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NONPARAMETRIC ESTIMATION IN RENEWAL PROCESSES

By Y. Varpt!

Bell Laboratories

Data collected from many independent identically distributed renewal
processes, each of which is observed for an arbitrary period of time, is usually
affected by censoring coupled with length biased sampling. In this paper we
derive an algorithm that produces the nonparametric maximum likelihood
estimator (i.e., the analog of the single-sample empirical distribution function)
of the common lifetime distribution, based on such data.

1. Introduction. We consider the problem of finding a maximum likelihood estimate
(MLE) of the lifetime distribution, F, on the basis of data collected from independent
identically distributed (iid) stationary renewal processes, such that in each process we
sample a period of fixed length, whose location is independent of the process itself.
Occasionally, we refer to these sampling periods as “windows”. To avoid mathematical
difficulties we assume that the processes are discrete (the applicability of our methods to
the continuous case is remarked upon at the end of the paper) and so the problem is
reduced to estimating the underlying lifetime probability function f = (f(1), f(2), ---). In
Section 2 we show that a nonparametric MLE (NPMLE) of f does not always exist, and we
describe explicitly the types of data for which it does, and for which it does not, exist. We
further g1ve a simple algorithm that converges monotonically to a lifetime probability
function fM, that maximizes the likelihood of the data in the set of all probability functions
that are concentrated on {1, .., M}. We call fM an “M-restricted MLE”, and we prove
that whenever the data is such that a NPMLE does exist then for all large values of M, fM
is a NPMLE. We also show that when a NPMLE does not exist then the value of the
likelihood function at fM converges (as M — x) to the supremum, over all lifetime
probability functions, of the likelihood function, and the difference between the two
quantities is O(M~"). The optimal nature of the algorithm is proved in Section 3. In
Section 4 we discuss some practical aspects concerning the use of the algorithm. In
particular we point out that our assumptions about the sampling design are not restrictive
and the algorithm yields the MLE for many other sampling schemes from renewal
processes. For example, if we had K ordinary (as opposed to stationary) renewal processes,
and each process is observed for a fixed period of time, starting at time zero, so that the
likelihood of the data is of the type treated by Kaplan and Meier (1958), then our algorithm
yields the Kaplan-Meier estimator. In Section 5 we describe applications from various
fields of studies, such as absenteeism from work, reliability of components, medical studies,
and more. Some of the examples we present were taken from works in which the need for
our methodology arose but the problem was avoided.

2. The problem and the algorithm.

2.1 The data and the likelihood function. Consider a number, say K, of iid discrete
time renewal processes, each of which began indefinitely far in the past so that the
processes are stationary. For convenience we speak of the time period (counted in days)
between successive “events” in each process as lifetimes of items and we assume that items
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can fail only at midday, in which case they are replaced instantaneously. We denote the
probability function of the items’ lifetimes by f = (f(1), f(2), ---.), where f(j) = 0,
¥ %1 f(j) = 1, and we are interested in finding an MLE for f on the basis of the following
data.

We assume that the ith process is observed for b; consecutive days a, + 1, --- , a; + b;,
and no other information about the process is available. Here, a; and b; (=1) are fixed
integers, independent of the process itself. (Of course, because of the stationarity, we could
assume a; = 0.) We define

Ni(j) = the total number of failures that have occurred during days a, + 1, ---,
a; + J in the ith process,j =1, 2, -.-.
£¢,(7) = the day on which the jth failure after day a; occurred in the ith process, j =1,
2, -

Since failures occur at midday, all lifetimes which are first (last) in their sampling
periods are observed as censored on the left (right). Thus we can divide the observed
lifetimes into the following four exclusive and exhaustive sets:

() X={&()) —&U-1;7=2,---, Ni(bs), Ni(b) = 2},
the set of all lifetimes which originated and terminated within their sampling periods.
(i1) Y = {&(1) — ai; Ni(b) = 13,

the set of all (incomplete) lifetimes which are first, but not last, in their sampling periods.
These lifetimes are censored on the left.

(iii) Z = {a; + b; + 1 — &(N:«(b)); Nu(b)) = 1},

the set of all (incomplete) lifetimes which are last, but not first, in their sampling periods.
These lifetimes are censored on the right.

(iv) W = {b; + 1; Ni(by) = 0},

the set of all (incomplete) lifetimes which are both first and last in their sampling periods.
These lifetimes are censored on both ends, and the only thing known about them is that
their lengths exceed their sampling periods by at least 1.

Let ¢, < £ < ... < ¢ be the values taken by the observationsin X UY UZ U W, in an
increasing order, and let x;, y;, 2;, w; be the multiplicities of observations from X, Y, Z, W,
respectively, at ¢;. The total numbers of observations in X, Y, Z, W are denoted by n., n,,
n., ny, respectively. Note that

h
(2.1) ne= Y4, x;, ny, =Yy, n.=Y% z, ne =Yt wi,

and although each of the n’s could be zero, we must have n, + n,, = K. In what follows we
use the notation (for a general probability function f):

(2.2) Se(7) =Xk f(R),  pe(G) = X5 kf(R),  pr=pr(1),

and, as usual, the subscript fin various probability computations always indicates that the
computation is done under the assumption that f is the true probability law.

To write the probability of the data, under the assumption that the true lifetime
probability law is £, we recall (e.g., Feller, 1968, Chapter XIII) that observations in Y are
realizations from the residual lifetime probability function u7(S/(1), S¢(2), ---), and
observations in W are, therefore, censored observations from this distribution. Thus, the
probability of the data is

(2.3) Py (data) = Pr({N:i(j); 1=j=b},i=1, .-+, K)
= [T {F@Y {7 Srt) Y {Srt) Y (ur" $3=0, Sr(7)} ™
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There are three different data configurations that one should consider:

Configuration I: n, >0, n, + n, + n. = 0. In this, rather trivial, case no failures have
been observed and (2.3) becomes,

25, Sr(7) }‘”‘
“S(J) + X5 S|

Since, however, for x = 0 and a > 0, fixed, x/(a + x) is maximum at x = o, we see that
(2.4) is maximized for any probability function f for which u; = oo; this is equivalent to
Y7=m S¢(j) = oo for all M’s. In the rest of this paper we assume that the data is never of
this type; that is, we always observe at least one failure.

(2.4) Py (data) = [, {

Configuration II: n, =0, n, + n, + n, > 0. In this case at least one failure has been
observed in each sampling period, and (2.3) becomes

(2.5) Py (data) = 7™ T (F(8)}(S/(t) P+

Clearly, if fis such that S(t, + 1) > 0, then by adding the mass S;(¢, + 1) to the mass at
t» we decrease uy and either do not change or increase (according as x, = 0 or x; > 0,
respectively) the product in (2.5), and so (2.5) increases. This shows that for the purpose
of maximizing (2.5) we can restrict consideration to f’s in@,,, the set of all probability
functions which are concentrated on {1, - - - , £}.

In general we denote

26)  Qu={fQ), -, fM;TE f)=1Lf(N=0,j=1---, M}, Q=@

Configuration III: n, >0, n, + n, + n, > 0. In this case failures have been observed
in some of the sampling periods, but not in all of them. Using

27 20 S1U) = B, (= &+ DFG)
we rewrite (2.3) as
Py (data) = (T jf () + usltn + 1))~
28 X [Tt ({FE)Y (e, £(7) + Spltn + 1))+
X (St JFG) + prtn + 1) — (& — D[X%, () + Seltn + D]}).

An interesting feature of (2.8) is that there need not exist an f € @ for which (2.8) is
maximum. Loosely speaking, the reason is that there are data sets for which it would
be advantageous, in order to increase (2.8), to choose S¢(f, + 1) = 0 even in cases where
ps(tn + 1) > 0.at the optimum. Though there does not exist an f € @ for which this is
possible, one can consider such an infeasible f as a limit of f’s in @. The following will
clarify this point.

Three Examples. The examples which follow show that when the data is of Configu-
ration III, any of the following situations is possible: (i) there does not exist an MLE
(Example 1); (ii) there exists a unique MLE (Example 2); (iii) there exist infinitely many
MLE'’s (Example 3).

ExamPLE 1. (Based on 3 windows). Y = {2}, X = (2}, Z = {1}, W = {2, 2}, or
altemativeIY) (tI) tZ) = (1’ 2)’ (yl, y2) = (09 ]-)7 (xl) x2) = (07 1), (21) 22) = (1) 0)) (wl’ w2) =
(0, 2). Substituting the data in (2.8) we get, after some simple algebra,

{1 = f(1)}f(2)(us — 1)

(2.9) Py (data) = =
w
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In trying to maximize (2.9) we would like to choose f(1) = 0, f(2) = 1, and ps = 3 (the
maximizer of u=>(u — 1)? over u = 1). Since this is impossible, we have for each f € @

(”_1)2=_4_=._(£*.

Py (data) < maxi=, e 27
Here, and in the sequel, we denote
(2.10) L* = supreqPr (data).

Nevertheless, we can get arbitrarily close to £* by a sequence of probability functions far
from @. Define for M > 2

1
1- =
w—z 772

(2.11) fulj) = 1 At

M—-2 7=M

0 otherwise.
Then py,, = 3 for all M > 2, and

M-3

(2.12) Py, (data) = =3 L.

We note that the infeasible law, which satisfies f(2) = 1 and p; = 3, can be considered
as a limit of the sequence fu.

ExampLE 2. Y = {2}, X = {2}, Z = {1}, W = {2}. (Based on two of the three windows
of the previous example.) For this data we have
(1 - F1)} @) = 1)
2 ]
Br
and the unique probability function that maximizes this quantity is f(2) = 1 (and, of course,
pr=2).

(2.13) Py(data) =

ExampLE 3. Y = {2}, X = {1}, Z = {1}, W = {2, 2}. (Similar to Example 1, except
that now (xi, x2) = (1, 0).) Here

{1—f)}F)(us — 1*
3 )
7
and this quantity is maximized for f(1) = % and p;= 3. For example, any of the probability
functions

(2.14) Py(data) =

(1 .
2 /=1
M-5 .
" s =2
(2.15) fulj) =4 2(M—2)
3 )
sar—o M
L 0 otherwise

for M =5, 6, ... will maximize (2.14).

2.2 The M-restricted MLE. We surmmarize the situation which is exhibited by the
above examples:
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LEMMA 2.1. There exist data sets, with n,, > 0, for which Ps (data) < £* for all f’s in
Q.

Let fM be a solution (one always exists) to the problem of maximizing Ps(data) over all
f’s in @u, and denote

L = Pp(data) = maxpeq, Pr(data).

That is, fM is an MLE of the lifetime probability function restricted to the set Qu(“M-
restricted MLE,” hereafter), and .#}; is the corresponding value of the likelihood function.

LEMMA 2.2. (i) If there exists an f € @ such that P (data) = £* then, for all
sufficiently large M, ¥% = £*. (ii) If Ps (data) < £* for every f € @, then the sequence
L converges monotonically to £*. Furthermore,

L
g*
(Cf. Example 1.) The proof is similar to the proof of Lemma 2.4 and hence will be omitted.

From a practical standpoint Examples 1 through 3, Lemmas 2.1 and 2.2, and (2.16),

suggest that we should replace the original problem of finding an unrestricted MLE with

the problem of finding an M-restricted MLE (for a fixed large M). We now reduce this last
problem to a maximization problem with A + 1 vgriables, instead of M (>> h + 1) variables.

(2.16) =1-0M") as M- .

LEMMA 2.3. An M-restricted MLE is a solution to the problem: Maximize
(217)  Lu(p|data) = (TEF t:p) =™ [Ty [P py {3 (¢ — ti+ 3™,

subject to

(2.18) Mpi=1 pi=0, i=1...,h+1
Herep;=p(t),i=1, ---, h + 1, and the subscript M indicates that

(2.19) a1 =M.

Furthermore, if f € Qu and f(j) > 0 for j & {t, -+, tn}, ] < tn, then f cannot be an M-
restricted MLE.

The proof is similar to the proof of Lemma 2.4 and hence will be omitted.

LEMMA 24. Letf€ Q. Then for all sufficiently large M each Qu contains a probability
function py which satisfies

Y pu(t) =1 (1 =M) and Py(data) < P, (data).

Furthermore, if f(k) > 0 for some k & {t,, ---, tn}, k < ty, then the inequality above is
strict. ‘

The proof of the Lemma is given in the Appendix.

2.3 The RT Algorithm. We describe now an algorithm for solving (2.17). The optimum
properties of the algorithm are given in Theorem 1 below.

Step A. Start with an initial estimate { pg9} satisfying
p>0,k=1.--,h+ 1,3 pd=1.

Step B. Evaluate,fork=1, ... ,h+1,
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i+ 2 (tk bl t,j + ].)wL
2.20 ru= 3+ pR Bl { S +
(2.20) PSP L ST T S € — it Dp

and solve the equation

A+l Titr

2.21 Al =1
221 P e + n)p + (ny, + nw)ts

for p. This can be done by successively bisecting the interval [#,, £.+1]. Denote the solution
by I.,lnew'

Step C. Set

rk”new
2.22 V= k=1 .--, h+1.
(2.22) Pk (N + )™ + (ny, + nu)ty’ T

N

Step D. If p™" is sufficiently close to p° so that the required accuracy has been

achieved, then stop. Otherwise, return to Step B with p™" replacing p°.

THEOREM 1. The RT algorithm converges monotonically to a fixed point p* which
satisfies the Kuhn-Tucker conditions

a
(2.23) AN R Y T
opr |,
p
a
(2.24) P | 20 if pt=0, k=1 - h+1,
apk .
D
where
(2.25) ¢(p) = log %u(p | data) — (n. + n.) (T pi — 1),

is the Lagrangian of log %u (%u is given in (2.17)), and (n. + n.) is the Lagrange
maultiplier.

REMARK. Though it is generally considered satisfactory, in the theory of nonlinear
programming, to prove that an algorithm converges to a point which satisfies the Kuhn-
Tucker conditions, we have to remember that these conditions are sufficient for optimality
only if the problem can be suitably transformed into a convex programming problem. We
show this for the special case n,, = 0 (i.e., Configuration II) and x; >0i =1, - - -, h. In this
case maximizing (2.17) subject to (2.18) is the same as

ny

(2.26) maximize ([[%: pFq?™*)u"
subject to
(227) 2?=1 b= 1) Z;Lipj = {qi l = 1’ ccy h’ 25€=1 tjpj =u, pf> 0) .] = ly R h.

Now, the maximum of (2.26) restricted to (2.27) is attained at the same points as the
maximum of (2.26) restricted to

Z;Ll Dj = 1’ q: = E;Ll D), Pi + qi+1 = qi, i= ]-; M) h’ (Qh+1 = 0);
(2.28)
Ej’=1 t]pfsu’ pj>0, .I=]-) M) h;

and the maximum of (2.26) restricted (2.28) is attained at the same points as the maximum
of (2.26) restricted to

25;1 Py = ]-r q: = 1) Di + qi+1 = qi, i= 1’ A hy (qh+1 = O)y
(2.29)
Shitpisu, p;>0, j=1,.--,h
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Substituting p; =e™, gi=e#,j=1, .-+, hand u = e" in (2.26) and (2.29) we get a
problem of minimizing a convex function over a convex region which has a unique solution.
This unique solution is the unique point which satisfies the Kuhn-Tucker conditions for
(2.26) and (2.29). One can then verify that a Kuhn-Tucker point for the latter problem is
mapped into a Kuhn-Tucker point of the original problem (2.17, 2.18) and vice versa.

3. Proof of Theorem 1. To prove Theorem 1, and to understand the rationale
behind the algorithm, we need to review a few facts.

In this section U always stands for a random variable (rv) with a probability law given
by

3.1) PU=t)=pt) =p;=0, i=1.--,h+1,

" p;=1, and V always stands for a rv, independent of U, with the length biased
probability law:

tip; .
P i=1, .-, h+1

(3.2) P(V=1¢) =7,
Wt
Suppose now that u;, - - -, u, is a random sample from (3.1) and vy, - - -, U, is a random
sample from (3.2), and let & and n; denote the multiplicities of the u’s and the v’s at ¢;,
respectively. Then we have the following.

Facr 1 (Vardi, 1982). The unique vector p = (1, ---, Prs1) that maximizes the
likelihood function

t' . M
(3.3) LD | sy ey Um,y V1, -+, Ua) = [[1 D [—,,—flg’———]

i=1 LDj
is given by

L (G +mi
, = o 7 TWH

- , k=1,...,h+1
mu + nt

(3.4)

where {1 is the unique solution of

(& + m)tr
3.5 prl 15k 7 TRTR
(3.5) el i+ nts

Furthermore, ji of (3.5) satisfies ¢, < i = Y/ £;9: < t»+1, and since the left hand side of
(3.5) is monotone in u, we can use the interval bisection method to approximate fi,
numerically, with: accuracy of at least (£5+; — )27 in N evaluations (and comparisons) of
the left hand side of (3.5).

Let R be a uniform (0, 1) rv, independent of V, and let [x] denote the smallest integer
that is larger than or equal to x. Then we have

Facr 2.
1
(3.6) P(RV]=jlV=td=o, j=Le-,t, k=1 h+l
k
Facr 3.
. Sp(J .
3.7) P(RV]=j) = ﬁfﬁ j=1, ..
p

Note that S,(j) = Y=, p(i) = Yi=j i, so that

L
(3.8) P(RV]=t) =&m—

" tps’
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Facr 4.
. Dp(tr) . Dk .
P(V=¢4|[RV]=Jj)= ~I[j=t]= I[j=< t],
( x| [RV]=j) S0) [/ =] S [/=t]
so that
3.9 P(V=tk|[RV]=tj)=—%I[jSk].
i=J i
Here and in the sequel, I[ ] denotes the indicator function.
Facr 5.
. (tr —Jj+ 1pr .
P(V=¢t|[RV]=))= - I[j=¢
| [RV]=]) S, =+ i [/=t]
so that
—-t+1 )
(3.10) P(V=t|[RV]= ) =<t — G+ VP i pr

Y -t + Dp:

Using these five facts, we shall tailor an artificial problem to our data, and show that
the likelihood function of the artificial problem coincides with the likelihood function of
our original problem. We then show that our algorithm coincides with the EM algorithm
(Dempster et al., 1977) for the artificial problem.

The artificial problem. Consider a situation where we have two independent samples:
U= (U +++,Un4n,) from (3.1) and v = (vy, -+ + ,Un+n,) from (3.2). Nevertheless, we do not
observe the complete data (u, v), but rather the incomplete data A, A,, A., A, given by

A= {ub A unl}y A= {unx+1 A 2y, ee ey Un +n, AN z_nz},
(3.11) Ay = {[Rl Ul], ey [Rnyvny]},
Aw = {[Rny+lvny+1] /\ u_Jl, ey [R"y*'"w v"y*”‘w] /\ u_z,,w},

where a A b = min(a, b). Here Ry, - - -, R 1, are iid uniform (0, 1) rv’s {Z1, - -+, 2,,} =2
and {wi, - --, Ws,} = W. Suppose further that it so happened that

u; = Xi, i=1 .., ng Ui = Zin,, i=nc+1,---,n.+n,

(3.12)
[Rv] =y, i=1-..,n,, [Rivi] = Wi-n,, i=ny,+1, .-, 0y + Ny,

where {x1, -+, %,,} =X, and {y1, -+, 70, } = Y.
The problem is to find the MLE of the p;’s in (3.1) on the basis of the incomplete data
A, Ay, A, A,. Because of (3.11) and (3.12) we have

(3.13) A.=X, A=Y, A.=7Z, A,=W,

and so, using (3.8), we get the following:

LEMMA 3.1. The likelihood function of the artificial problem, %4(p|A., Ay, A., Ay),
coincides with $u(p|data) of (2.17).

Being a standard incomplete data problem, it is natural to try the EM algorithm on the
artificial problem. The following is a single iteration of the EM algorithm applied to the
artificial problem:

Let p°¥ = (p3Y, ..., psd) be the current estimate of p. Then we first compute (E-step)
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M
E{log Bt p! (Z,,ff" ) X, Y, Z, W,p°“’}

llt]/

(3.14)

- tipi
= S Elog pi + Bl filog wp—,

j=1tipj

where § ; and 7; are, as before, the multiplicities of the u’s and the v’s at ¢;, respectively, and
£, and 7, are their conditional expectations given the data and p°“. These conditional

expectations are derived using (3.9) and (3.10):
. old
Er=xr + Zf=1 Zi%l‘—‘oﬁ’
Jj=i Pj
(3.15) old (te — t; + 1) pgid
~ k Pk k k — U P
Ne = Zl=1 Yi ——h:-T;;)ﬁ + Z‘=I Zh+1 (tj _ tl + l)pold ’

J =t

k=1, ..., h + 1. Completing this step, we proceed to find (M-step) the p that maximizes
(3.14), subject to Y24 p,=1and p;=0,i=1, - -., h + 1. This is done in two steps, using
Fact 1. First we solve

&+ 7t _
(ne + n)p.+ (n, + ny)t;

(3.16) sy

for p (note that Y241 £, = n. + n. and Y2} #; = n, + n,) and then, after denoting the
solution by u"*", we set

(G + Apm"

, k=1 h+1
(e + n)p™" + (ny + nuw)te

(3.17) i =

Since r;, of (2.20) coincides with 2 & + 7 of (3.15), we see that the RT algorithm coincides
with the EM algorithm based on the artificial problem.

It is important to note, however, that the recipe given in Dempster et al. (1977) for the
EM algorithm, in general, does not induce any particular algorithm in our original problem,
because the probability specification of the original problem does not fall in the category
of what they call a “standard incomplete data problem.”

The advantage of deriving the RT algorithm as an EM algorithm (and, indeed, the only
place where we use this fact, mathematically) is the following.

LEmMMA 3.2. (Monotonicity of the algorithm.) If in the RT algorithm p™" # p°9, then
Pu(p™¥|data) > Ly(p°Y|data).

PROOF. : Because of Fact 1, if p™" % p°, then (3.14) with p, = p}*” is strictly bigger
than (3.14) with p, = pg9. The proof follows now from Theorem 1 of Dempster et al.
(1977).

ProoF oF THEOREM 1. It is easily verified that if p* is a fixed point of the algorithm,
then it satisfies (2.23). Because of Lemma 3.2, the continuity of the mapping from p° to
p"" in the algorithm, and Convergence Theorem A of Zangwill (1969, page 91), we conclude
that indeed the algorithm does converge to a fixed point, and so the fixed point satisfies
(2.23). Suppose then, by negation, that the point of convergence, p*, does not satisfy (2.24).
That is, there is a k& such that p¥ = 0 but

a7(p)
6pk

(3.18)

and let { p™} denote the sequence of p’s (produced by the algorithm) that converges to
p*.
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Since p# = 0, we must have x;, = 0, because otherwise (2.22) combined with r{” = x
would imply p# > 0. Therefore by combining (2.20) with (2.22) we can write

13 Yi + 2 (tk -t + l)wl
=1 h+1 (n+D Zh+1 (t/ £+ l)p(n+1)

3.19 ret = =
(3.19) k k (e + n2) + (ny + ny,)te/n™*0 "

(n)  (n+1)
qr -

Now, because of (3.18) and the continuity of 3/ ( p)/dpz, there exists 6 > 0 such that for all
n=n

d
(3.20) 402 B,
apk ptn)
Since, however,
. ¢ a¢
(3.21) (@ - 1){(nx + n;) + (n, + nw) %} =)
I" - apk p(n)

it follows from (3.20) and (3.21) that there exists an ¢ > 0 such that for all n = n,
(3.22) @’ >1+e.
Substituting in (3.19), we see that for all n = n,

(3.23) r® > rf1 + e)" 0 — o, as n— o,

and this is a contradiction. Note that since we start the algorithm with p ‘0’ >0,j=1,

-, h + 1, we have (i) r, ™ >0,j=1,...,h+1forall n’s, and (11)2"+l ("’ =n,+n,+
nz+nw<oo for all n’s.
This completes the proof of the Theorem.

4. Some practical considerations.

4.1 Applicability of the algorithm to other sampling designs. So far we have assumed
that all the processes are stationary and in each process the sampling period is a window
of fixed length whose location is independent of the process itself. Though this sampling
design seems quite restrictive, the truth is that it gives rise to a likelihood function which
is general enough to include the likelihood function of most other practical designs.

For example, suppose that the sampling design is such that the sampling windows
always start at a failure time. E.g., we put % items on trial, we replace each item upon
failure, and we stop the experiment after a fixed period of time. In this case y; = w; =0, ¢
=1, ..., h, and the likelihood function that should be maximized is

(4.1) g(pldata) =11:= lpt‘(Z/—z PJ)Z'

This is a Kaplan-Meier (1958) likelihood function, and indeed if all the y’s and w.’s are
zero, our algorithm becomes KM(X; Z), the Kaplan-Meier estimator based on X as the
complete data and Z as the censored data. See Efron (1967) for the form of the KM
estimator which coincides with the RT algorithm.

As another example, suppose all the windows end at failure times. E.g., the sampling
design is to sample each process until we observe a certain number of failures. In this case
zi=w;=0,i=1, ..., h, and our algorithm finds the p that maximizes

4.2) Z(p|data) = (T t:p) ™ [[1=1 PP =i D)™

In the special case where each process is sampled until we observe a single failure, we
are in the problem of estimating the lifetime distribution on the basis of a sample from the
residual-lifetime distribution. Two estimation methods, neither of which is a maximum
likelihood type method, for this problem are proposed in Cox (1969, Section 5.3).
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It is of course possible to pool data from different experiments and create the joint
likelihood. A product of (4.1) and (4.2) would be such an example. The RT algorithm can
then be used to find the overall nonparametric MLE on the basis of the pooled data.

4.2 A note on the estimability of the mean lifetime. An interesting property of our
sampling design, which is very much in contrast with other sampling designs that give rise
to incomplete data problems, such as Kaplan and Meier’s (1958), and Turnbull’s (1974,
1976), is that even when all the windows’ lengths are bounded (say by ) so that it is
impossible to observe a lifetime which is longer than b, we can still estimate the mean
lifetime consistently! (The asymptotic properties of the RT estimator will be included in
a future paper. Note, however, that Y, b,/3%, Ni(b;) is a consistent estimate of the mean
lifetime.)

Consider, for example, the following design problem. We have K iid ordinary renewal
processes, each of which started at time 0, and suppose that from each process we are
allowed to sample only a single window of (predetermined) length b. We are free to
determine the location of the sampling windows. Where should we locate them? Without
being very formal about the purpose of the experiment that, with the introduction of a loss
function, can be formulated as a decision theory problem, we can assume that in most
applications we shall be interested in estimating the underlying distribution function and
also the mean lifetime. Clearly, if we locate the windows at the origin (i.e., each process is
observed during [0, 6], so that we get a Kaplan-Meier liklihood function) then the mean
lifetime is not estimable. The same situation holds for most other choices of locations, if
they depend on the sample paths of the processes themselves. If, however, we decide to
sample at [a, a + b] for some arbitrary a > 0, then for all practical purposes we can
assume that the processes are stationary from a on, and the RT algorithm can be used to
estimate the distribution function and the mean lifetime.

4.3 On the choice of M = ty,;. If there are no w’s (w; =0,i=1, --., h) then it follows
from the discussion of Configuration II (Section 2.1) that we can (and should!) carry out
the algorithm without the additional point #;.+1, or equivalently set ¢,+1 = ¢. (Note that if
in addition y; = 0,i =1, ..., A, so that the likelihood function is (4.1), this gives us the
version of the KM estimator that always assigns zero mass to the right of ¢5.)

If at least one of the w/’s is positive then we should choose a very large M (> t;), and
interpret the fixed point of the RT algorithm as an M-restricted MLE. (Of course, there
are data sets for which this will be an unrestricted MLE.) Note, however, that if ps denotes
the algorithm’s fixed point then, since

By = Z{lill tipm(t;) < const. < o forall M’s, we have par(tns1) = oM.

Therefore one should not attribute much importance to the particular value of pas(£s+1)
but rather interpret pa(¢:) + pau(tr+1) as an estimate of the tail probability and ¢, pa(tr)
+ the1 Pu(tr+1) as an estimate of the tail expectation.

4.4 A numerical example. The following example, based on n, + n,, = 3 windows, has
h = 10 observation values. The data are given in Table 1. Five different values of M are
used in the RT algorithm, which took approximately 20 iterations to converge for all M.
The required accuracy in Step D of the algorithm was 10~". Resulting estimates p(t;) are
given in Table 1, together with estimates u of the mean.

REMARK. One should not deduce from this example that the RT estimator always’
assigns zero mass to ¢;’s for which x; = 0 and i < A. The reader can verify that for (¢, ;)
= (1, 2), (x1, x2) = (0, 1), and (y1, ¥2) = (21, 22) = (3, 0), the NPMLE is p(1) = p(2) = %.

More complicated examples are considered in an ongoing study by L. Denby and the
author.
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TABLE 1
A numerical example of the RT estimates for varying M.

Data Estimates pu(t)

t, xi ¥y z @ wi M=10° M=10° M=10" M=10° M=10°
3 0 1 0 0 0 0 0 0 0
7 1 0 0 0 .1082 .1098 1101 1101 1101
8 0 0 1 0 0 0 0 0 0
9 2 0 0 0 .2361 2411 2417 2418 2418

10 0 1 0 0 0 0 0 0 0

13 1 0 0 0 1307 .1354 .1360 1361 1361

14 0 0 1 0 0 0 0 0 0

16 1 0 0 0 1592 1692 1705 1707 1707

17 0 0 0 1 0 0 0 0 0

19 2 0 0 0 .3303 .3393 3411 3413 3413

M 0 0 0 0 .0355 .0052 R € €3

um = 16.954 19.027 19.328 19.359 19.362

t10%e3 =102 ~ &1 = 54 X 107*

5. A few applications. (i). In Vardi (1981) the problem of estimating the distribu-
tion of periods between successive absences from work (show-up periods) for telephone
operators was considered. Here “failures” are absences from work. Since attendance
records are kept on a calendar basis, rather than “failure time” basis, the sampling periods
usually started in the middle of a show-up period and continued for a fixed period of time.
Our algorithm was then needed in order to estimate the distribution of the show-up
periods.

(ii). In studying maintenance policies for vehicles, Brosh et al. (1975) sampled 100
vehicles over a fixed period of 27 months. The dates and types of components that failed
(immediate replacement) were recorded and most vehicles had only one or two failures
per component. The authors considered the data “insufficient to establish directly the life
distribution of each component with a high degree of confidence.” This is a situation where
we have a relatively few x;’s and w;’s, and about 100 y;’s and z;’s. This is a sufficiently large
number of observations to consider the RT estimator before one tries to fit a parametric
family.

(iii). In studying the performance of a telephone network, Denby et al. (1975) sampled
about one minute of each of many weekday hours of system operation. Here the window
lengths are about one minute and the RT algorithm can be used to estimate the “lifetime”
(time between consecutive errors in transmission) distribution.

(iv). Consider a medical study in which the interest is in estimating the distribution of
the time periods between consecutive epilepsy attacks (the “lifetimes”) for a homogeneous
group of epileptics, and the data is obtained by asking each member of the group to record
the dates of attacks (if any) during a specified period. The RT estimator could then be
used to estimate the lifetime distribution.

In a fashion similar to the last example, the need for the RT estimator often occurs
when a study is initiated on the basis of existing records which are kept on a calendar
basis, rather than a failure time basis.

The above examples give the impression that in most applications the windows are all
of equal lengths. This, however, need not be the case. For instance, in (i) above the data
come from different sources, and attendance records from different sources covered
different periods. Also, in applications such as (ii) above, it is more appropriate to measure
the components’ “lifetimes” in miles, rather than in time units, in which case the windows
would be of different lengths, because over a given period of time different vehicles usually
accumulate different mileages.
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Final remark. The applicability of the RT estimator to continuous time renewal
processes, with nonarithmetic lifetime distribution, can be justified using a limiting
argument of the type described in Kalbfleish and Prentice (1980, pages 12-13); see also
Johansen (1978). A treatment of the case where the lifetime distribution belongs to an
absolutely continuous, parametric, family, and asymptotic results which are relevant to
the RT algorithm will be given in a future paper.

APPENDIX: PROOF OF LEMMA 2.4

Let f€ Q, A = S¢(t, + 1) and B = ps(ts + 1). Since we assumed that at least one failure
has been observed, the number of first failures is positive and so n, > 0. Thus if B = « we
get from (2.8) that Ps(data) = 0 and for every M > ¢, we can choose pu(t) =GR +1)7% 18
=1, ...,k +1,to get the desired inequality. It follows then that we can assume B < .
Suppose now that B > 0, and hence A > 0. Then if M is any integer larger than B/A, the
probability function g given by

N

B-A(t+1)

and gM) = M=t —1

1) = f(7 =1, o0 +1 =
gN=1G) j=Ltn, gl D) =gr—m—y
satisfies Pg(data) = Ps(data) and, of course, g € @u. Suppose now that there exists a &
such that g(k) > 0 and ¢, < £ < ti+1, 0 =i < h — 1 (£, = 1). Then by moving (£, — )7t
— k)g(k) of the mass at % to ¢;, and the remainder of the mass to ¢, we obtain a new
probability function p which satisfies p(k) = 0,

(A1) T, () Z T, 8()), and T, (= tm+ D) = Ly, (= tm+ 1)80),

with equalities for m = 0, - - -, i and strict inequalities for m = i + 1, - - -, h. Substituting
this in (2.8) we get P,(data) > P,(data) = P(data). Repeating the above argument, if
necessary, for other %’s, we conclude that there exists p € @ such that P,(data) > P(data)
and p satisfies p(j) =0 forj & {1, i, + -+, tn, t» + 1, M}. For such a p we write (2.8) as

P,(data)
= (I8¢ t:p(t)) = [Th [{p@) YT 122 p&) PH(E02F (¢ — i+ Dp()}*]

where f, = 1, th+1 = tn + 1, thes = M. Suppose now that p(tx+1) > 0, then by redistributing
the mass between &, and 42 = M, so that Y% t.;p(¢s+;) remains unchanged, we shall
increase (A.2) if x5 > 0 and leave it unchanged otherwise. Thus we can assume that p(¢x+1)
= 0. Suppose now that p(f,) > 0 and that # > & = 1. (Note that if # = £ the proof is
completed.) Then by applying a single iteration of the RT algorithm to the points Z, £,
.+, tn, M with p being p°® we get a probability function p™" which satisfies p"*"(t) = 0,
and, because of the strict monotonicity of the algorithm (Lemma 3.2), Pyrev (data) >
P,(data). (Note that the proof of Lemma 3.2 is independent of Lemma 2.4.) Thus we can
also assume p(t)) = 0. This completes the proof for the case B > 0. The proof for the case
B = 0 is similar and will be omitted.

(A.2)

¥
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