Error probabilities Pl.o) {Y (1) < 0}, as function of 6 for the tests
in Table 1a.
0 A
0 5 9268 14 2.0 0

.00 .500 .500 .500 .500 .500 .500
.05 .187 .193 .200 .204 .205 .205
.10 .050 .050 .050 .050 .050 .050
15 .012 .011 .009 .007 .007 .007
.20 .003 .002 .0013 .0007 .0005 .0005
w
C; T T T T ‘ T T T

0.4

0.3

0.2

A = 0 (Wald)

A = o (fixed sample size)

A = .9268

0.1

Drift 6

EQ,» Y"(1)(—1) = EQ» {Y"*(1)/N*} = X" (—t)"/*"!

knv2 (1)
k2N

u.e

889

Combining, we get (10). Setting & = 0 and using ksn+2(0) = (21 + 2)1/2*"'(n + 1)!, we get

(11).0
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TABLE 3a
Expected sample size E{.o)(t — t) as function of 0 for the tests in
Table 1a.
[ A
0 5 9268 14 2.0 )
.00 216.7 201.9 192.7 201.0 220.4 270.6
.05 184.6 177.6 175.2 186.2 207.3 270.6
.10 1325 1332 138.9 153.9 177.6 270.6
.15 95.8 98.4 106.6 122.6 146.9 270.6
.20 73.2 76.0 84.2 99.4 122.5 270.6
260. — T —— ]
A = o (fixed sample size) ]
260. | —
240. | -
220. .

200.

ol A I

180.

160. +

L1y

120.

Expected Sample Size
=
=
T

100. -
80. -
60, |
ug. - 1

20. e

1 A | 1
0. 0.05 0.1 0.15 0.2

prift O
F1c. 3a: Expected sample size as function of 0 for tests with 5% error at § = + .1

5. Tests with parabolic boundary—numerical results. We now apply the theory
developed in the preceding sections to our original problem of deciding whether the drift
of a Weiner process is positive or negative. We consider a Wiener process with unknown
drift 4 starting at (¢, 0), t < 0. We test the hypothesis Hy:0 = 0 against the alternative
H,:6 < 0 by observing the process up to the stopping time ,

r=inf{s|t=<s, | Y(s)| = AV=s)},
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TaBLE 1b
Parameters of tests with
Pio{Y(r) <0} =0.01

A —t E(()t,oj ('T - t)
0 Y 527.9
b 2350.8 470.9
1.188 691.2 404.5
1.5 596.5 413.0
2.0 552.0 441.6
o 541.2 541.2
50.
e ,’ >
ug. o N 2_0 A = » (fixed sample size) * E
/] X
L < 1'5
30. P -
r A = 0 (Wald)
20, | ?
A =.5
10. | -
[ A =1.188 N
-0. : T T T T T T T T T T T :
ra. 500. 1000. 1500. 2000. 2500:
- number of observations b
-10. -
-20. | 4
~30. = =
-40. | -
-50. C -

F1c. 1b: Boundaries of tests with 1% error probability at § = = .1

where A > 0, and accepting H, iff Y(7) = 0. We determine the parameters ¢ and A of the
test in such a way that the error probability at § = +6, is equal to a prescribed level a,

(12) Py (Y (1) <0} = Pig {¥(r) > 0} = a.
Among all such tests, we seek the one whose maximum expected sample size, as a function
of 6, is as small as possible:

(13) supy Efo)(t — £) = min !

As expected, the computations using Theorem 3 confirm that the supremum in (13) is
assumed at § = 0. By the Remark following Theorem 1 we see that

}\2
Efo(r—10) =‘1'—_|j—)\§(—t)-

Thus the computational program can be carried out as follows. Given A, determine ¢ using
Theorem 2 so that the error condition (12) is satisfied. Then vary A until A>(—¢#)/(1 + A?)
has been minimized.

The computations have been carried out for the traditional significance levels a = .05
and a = .01. The parameter 6, was taken to be 8, = .1. This value is arbitrary, since the
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TABLE 2b
Error probabilities Pl {Y () < 0}, as function of 0 for the tests
in Table 1b.
0 A
0 5 1.188 1.5 2.0 ©
.00 .500 .500 .500 .500 500 500
.05 .091 .098 117 120 122 122

.10 .010 .010 .010 .010 .010 .010
15 .0010 .0009 .0004 .0003 .0002 .0002

.20 .0001 — — — — —
n
D‘ T T T 7 ‘ T T T | T T j T T
= -
©
| 4
& o
Eal
~
Bl
3
o
I
A
Y
o
9
5
SR
o
A = O-
(Wald)
A = o (fixed sample size)
e A = 1.188-
© : L . L : :
0. 0.05 0.1 0.15 0.2

prift 6
Fi1G. 2b: Error probability as function of 0 for tests with 1% error at 0 = % .1

results obtained for any 6 > 0 may be converted to those for any other by means of the
rescaling 7 = cy, t = ¢, 0, = 6/c.

Some of the tests with error probability a = .05 are shown in Table 1a and Figure 1a.
(In the figure the continuation regions have been shifted so that the starting points for the
Wiener process coincide with the origin.) The limiting cases A = 0 and A =  denote the
Wald and fixed sample size tests. The maximum expected sample size assumes its minimum
value, 193, when A is .93 and (—¢), the maximum sample size, is 417.
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TaBLE 3b
Expected sample size E{,o) (1 — t) as function of 0 for the tests in
Table 1b.
0 A
0 b5 1.188 15 2.0 0

.00 527.9 470.2 404.5 413.0 441.6 541.2
.05 375.6 358.8 343.4 358.4 392.7 541.2
.10 225.2 225.8 244.5 265.0 304.0 541.2
15 152.9 1565.9 178.6 198.4 235.4 541.2
.20 114.9 118.1 1394 156.9 189.8 541.2

600.

= o (fixed sample size)

A = 0 (Wald)

Expected Sample Size
300. 400. 500.

200.

100.

0. 0.05 0.1 0.15 0.2
Drift ©
Fic. 3b: Expected sample size as function of 8 for tests with 1% error at § = = .1

Table 2a shows the error probabilities of the tests in Table 1a as a function of §. The
graphs of three of these are shown in Figure 2a. It will be seen that the error curves are
remarkably similar considering the very different shapes of the continuation regions.

Table 3a and Figure 3a show the expected sample size as a function of §. Here great
differences are apparent among the tests. The fixed sample size test (A = ) is by far the
worst, with a sample size of 271. As A decreases to the minimax value, the expected sample
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TABLE 4
Comparison of sample size for minimax parabolas and
trapezoids.
expected maximum sample
sample size size
=0 0=.1
parabola 192.7 1389 417.0
a=.05 trapezoid 192.2 139.2 600.2
a=.01 parabola 404.5 244.5 691.2
trapezoid 402.1 2494 783.2

size decreases monotonically for all § in the range considered (0 < 6§ < .2). As A continues
to decrease beyond the minimax value, the expected sample size rises for § = 0 but
continues to fall for § = 6, = .1, reaching its minimum when A = 0, the Wald test.

Table 1b and Figure 1b show tests with error probability « = .01 at § = +.1. The
minimax parabola is now somewhat squatter in shape, with A = 1.19 instead of A = .93, and
over half again as long, with (—#) = 691 as compared to (—¢) = 417. The maximum expected
sample size is twice as great, 405 as compared to 193.

Table 2b and Figure 2b show the error probability of the a = .01 tests as function of 4.
As before, the functions are all similar, though the differences are somewhat greater than
when a = .05.

Table 3b and Figure 3b show the expected sample size as a function of 6. The behavior
of the curves as A decreases from o to 0 is qualitatively the same as when « = .05, but the
poor performance of Wald’s test for § = 0 which was discussed in the introduction is
beginning to make itself apparent.

We conclude with a comparison of the minimax parabolic regions described above with
the minimax trapezoidal regions found by Anderson (1960). Anderson’s regions are de-
scribed by the three parameters c, d, ; they consist of all points (s, x) with 0 < s < #,, | x|
= ¢ + ds. The minimax regions found by Anderson are given by ¢ = 19.9, ¢, = 600.2, ¢ + dt,
= 0 for « = .05; and ¢ = 35.5, £, = 783.2, ¢ + dt, = .1¢, for a = .01. Thus in both cases the
regions are nearly triangular. In Table 4 below we compare the expected sample size for
6 =0 and 6, = .1 and the maximum sample size of the trapezoids and parabolas. It will be
seen that both for a = .05 and a = .01 the expected sample size is slightly less for the
trapezoid at § = 0 and slightly greater at § = .1.
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