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LARGE SAMPLE POINT ESTIMATION: A LARGE DEVIATION
THEORY APPROACH!

By James C. Fu

University of Manitoba

In this paper the exponential rates of decrease and bounds on tail
probabilities for consistent estimators are studied using large deviation
methods. The asymptotic expansions of Bahadur bounds and exponential
rates in the case of the maximum likelihood estimator are obtained. Based on
these results we have obtained a result parallel to the Fisher-Rao-Efron result
concerning second-order efficiency (see Efron, 1975). Our results also substan-
tiate the geometric observation given by Efron (1975) that if the statistical
curvature of the underlying distribution is small, then the maximum likelihood
estimator is nearly optimal. .

1. Introduction. In large sample point estimation one needs to be concerned only
with consistent estimators. For any consistent sequence of estimators 7, and any given
€ > 0, the tail probability

(L1) a(T,, 6,¢) = P(|T, — 8| = ¢)

tends to zero as n — oo. It has been suggested (Basu, 1956; Bahadur, 1971; Fu, 1973) that
the rate of convergence to zero of a(T,, 6, ¢) be used as a criterion for evaluating the
asymptotic performance of consistent estimators. Typically, for consistent estimators, this
rate of convergence is exponential and has an asymptotic expansion given by

(12) a(T,,, 0, €) = e_"ﬁ(T’H")(co,n + n_lcl,n + ..0)

Here B(T, 0, ¢) and c;,, are constants that may depend on ¢, the sequence of estimators T,
and the underlying distribution. The positive constant B(T, 6, ¢) is called an exponential
rate.

Recently, there have been several papers in the literature which examined the rates of
convergence of consistent estimators with regard to the probabilities of large deviations,
for example, Bahadur (1971), Basu (1956), Chernoff (1952), Fu (1973, 1975), Kester (1981),
and Sievers (1978). This paper is a continuation of the author’s previous work (1973, 1975)
studying the exponential rates B(T, 6, ¢) and their upper bounds (Bahadur bounds) for
constant estimators.

In Section 2, we study the Bahadur bound and the exponential rate for the maximum
likelihood estimator (m.le.) §,. We begin by deriving the first four terms of the respective
Taylor expansions. The results show that the exponential rate of an m.l.e. has a third-
order contact with respect to the Bahadur bound at e = 0. This yields a Fisher-Rao-Efron
type second-order efficiency for 6, in the Bahadur sense. The second-order Bahadur
efficiency depends on the statistical curvature. In Section 3 we derive these results. Section
4 studies the connection between the rate of convergence and the Fisher-Rao-Efron results
in second-order efficiency. The final section contains examples for illustrating the results
in Sections 2 and 3.
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2. Main results. Let S = (X, ---, X,) be a sequence of i.i.d. random variables with
common density function f(x|#), where § € © and the parameter space © is an open
interval of real line. A sequence of estimators T,,(Xj, - - - , X,,) will be referred to here as an
estimator 7. It has been proved by Bahadur (1971), Fu (1971), and Sievers (1978) that for
any consistent estimator 7, and ¢ > 0,

1
(2.1) lim, e > log a(T,, 0, €) = —B(0, ¢),

where B(0, ¢), the Bahadur bound, is given by
(2.2) B(6, ¢) = infy {K (0, 0):|6" — 0] > ¢},
and K (¢, 0) is the Kullback-Liebler information given by

K@, 0) = J {log ’;f(i IIZ)) }f(xw') dx.

The inequality (2.1) suggests that there exists no consistent estimator 7, whose
exponential rate B(T, 0, ¢) is greater than the Bahadur bound B(0, ¢). Bahadur (1971)
indirectly and Fu (1971) directly proved that for any consistent estimator T,

(2.3) lim, .o 28(T,, 6, &) < I(6)/2,

where I(d) is the Fisher information. Furthermore, the m.le. §, was shown to be
asymptotically efficient in the sense that

(2.4) limeoe28(6, 6, &) = 1(8) /2.

Loosely speaking, (2.3) and (2.4) imply that for any consistent estimator T, the tail
probability (T, 6, €) cannot tend to zero faster than the rate given by exp{—%ne’I(6)},
but that the tail probability a(én, 0, ¢) does tend to zero nearly at this optimal rate. We
shall refer to estimators satisfying equation (2.4) as being first-order efficient in the
Bahadur sense. It is known (Fu, 1973, 1975; Sievers, 1978) that there are many consistent
estimators satisfying the above optimal asymptotic criteria. This leads to further study
of the asymptotic behaviour of the Bahadur bound B(f, ¢) and the exponential rate
B(T, 0, €) as ¢ nears zero.

In the following, we state the main results of this paper and leave the conditions and
proofs in the next section.

From a direct expansion of the density function f(x|6’) for 8’ near 6, we can derive a
four-term Taylor expansion for the Bahadur bound B(6, ¢) as follows:

2 3
B(6, ¢) = min {'i 1(8) + = (Buro — o)
(2.5) 2! 3!

&
+ 7 (2400 — 6210 + 401 + 3pozo) + 0(84)},

where p; is given by, in Fisher’s notation,

-G
(2.6) L E<f )5 )

Note that the Fisher information, 7(6) = pa00, is the leading term of the expansion. Thus
1(8) provides the most important contribution to the exponential bound. The second most
important contribution is provided by (3110 — paco). When 6 is a location parameter, this
second term is zero if the underlying distribution is symmetric, and non-zero if the
underlying distribution is asymmetric. In the location parameter case, it seems that (3u110
— p3oo) has a connection with the skewness of the underlying distribution. When 6 is more
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general the connection is not so clear. The third most important term is (2us00 — 6210 +
4101 + 3oz0). At present we do not fully understand what characteristic of the underlying
distribution is represented by this term.

By extending the technique used in Fu (1973) which is a combination of results and
ideas due to Daniels (1961), Chernoff (1952), Bahadur (1971) and Hoeffdipg (1965), we
obtain the following four-term Taylor expansion of the exponential rate (6, 0, ¢) for the
m.l.e. 6,:

2 3
o B(b, 8, &) = min {% 1) + % (3110 — Haoo)

4
+ % [(2pa00 — 6pz10 + 4pt101 + 3ptozo) — 312(0)Y2(0)] + 0(54)},

where y?(6) is the statistical curvature given by Efron ( 1975), namely

] 1 1
(2.8) YA(6) = I—Z(_ﬂj (poz0 — 2p210 + Maoo) — 1 — m (110 — piaoo)®
It follows from (2.5) and (2.7) that
: — a 0’ | = ]-) y
(2.9) limeoe"[B(6, &) — B, 6, ¢)] = { % 160)7°0) iyl

Furthermore, if @ is a location parameter for a symmetric distribution, then for any
translation invariant consistent estimator T,

(2.10) lim,0e*[B (8, ¢) — B(T, 6, &)1 = % I*(9)y*(9),

with equality when T, = 6.

The results (2.1), (2.5), (2.7), and (2.10) are parallel to the results given by Fisher (1925),
Rao (1963) and Efron (1975) in the theory of second-order efficiency. Efron (1975) gave an
elegant and penetrating geometric interpretation for the statistical curvature y*(8) and its
roles in large sample inference. The connection between the exponential rate of conver-
gence and the Fisher-Rao-Efron results will be studied in Section 4.

The equations (2.5) and (2.7) imply that the exponential rate B(8, 6, ¢) for the m.Le. ,
has a third order contact with the Bahadur bound B (6, €) at ¢ = 0. The statistical curvature
¥%(0) is the first term which separates the exponential rate of 8, from the Bahadur bound.
It has a fourth order contact only when the statistical curvature y?(f) of underlying
distribution is zero. Since the statistical curvature y*(6) is the first term in the exponential
rate expansion for 6, that differs from the Bahadur bound expansion, it follows from
inequality (2.1) that for a distribution with small statistical curvature, 8, tends to 6 at a
fast rate (nearly fourth order contact at e = 0). A large statistical curvature indicates that
the corresponding m.l.e. 6, tends to 0 at a slow rate. For natural exponential families, the
statistical curvatures are zero. Hence, our results substantiate Efron’s (1975, page 1189)
basic assertions that families with small curvature enjoy the good properties of exponential
families whereas large curvature indicates a breakdown of these properties.

. When 6 is a location parameter, the inequality (2.10) indicates a preference for the m.l.e.
6, among all first-order efficient translation invariant estimators. We refer to the estimators
which satisfy (2.10) as second-order efficient estimators in the Bahadur sense. Loosel
speaking, if the underlying distribution has a small statistical curvature, then the m.lLe. 6,
has a rate of convergence close to the optimal rate (i.e., close to fourth-order contact with
the Bahadur bound).

3. Proofs of main results. Let /(x| 6) =log f(x|6) and ¢ (x| ) = (3/86)'¢(x | 6) and
x| 6) = (3/30)'f(x| ) for all § € O. For each n and s = (x1, -+, xa), let 4.(s|0) = log
[T f(x:|8), £(s|8) be a continuous function of 6, 6,(s) be the m.l.e. which satisfies
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¢(s]6) = 0, 8u(s) = inf{#: ¢ (s|6) = 0 and § € O} and §(s) = sup{0:¢;’(s|6) =0 and §
€ 6}. The quantities §,(s) and .(s) are the smallest and the largest roots of /D(s|0) =0
respectively. It follows that 8,(s) < .(s) < 8,.(s), and the following inequalities hold:

(3.1) P{0.(s) = 0 + &} = P{¢"(s|0 + &) = 0} = P{f.(s) = 0 + ¢},
(3.2) P{f.(s) =0 — ¢} < P{¢P(s|0 — €) =0} < P{fu(s) =0 —¢}.
To complete the proofs of results in Section 2 we require the following conditions and

lemmas.

ConprtioN 1. For every § € ©, K(¢', 0) is a locally convex function for ¢’ in a é-
neighbourhood N (6, ).

ConpITION 2. For every § € O, there exists a neighbourhood N (6, 8) and n_1easurable
functions A(x, 6) such that EeAi(x, 6) < o and the Lipschitz conditions | #?(x|8”) —
/Nx|0)| = Ai(x, 0)|6” — ¢ | hold foralli=1, ---, 4 and all &, §” € N (6, d).

ConDITION 3. For each 8, there exist two constants u = u(f) > 0 and v = v(d) > 0
such that P{¢V(x |8 + ¢) >0} >0 and P{¢"(x|0 — &) <0} >0 foralle, 0 <e<u,and the
moment generating function ¢(¢, 8, &) = Eqlexp{t/” (x| 8 + €)}] is finite for all (¢, ¢) € [-v,
v] X [—u, ul.

ConDITION 4. The partial derivatives (8 / )8/ 3)’o(t, 0, ¢€), 5,7 =1, - - -, 4 exist and
are jointly continuous in ¢ and ¢ for (¢, €) € [—v, v] X [—u, u].

CoNnDITION 5. For each n and s, the m.Le. 8,(s) is the unique solution of £5’(s|6) = 0.

To simplify the notation, we write £“(x | 8), (x| 0 + ¢), I(6) and E¢[ -] as 29 £ ), 1,
and E[ -] respectively.
LEMMA 3.1. Under Condition 2, we have
2 3
(i) E¢M () = eE¢® +-§-, E¢® +% E¢® + o(e),
i) E[£V()F = E (V) + 26E¢V¢? + £[E(£9)? + E¢V¢P] + o(é?),
(iil) E[¢M(e) P = E (/M) + 3eE (¢V)%¢? + 382[Ef(1)(f(2))2 + % E(£M)?%¢®] + o(ed),

(iv) E[¢P(e)]* = E(¢M)* + o(1).

ProoF. The results follow immediately from the Taylor expansion, Lebesgue’s domi-
nated integration theorem, and integration term by term. 0O

LEMMA 3.2. Under Conditions 3 and 4 there exists a unique single-valued function
14(¢) defined on 0 < e < u such that
¢ (1e(e), 0,€) =0, p1=d(7e(e), 0,¢), and 4(e) =¢ + Aé® + Bé® + o(e),
where A = —E¢V¢® /21, and

- _ % [_{% E/““ _ % (E/(I)[(Z))2 + E(/(Z))Z + E[(l)f(li)

3 (1))2 4(2) 1 (1) p(2) (1)y3 1 (1)\4
= = += E(M)*].
+2E(/ )2/ +2IEZ ¢PE () 3 ()]
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Proor. Hoeffding (1965) proved that there exists a unique single-valued function
74(¢) which is a solution of equation ¢*(¢, 6, £) = 0, and

= inf=op(t, 0, €) = ¢(74(c), 0, €).

The first order approximation for 74(¢) when ¢ is near zero was shown by Fu (1973) to be
given by 74(¢) = € + o(e). Further, let t4(¢) = ¢ + Ae® + Be® + 0(c”). Since 74(¢) satisfies the
equation ¢(¢, 6, ¢) = 0, it follows that

(3.3) f ¢M(x|0 + e)exp{[e + Ae® + Be® + 0(e*) 1/ (x| 0 + &)} f(x| ) dx= 0

We expand the exponential part of integrand into a series (four terms are sufficient) and
integrate term by term. Applying Lemma 3.1 to the above series gives a power series in ¢.
The four-term expansion of 74(¢) follows directly from the fact that all coefficients of
expansion (3.3) have to be zero. 0

Let 20, ¢), i = 1, 2, 3 and 4, be the first four cumulants of the random variable
¢V(x|0 + €) under P;.
LEMMA 3.3. Under Condmon 2 we have
(i) £1(0, €) = eE¢® + 3 Ef“” +3 E/® + 0(83)
(ii) 22(6, &) = E (¢V)? + 2eE¢M¢® + &[E (£?)? — (E4®)? + E¢V¢P] + o(ed),
(iii) £3(0, &) = E(¢)2 + 3[E (¢V)2¢® — E(¢V)2E?] + o(e),
(iv) ky(0, &) = E (¢P)* — 3(E(¢™)?)? + o(1).

The proof of this lemma follows from the definition of cumulants and from Lemma 3.1.

THEOREM 3.1. For any consistent estimator T, the inequality (2.1) holds. If Condi-
tions 1 and 2 are satisfied, the Bahadur bound B (0, €) has an expansion at ¢ = 0 given
by (2.5).

Proor. The proof of (2.1) was given by Fu (1971). It follows from Conditions 1 and 2
that, for each # and ¢, Kullback-Leibler information K(¢’, 6) is a continuous and locally
convex function for ' € N (6, §), and

B(0,¢) = infy{K(6',0):|10' — 0| >¢} =min{K (@ — ¢, 0), K@ +¢,0)}.

Hence, the local expansion (2.5) is a direct result of the Taylor expansion of K(0 =+ e,
). O

THEOREM 3.2. (i) Under Condition 3 the following inequalities hold.:

1 _
(3.4) lim supp_.« > log P{0.(s) = 0 + ¢} < log p; < lim inf,_,., r_lz log P{6.(s) = 0 + €},

(3.5) lim sup,_« % log P{8,(s) = 0 — ¢} < log p> < lim inf,... % log P{8.(s) = 0 — ¢},

where
p1 = info¢(¢, 6, e) and p2 = inf<ep(t, 6, — ¢).
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(i) Under Conditions 3 and 5 the m.le. 8, (s) has an exponential rate given by
1 A N
(3.6) lim,_w - log P(|6.(s) — 6| =¢) =—(b, 0, ¢),

where
B0,6,¢) =—logp and p=max(py, p2).

(iii) Under Conditions 2 to 5 the exponential rate B(é, 0, ¢) for the m.l.e. 6,(s) has a
local expansion for € near zero given by (2.7).

Proor. Result (i) is a direct consequence of inequalities (3.1) and (3.2), and the
Bernstein-Chernoff-Bahadur Theorem (see Chernoff, 1952, or Bahadur, 1971). It follows
from Condition 5 that the inequalities (3.1) and (3.2) reduce to the equalities

(3.7) P{lu(s)=0+¢) = P{¢"(s|0+¢) =03, and

(3.8) P{l.(s) <0 —¢) = P{£D(s|6 — &) < 0).

Result (ii) is derived from equalities (3.7) and (3.8), and the Bernstein-Chernoff-Bahadur
Theorem. Using Lemma 3.2 it follows that

(3.9) log pi(e) = log ¢(7e(e), 0, &) = '?=1 -ll; ki(8, e)Tie) + o(e?).

Using Lemmas 3.2 and 3.3, we have a four-term Taylor expansion (3.9) given by

2 3

€ €
log p1 = —{al + 3 (3p110 — M300)
(3.10) .
+ ’Z—' [(2p400 — 6210 + 4pio1 + Sprozo) — 3I%Y%(6)] + 0(84)},

where y%(f) is the statistical curvature (2.8). The quantity log p: has a four-term Taylor
expansion similar to (3.10) with e replaced by —e. Result (iii) follows directly from B(6, 6,
e) = —log p, p = max(py, p2), and from (3.10). O

THEOREM 3.3. Under Conditions 1 through 5 we have that (i) the result (2.9) holds,
and (ii) if 0 is location parameter with the underlying density being log-concave and
symmetric, then the inequality (2.10) holds for any translation invariant consistent
estimator, and equality holds for the m.l.e. 6,(s).

Proor. The density function being log-concave implies Condition 5. Result (i) follows
directly from Theorems 3.1 and 3.2. Result (ii) is an immediate consequence of result (i)
and a result of Sievers (1978, page 612). 0O

REMARK 1. Conditions 1 through 5 can be easily verified. To verify Condition 1, one
needs to check that for every 6 and ¢ there exists a §-neighbourhood N(6, §) such that the
Kullback-Leibler information K g ., ) has a continuous second derivative and K (6, §) >
0. Condition 5, that the m.Le. , be a unique solution of the equation ¢’ (s|8) = 0, is
essential in our proofs. It is usually satisfied by many distributions, particularly by those
whose density functions are log-concave. For example: normal distribution with known
variance, logistic distribution, I'-distribution, and other members of the Koopmans-Dar-
mois class of probability distributions. If the equation £’(s | 6) = 0 has multiple roots, or
the number of roots depends on the sample size, then our proofs break down. In the case
of the Cauchy distributions, for example, the problem remains open.
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REMARK 2. An estimator may have an optimal exponential rate but may be inefficient
in the exact rate. This substantiates a remark given by LeCam (see Efron, 1975, page 1224)
that even for certain exponential families, the m.Le. is difficult to compute and is inferior
(in the sense of expected square deviation) to some alternatives. The phenomenon applies
not only to the expecbed square deviation, but also to any loss function which is a
monotonic increasing function of | T, — 6. The existence of the phenomenon is due to the
fact that the m.le. §, does not always minimize the tail probability a(T,, 6, ). The
consistent estimator 8, (s) which minimizes a(T}, 0, €), or maximizes 1 — a(T}, 0, €) will be
called maximum probability estimator (m.p.e.). Since the m.p.e. §,(s) has by definition the
fastest rate of convergence, it is asymptotically efficient. For a given estimation problem,
the m.p.e. may depend on ¢, and be difficult to compute. In some cases, it may not even
exist. With a suitable additional constraint, however, it usually does exist. For example, a
m.p.e. may exist in the class of translation invariant estimators. Specific examples are
given in Section 5.

REMARK 3. It is reasonable to expect results proved for the location parameter to
hold for sufficiently smooth non-location parameter families, though no mathematical
justification is available. It is of great interest from both a practical and a theoretical point
of view that a more general theorem in this direction be extended to a wider class of
distributions.

4. Exponential rate and Fisher-Rao-Efron second-order efficiency. For any
consistent estimator T, Fisher in his fundamental 1925 paper on estimation theory stated
that

4.1) lim, o[ Eo{£(5|0)) — Eo{¢V(To(s) | 0)}?] = I1(6)¥*(9),

where ¢Y(T,(s) | 8) is the first derivative of the log-likelihood of estimator 7T, and the
equality holds for the m.le. 6,. Fisher believed the Fisher information, (), to be a perfect
measure of the amount of information available to a statistician, and also that asymptoti-
cally the m.Le. 8, extracts all but I (6)¥*(6) of the information in the sample. This optimal
property of the m.le. is said to be “second-order efficiency” among the class of first order
efficient estimators T, those which satisfy the weaker condition

lim, o Eo{£(s|0)}2/ Eo{¢(T0(s) | 6)}% = 1.

Rao (1963) gave a similar result for square error loss which can be stated as:

2

- 1 1 F 3

for any consmtent estimator T, where I'? is the ordinary curvature and equality holds for
the m.Le. 6,. Fisher and Rao tried to prove the result (4.1) for multinomial families. Efron
(1975) gave a counterexample, showing that the result (4.1) is not true for multinomial
families. In that paper Efron introduces the statistical curvature and also gives a proof of
results (4.1) and (4.2) for curved exponential families. His proof relies on an ingenious
geometrical interpretation of statistical curvature and a powerful large deviation result
similar to the Bernstein-Chernoff-Bahadur theorem used in Section 3.

Our results (2.1), (2.9) and (2.10), obtained from the exponential rate of convergence
approach using probability of large deviation theory, are parallel to their results. Before
commenting further on this relationship we will show a mathematical connection between
the rate of convergence and the Fisher-Rao-Efron result (4.2). Since a detailed proof of
this is extremely tedious we only outline the important steps of the proof for the situation
where 6 is a location parameter with a symmetric dens1ty function f(x | 6) which satisfies
the Conditions 1 to 5 stated in Section 3 and I" = 0: Let |0 (s) — 8| = U,(s), and Y(¢) = log
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(¢, 6, €). It follows from Theorems 3.2 and 3.3, and the generalized version of Laplace’s
method, that the distribution of the random variable U,(s) has an asymptotic expansion
(also see Petrov, 1975, page 248) given by

P{U,(s) =u} =1— F(u) = {r(w)) " {2rny? (1)} /2

2 4
(4.3) -{exp(—n |:L—2"— 1(6) + % {21400 — 6pta10 + 4p101 + 3ptozo — 3I2(0)Y2(0)} + 0(u4)]>}

. {1 + On(l)}’

where r(uz is as defined in Lemma 3.2. If the m.l.e. §,(s) is an unbiased estimator for 6,
then Var(f,) = E,UZ2(s). Integrating by parts, it follows that with 1 — F(u) given by (4.3),
(4.4) Var(d,) = 2 J u{l — F(u)} du.

0

We first expand the integrand, not including the term exp {—nu?I()/2}, as a series in u.
We then use the transformation u?> = v and integrate term by term. Applying the
generalized Laplace method to evaluate each term, the first two terms of the expansion of
Var(é,,) come out as (4.2).

Fisher’s result (4.1) can perhaps be obtained by this same method. However, we have
been unable to show mathematically that this is the case. It is noteworthy that the
Kullback-Leibler information K (¢, 6) is directly associated with the predominant (expo-
nential) term of the asymptotic distribution of the consistent estimator, and that the
Fisher information I(f) is associated only with its second order derivative. Contrary to
Fisher’s claim, we believe that for higher order efficiency in large sample estimation the
Kullback-Leibler information is more directly related to the performance of consistent
estimators than the Fisher information I(6) is. It is well-known (Rao, 1963, and Efron,
1975) that the central limit theorem in general is not capable of supporting such fine results
(4.1), (4.2), and (2.9). From our results, it seems that the probability of large deviation
theory does offer more in this direction.

5. Examples. The results in Section 3 are true for many sufficiently smooth families
of distributions. To illustrate these results, we consider the examples of normal, logistic,
exponential, double exponential and uniform distributions, which are of general interest in
both statistical theory and practice. Among them, the normal, logistic, and exponential
distributions satisfy the regularity conditions stated in Section 3. The double exponential
and uniform distributions do not satisfy those conditions.

ExampLE 1. Let {X;}i be a sequence of i.i.d. normal random variables with unknown
mean # and variance ¢2 It has Fisher information I(§) = 1/6? and Kullback-Liebler
information K(6’, §) = (¢ — 6)2/20°. The sample mean 6, = X, is a minimum sufficient
statistic for 8 and is also m.l.e. One can show that §, = X,, is the m.p.e. among all translation
invariant estimators and is also the m.p.e. among all scale invariant estimators. In this
case the m.l.e. coincides with the m.p.e. and therefore it enjoys the optimal properties of
the m.p.e. The exponential rate of the m.l.e., ,8(9, 0, ), achieves the Bahadur bound, i.e.,

(5.1) B0, 8,e) = B(,c) =¢2/2° forall e>0 and 6 € (—, ).

ExaMmPLE 2. Let {Xi}%1 be a sequence of i.i.d. logistic random variables having density
functions
f(x|0) =e /(1 +e ™%,  x€(—»,0) and 6 € (-, ).

The density function is log-concave and satisfies all the regularity conditions. It has Fisher
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information 1(f) = 1/3, Kullback-Leibler information

= d
(5.2) K@+e ) =¢+2 L {log(1 + e~ u) — log(1 + u)) (1—:;7

and a small statistical curvature y*(f) = 0.2. The m.le. 6, is the solution of the equation
¢P(s) =n — 2 Y% {1 + exp(X; — 6)} " = 0. By the result (3.6) it has an exponential rate
given by

(5.3) ,B(é, 0,¢) = —log{inf,zo exp(—t/2) J’ (exp[t/{1 + exp(x — 0 — €)}]) f(x|6) dx}.

Numerical computations of (5.2) and (5.3) show that
lim,oe *[B(8, €) — B(6, 8, €)] = 0.0028 = Y% I*(6)y*(6).

The m.l.e. is second-order efficient estimator in the Bahadur sense among allA translation
invariant estimators. The smallness of the differenceA between B(d, €) and (0, 6, ) when
@ is near zero indicates that the exponential rate of 8, is near the optimal rate (Bahadur
bound).

ExaMPLE 3. Let {X;}7: be a sequence of i.i.d. exponential random variables with scale
parameter § and density function f(x|6) = fe % for x € (0, ) and # > 0. The Kullback-
Leibler information is K(6’, §) =log 8’/0 — (6’ — 6)/6’. The m.l.e. 6,=X,hasan exponential
rate given by

(5.4) ,B(é, 0, &) = —log infi-op(¢, 0, £) = log(d + €)/0 — /(0 + ¢),

which achieves the Bahadur bound. Again the m.l.e. coincides with the scale invariant
m.p.e. 6,.

ExaMPLE 4. Let {X;}%: be a sequence of ii.d. double exponential random variables
with location parameter 6 and density function

fx|0) =%exp(—|x—0]|), x€E(—w,®), OE (—mo,x).

The Kullback-Leibler information K(8’, 6) is a locally convex function in §’. The Bahadur
bound has a Taylor expansion given by

(5.5) B,e) =% — Y% & + e + o(e?).

The density function f(x|6) does not satisfy our regularity conditions. However, its m.l.e.
6, = median (X4, - - -, X,) = X(/2 does have an exponential rate given by

(5.6) ‘ ,3(0 0,e) =% e — Y% e+ 13 e’ + o(e?).

It follows from (5.5) and (5.6) that the m.Le. 6, = X(s is a first-order efficient estimator
in the Bahadur sense (2.3). It is neither a third order contact estimator nor a second-order
efficient estimator in Bahadur sense (2.10). Furthermore, the parameter 6 is a location
parameter and f(x| ) is symmetric and 3110 — paoo = 0. The irregular behaviour of B(6,
¢) and ,3(6’ 8, ¢) is due to the fact that the density function is non-differentiable at 6 = x.

ExaMPLE 5. Let {X;}; be a sequence of i.i.d. uniform random variables with density
function f(x|6) = 1/8 for all x € [0, #] where 6 is a scale parameter. The mle. 0, =
max(X, - -+, X,) = Xiu is scale invariant but does not coincide with the scale invariant
m.p.e. 8, = [(n + 1)/n]Xp.. It follows that both the mle. and m.p.e. have the same
exponential rate given by

(5.7) BB, 6,¢) =pB@, 0, =log(d — €)/9,
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for all § > ¢ > 0. Hence, the exponential rate would not distinguish between these two
estimators. However, by comparing the exact rates, we have

(5.8) limy, (b, 8, €) /a(@,, 8, &) = e

for all § > ¢ > 0, which is less than one and independent of . Clearly the scale invariant
m.p.e. b, is superior to the m.Le. 6,. The scale invariant m.p.e. is asymptotically efficient
among all scale invariant estimators with respect to any loss function L which is a non-
decreasing function of | T,, — 8|. For example, if L(| T, — 8|) = (T, — 6)?, then

+1 P !
(5.9) E<Xf"1“”’2_E<nn X"‘]_a) =<n+1>2{1+0<7z)}>0'
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