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OPTIMAL ESTIMATION OF A GENERAL REGRESSION FUNCTION

By P. W. MiLLAR'
University of California

Let © be a convex subset of RY and for each § € © let F(0; dt) be a
probability on the line. For any vector a, = (@1, @n2, - -+, @) Where a,, €
0, let X,1, - - -, X, be independent observations, the distribution of X, being
F(an; dt). The main results give a method of estimating the unknown
regression function a, based on a minimum distance recipe. Under regularity
assumptions, the proposed estimators are shown, in an appropriate framework,
to be asymptotically normal, locally asymptotically minimax, and robust. The
abstract results are illustrated by application to the linear model and to
exponential response models. In general, nothing at all is assumed about the
form of the regression function; accordingly, this forces,the limiting normal
distributions of the proposed estimators to be located on infinite dimensional
linear spaces.

1. Introduction. Let © be an open subinterval of R, and let {F(0; dx), § € ©} be a
fixed family of probability measures on the line. If n is a positive integer, let a, = (an,
+++, @nn) be a vector in R” with a,; € 0, and let X,, = (X,.1, - -+, X,.») be a random vector
of independent random variables, where the distribution of X,; is F(a.;; dx). This setup
will be called a regression model, and the vector a, a regression function. The regression
function a, may be entirely unknown, or else may be known to lie in some lower
dimensional subset of R". With this understanding, the main contribution of this paper is
amethod of estimating a, optimally under very minimal assumptions as to its whereabouts.
In an appropriate framework, the proposed estimators turn out to be asymptotically
normal and robust.

Before describing these results, let us look at two illustrations of this abstract regression
model which are of paramount importance for applications: shift models and exponential
models.

Shift models. Fix F, a distribution on the line, and define F'(0; dx) = F(dx — ) for 6
€ R'. With this choice of parametric family, the model of the preceding paragraph may
then be described in the following equivalent way. Let Z, - -+, Z, be iid F. Then each X,;
may be written X,,; = an; + Z;. If a,; is known to have the form (say) a.; = a(i/n) + b with
a, b unknown, and if F'is N(0, 1), then this is the familiar straight-line regression problem,
and the allowable regression functions a, belong to a two dimensional subspace of R,.
This paper, of course, provides a method of estimating a, b that is optimal—in fact,
robust—in a sense described below. On the other hand, if F is still N(0, 1) and nothing at
all is known about a., then we can still provide an estimator of a. with strong optimality
properties. More illustrations are provided in Section 2.

Exponential models.. Here F(0; dx) in standard form has a density of the type
exp{fg(x) + b(f)} relative to some sigma finite measure v; see Johansen (1979) for an
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introduction to the theory of such families. The parameter set © is the interval {#: —o <
b(f) < x}. Regression models developed for such families include the logit model and
their generalization, the exponential response models; see Haberman (1977) for this, as
well as for reference to their application in educational testing. In his interesting article,
Haberman uses a maximum likelihood method to provide, under certain conditions,
asymptotically normal estimates of real functionals of a,, but no optimality is proved.
Here, using a different method, we estimate the vector a, itself; the estimate turns out to
be asymptotically normal and asymptotically minimax. Of course, one can then employ
standard weak convergence results to study the asymptotic distribution of estimators of
functionals of a,.

The estimators of a, employed in this paper, being variants of a minimum distance

recipe, are fairly easy to describe intuitively. For each vector a,, define F(a,; s, t) =

N7 Y iens F@nis ), Where F(0; t) is the cdf of the measure F (0 dx). Define a two-parameter
stochastlc process I, (s, t), analogous to the empirical cdf, by F, (s, t) =n~ 1S s Lo, (Xni)-
If || is a norm on bounded functions of two variables, estimate a. to be the vector for
which F(a,; s, t) is closest to F, in the sense of the distance obtained from |+]m. Each
vector a, is identified with a point in an infinite dimensional linear space L which does not
depend on n. When an appropriate metric is placed on L, the estimators just described
turn out to be n'/? consistent, and under regularity assumptions on the family {F(0; -)}
they converge, when suitably normalized, to a normal distribution on L. This normal
distribution, of course, will in general be infinite dimensional.

Finally, these estimators of a, are shown to be robust. This has the usual intuitive
interpretation: namely, the estimators do not deteriorate when, because of data contami-
nation, the distributions of the X,; do not follow F(a,;; dx) precisely for any choice of a,.
Least squares estimates of a,, which one might naturally use in some of the regression
problems mentioned above, are not robust in this sense because even one outlying
observation drastically affects the estimate. As in Millar (1981a), we give the intuitive
notion of robustness a technical definition that is purely decision theoretic. To describe
this, let F'(n, a.; dx) denote the product measure of F(a.:; dx;). If £, is, for each n, a
Hilbertian distance on measures (see Section 9 for the precise description), let £, (F(n, a,),
@) be the loss if a, is our estimate when the actual distribution of the data is given by the
product measure @. Let 7', denote an estimator of the regression function. A sequence of
estimators {73} will be called robust if

lim »infr, supgec, j t(F(n, T,), @) dQ = lim,supgec, f t(F(n, Th), Q) dQ,

where {C.,} is a sequence of neighborhoods of an arbitrary but fixed F'(n, a,) shrinking at
a certain rate as n increases; see Section 9 for the precise description. In short, an estimate
is robust if it is locally asymptotically minimax in a certain decision theoretic framework.
That such a framework convincingly captures the intent of robustness is discussed at
length in Millar (1981a) for the location-scale problem (among others), and the arguments
will not be repeated here; in the location problem (a special case of a regression shift
model), the theories of this paper and the earlier one produce equivalent optimal proce-
dures. The asymptotic minimax approach to robustness is discussed also by Beran (1979),
Bickel (1979), and Rieder (1979), with different choices of metrics and neighborhoods.
The present paper differs from previous works on nonparametric and robust regression
in several respects. First, previous efforts in robust regression have either restricted
attention to (essentially) the case where a, lies in a subset of R" of fixed dimension d, or
else, as in Huber (1973), one lets d increase with n but much more slowly. In the most
general situation of this paper, there are no restrictions on a, other than that its
components belong to ©; yet the proposed estimators will be robust and asymptotically
normal when these notions are formulated properly for this situation. On the other hand,
recent attacks on nonparametric regression (Stone, 1977; Sacks-Spiegelman, 1980) can
provide consistent estimators in this generality; but to the best of my knowledge, this
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paper is the first to provide in this generality vn consistency, asymptotic normality and
asymptotic optimality.

The current theory of robust regression—such as it is—consists essentially in taking
the basic least squares recipe and perturbing it slightly to make outliers less disruptive.
This having been done, certain asymptotic normality results are proved (cf. Huber, 1973;
Bickel, 1975; Maronna and Yohai, 1979). Unfortunately, ad hoc tinkering with a failing
recipe to “save the phenomenon” is quite unsatisfying, and it seems clear that the theory
of robust regression needs to be thoroughly overhauled. This paper offers one possibility,
based on the concept of minimum distance and an abstract minimax principle. Grounds
for believing that this might work are provided by the successes of these principles in the
simpler problem of robust parametric estimation (see Beran, 1977, 1979; Millar, 1981a;
Parr-Schucany, 1979; Rieder, 1979).

Sections 2, 3, and 4 describe the model more precisely, specify the objects to be
estimated, and give the basic minimum distance estimators to be studied throughout.
Sections 5 and 6 establish consistency and asymptotic normality, while Section 7 illustrates
the application of the theoretical results to shift and exponential models. Robustness is
established in Section 9, based on the theoretical preparation of Section 8. The final
sections supply proofs of the main results.

The results of this paper are cast in a fairly abstract form. This was necessary because
the basic problem here—being genuinely infinite dimensional—is inherently complicated.
The applications sketched in Section 7 attempt to illustrate various concrete aspects of the
theory. For even more explicit examples, see Millar (1981a), where explicit asymptotic
forms of estimators like those of the present paper are developed for, e.g., the location
model; indeed, a good understanding of the cited paper will make the reading of the
present one much simpler. The rationale for the local asymptotic minimax approach to
robustness is discussed in Millar (1981a) and Beran (1981). To understand the connection
with classical parametric estimation, it is helpful to read Hajek (1972). A detailed devel-
opment of the asymptotic minimax theory and many of its applications can be found in
the lecture notes of Millar (1981b). Finally, it should be pointed out that the theory
developed in the present paper is abstract enough so that further applications can be built
upon it. These include (a) a theory of testing which will assess goodness of fit by means
rather more effective than the usual examination of residuals, and (b) application to
dimensionality reduction of data. These will be discussed elsewhere.

2. The model. This section gives a precise and mathematically convenient description
of the regression models discussed in Section 1.

Fix a parametric family {F(0; dx), § € ©} where © is a subinterval of R'. Denote by
F(0; t) the cdf of F(#; dx). Let L denote the Hilbert space L*([0, 1], dx) where dx is
Lebesgue measure, and set

1 1/2
(2.1) lg|. = (j g(s)? ds) .
0

Define y
2.2)° c(n; i; 8) = nj £g(s) ds.

(i=1)/n
Let I" be a subset of L such that if g € I" then range g C ©. One basic form of the regression
model then consists in observing the vector (X1, - -+, X..) of independent rv’s, where X,
has distribution F'(c(n; i; g); dx) for each i and some g € I". The distribution of the vector,
of course, is then given by the product measure

2.3) F(n;g;dx) =1]: F(c(n; i; 8);dx), x=(xa, -, %)

The set I specifies the allowable regression functions. Notice that if, say, I" is dense in L
then, despite the apparent restriction of the recipe (2.2), the allowable regression functions
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{{c(n; i; g)}:g € T'} are essentially all of R". The basic statistical problem is now to
estimate the vector {c(n; i; g)} or, equivalently, to pick the “right” g € T".

Illustration: the shift model. As noted in Section 1, the observations for the shift
model can be written X,,; = ¢(n; i; g) + Z; where Z; are iid F, g € I". Various choices of I"
lead to familiar statistical models. The simplest choice of I" is the one dimensional subspace
{0g0} where gy € L is fixed, and 6 ranges over all real numbers. Estimation of g € I" here
of course is equivalent to estimating 6. If g, = 1, this choice of T" gives the familiar location
model; if go(s) = s, 0 < s = 1, the model is simple straight line regression through the
origin. If g, - - -, g are fixed elements of L, then the choice I' = { Y%, 6, g;: 6; real} leads
to a model where the regression function is determined by only % parameters, and
estimation of g € I here is tantamount to estimating (6, - - -, 6%).

If, in this case, g; is the indicator of the interval from (: — 1)/k to i/k and Fj is the
N (6, 1) distribution, then the model is, essentially, the one-way layout with equal numbers
of observations per category.

If T is the set of all elements of L that are step functions, this leads to a regression
model in which the regression functions {{c(n; i; g)}g € I'} are completely arbitrary points
of R". As a somewhat different situation, take I" to consist of all elements g such that g(s)
=0,0=s<a;g(s) =b,a=s=1for some a € (0, 1) and some real b. For this model,
which is essentially a two sample problem, the first na observations follow F, but all the
succeeding ones follow F'(¢ — b). Estimation of g € I is then tantamount to deciding when
the shift in distribution occurred (a variant of the “earliest detection problem” familiar
from sequential analysis) and how large the shift was when it occurred. Finally, it is
perhaps helpful to note that, in the case of the shift model, the recipe (2.2) is a discrete
variant of the stochastic differential equation dX, = g(¢) dt + dB; where g € L and B, is
standard Brownian motion. This equation is familiar from the engineering literature on
signal detection, the statistical problem being that of estimating the signal g in the presence
of “noise” dB;. ,

It is convenient to give a different description of the regression coefficients c(n; i; g).
For this purpose, let

(2.4) %, = sigma field on [0, 1] generated by the subintervals (i/n, i+ 1/n],0<i<n.
If g € L, define
(2.5) T(n; g) = E(g| %),

where this conditional expectation is computed using Lebesgue measure on [0, 1]. The
value of T'(n; g) on the interval (i — 1/n, i/n] is of course c(n; i; g). Therefore the
coefficients c(n; i; g) are given by the successive values of the step function T'(n; g)(s) as
s moves from 0 to 1. From now on we work directly with the functions T'(n; g); the effective
parameter set at time n evidently is {T'(n; g):g € I'} and we take the basic statistical
problem to be the optimal estimation of the functions T'(n; g).

Although the recipe (2.2) for the regression coefficients has a certain weight of tradition
behind it (cf, Hajek, and éidék, 1967), it is useful to consider variants. To this end, for
integers n = k define

(2.6) T(n; k; 8) = T(n; T(k; 8) = E[E{g| %} | ].

If n is a multiple of k&, then obviously T'(n; k; g) = T'(k; g); otherwise, T'(n; k; g) will have
at most 2k different values. Since T'(n; k; g) is still, by definition, a step function on the
intervals (i/n, i + 1/n] one can extend the regression model by specifying that the
coefficients are, for specified integers &, < n, given by the n successive values of T'(n; k,;
g), g € I'. If k,, = n, the earlier model is recovered; if k2, < n, then the dimension of the
parameter is far less than the number of observations. Accordingly, this last possibility can
be viewed as a systematic way of “letting the dimension of the regression problem increase
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slowly with n.” Alternatively, one could view it as one technical formulation allowing the
grouping of data into blocks, the data being iid within each block.
We conclude this section with a simple convergence result that is used throughout the

paper.

(2.7) ProrosiTION. Ifg € L?(0, 1), p = 1, then T (n; k,; 8) converges in L? norm to g
asn =k, — o,

Proor. Since conditional expectation is a contraction in L”, the problem reduces easily
to the case &, = n. For this case, the proof is easily accomplished by a simple variant on
the usual argument for the L” convergence of martingales indexed by directed sets; see, for
example, Chatterji (1973).

3. Metrics and reparametrization. The model delineated in Section 2 has, at time
n, a parameter set which consists of functions T'(n; k,.; g), € € I'. The purpose of this
section is to replace that parameter set by one that is much more convenient to deal with.
To carry this out, define for g € T" a function Fg on [0, 1] X R by

s

(3.1) (Fg)(s, ) =f F(g(u); ¢) du.

0

Sometimes g in (3.1) will have a complicated form. For example, FT'(n; k,; g) is to mean
Fg with g = T'(n; k,; 8). Assuming, as we do henceforth, that F(6; ¢) is Borel measurable
in @, the recipe (3.1) makes sense and defines a distribution function on [0, 1] X R. It is
clear that Fg will be continuous if F(@; t) is continuous for each 6. Assume further,
throughout the rest of the paper, that

3.2) if F(@;t)=F@;t) forall ¢ then 6=2¢".

It is then immediate that if Fg = Fh on a countable dense subset of [0, 1] X R, then g =
h a.e. Accordingly, knowing the function Fg is tantamount to knowing g, and so we may
take {FT(n; k.; g):g € I'} as parameter set at time n instead of {T(n; k,; g):g € T'}. The
basic statistical problem then becomes the estimation of the functions F7T(n; k,; g), an
estimate of which automatically produces an estimate of T'(n; k,.; g) and hence of the
regression function. As we shall see, it is often not difficult to translate back from the new
parameter set {FT(n; k.; g)g € I'} to the original one.
Next we shall introduce a metric for the new parameter set. To this end, let

(3.4) m = probability measure on R' with support ©.

Let L., be the Hilbert space L*([0, 1] X R, ds dm) and denote the norm of L, by |-|. If the
metric obtained from |-|,, is put on the parameter set {FT'(n; k.; g)}, then of course it
becomes a separable metric space.

While the preceding two paragraphs establish the parameter set with which we shall
work most of the time, later applications require clarification of its ties to the original
parameter set. Define a function dr on I" X T" by

(3.5) dr(h, &) = | Fg — Fh|n.

It is immediate that dr is a metric on I'. If F(0; t) is continuous in 6§, then (I', dr) becomes
a separable metric space; if g, converges to g in the norm of L (or, more generally, if g,
converges to g in measure) then dr(g,, g) — 0. Therefore, the metric dr is weaker than the
metric obtained from |-.|.. The importance of this metric is (cf. Section 5) that there are
Vn consistent estimators of the original parameters if the metric on L is dp; this is false if
the metric is given by the norm || .. The possibility of putting a norm |- |, on L to replace
dr is considered in Section 6; this norm will be weaker than |-|..

This section concludes with several propositions which, in special cases, characterize
convergence in the sense of the metric dr. These results are proved in Section 12. Recall
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that measurable functions g, on the unit interval converge in measure to g if, for each ¢,
the Lebesgue measure of {¢:|g.(t) — g(t)| > €} goes to 0 as n increases.

(8.6) ProPOSITION. Let F(0; t) = F(t —0) where F is continuous and support F = R
For g., g € L, dr(gn, g) — 0 if and only if g. converges to g in measure.

(3.7) PrOPOSITION. Assume T is such that there exists a real number b>0 and |g|.
< b, g € I". Assume F(0; t) is continuous in 0 and satisfies the condition

(8.8) foreach fixeds€ (0,1) and g, g €T, if Fg(s, t) = Fg'(s, t) for all t, then g = g’
a.e. on [0, s].

Let g,, g €ET. Then dr(g., g — 0 if and only if g. converges to g in measure.

(3.9) ExaMPLE. Consider the exponential family model introduced in Section 1. Using
the uniqueness theorem for Laplace transforms, it is not difficult to check that hypothesis
(3.8) holds, provided the support of the measure A — »{x:g(x) € A} contains an interval.

The next proposition is trivial and will not be proved.

(3.10) ProposiTiON. If T' is a strongly compact subset of L, then for g., g € T,
di(g,, 8) — 0 if and only if g, converges to g in the norm of L.

The typical situation in which (8.10) applies is when I' is finite dimensional and norm
bounded.

(3.11) PROPOSITION. Suppose I is finite dimensional and for all 0, t,0 < F(6; t) < 1.
Suppose © = (0, ©) and limy.F(0; t) = 1 for some t. Then dr(g., g) — 0 if and only if
gn—gin |' IL'

This proposition applies to scale families: F(6; t) = F(1; 6¢), 6 > 0. There are obvious
perturbations of this result to parameter sets (—o, ®), (=, 0).

4. Minimum distance estimators. This section describes the estimators whose
excellence is championed throughout the remainder of the paper. The parametric family
{F(6; dx)} and the measure m introduced in Sections 2 and 3 are henceforth fixed. To
define the estimators, two new ingredients are needed. First, introduce a two parameter
stochastic process F,(s, ), which is to be the analogue for regression problems of the
empirical cdf:

(4-1) Fn(sy t) = n_l Zisns I(—m,t](xni), 0=s= 17 —00 < f <o,

Here, and throughout, I4 denotes the indicator function of the set A. For the model of
Section 2, it is easy to see that, up to an error less than O(n™"):

(4.2) EF,=FT(n, k.; g),

where expectation is computed relative to the product measure Fi(n; T(n; kn; g); dx)
defined in (2.3). As to be expected, a suitable normalization of F, converges to a two
parameter Gaussian process; these matters are discussed in Section 5.

The second ingredient needed is a system {D,} of subsets of L. The systems D, are
subject to

4.3) D, C Dp1, n=12 ...

Further hypotheses are imposed on D, later, depending on the regression problem at hand.
Examples of the kind of classes D, to which the results will apply include: (a) D, =T"a
fixed subset of L, not necessarily proper; (b) D, = span{ei, ---, €}, where j, 1 © and
(e} is an orthonormal set in L; (c) D, = all step functions on the intervals
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{G@/2%, @ + 1)/2*]}, a. 1 »; (d) D, = all elements of L which have a first derivative
bounded by M,, where M, 1 . The subset I' C L giving the “allowable” g’s for the
regression problem will henceforth be assumed to satisfy I' = U D,. It is clear that if D, is
given by b, ¢, or d then I' = U D,, will be a subspace of L, dense in L but proper. For all
practical purposes, one can regard I" as L in these cases. The problem of deciding, say,
whether g € L has a finite or infinite expansion in some given basis is not of compelling
practical interest.

The minimum distance estimate g, of T(n; k,; g), g € U D, =TI, can now be defined to
be any element of the form T'(n; k,,; k), h € D,, that satisfies

inngD,,Ipn—FT(n; kn;g)lm = lﬁn_Fénlm

(or else comes within n™' of achieving this inf—asymptotically it will not matter). This
formulation does not use the reparametrization of Section 3. For that, define #%F, to be
the element of the form FT(n; k,; h), h € D,,, which achieves (or comes within ™! of such)

infoep,| B — FT(01; bn; @) |m = | Bw = 7% B .

Assuming uniqueness, we have Fg, = #3F,. Of course, 72F, depends on the system {D,},
but we suppress this in the notation.

In subsequent sections, these estimators will be shown to have desirable optimality
properties. The basic results impose conditions on the systems {D,} as well as on the
numbers k, appearing in the regression functions T'(n; k,; ). If one wants vn consistency
(cf. Section 5), then one can use estimators of this type with D, = T" for all n. For the more
delicate problem of asymptotic normality, it is necessary, if I" is infinite dimensional, to
consider systems {D,} that are more shrewdly chosen.

5. Weak convergence and consistency. This section introduces certain two-param-
eter Gaussian processes to which the sample cdf (cf. (4.1)) converges. As a by-product, the
minimum distance estimators of Section 4 are shown to be vn consistent, as defined in
(5.4), in an appropriate framework. To lighten the notation, assume &, = n throughout.

Define a normalization of F', by the recipe

Wo(s, t) = Wolg; s, t) = n'/2{F(s, t) — EngF(s, £)}
(5.1)
= n"*(F,(s, t) — FT(n, g)(s, t)} + O(n""?),

where E,, is expectation under the product measure F(n; T(n; g); dx) of (2.3). Though W,
depends on g, we shall usually suppress this in the notation. It is easy to see that W, has
mean 0 and covariance K(T'(n; g)(si1, t1; sz, t2) where

$1/\8sy
(6.2)  K(h)(si, ti; 8, ) =Fh(ss A\ 8566\ &) —f F(h(u); 4)F(h(u); t:) du.
0
For g €T, define a two-parameter Gaussian process W(s, t) = W(g; s, t) by specifying
mean 0 and covariance Kg. If B,, is the usual Brownian sheet on the unit square (i.e., the
continuous Gaussian process with mean 0, covariance (s1 A\ sz) (£1 A ¢2)) then using stochastic
integrals for B, (cf., Cairoli-Walsh, 1975) W has the representation

W(s, t) = f J T (W) {Torgwsn (V) — F(g(u); £)} dBu.
o Jo

From this representation a number of structural and sample function properties of this
process are then immediate, but we do not dwell on these interesting probabilistic
questions. The covariance of W shows this process to be closely related to the Kiefer
process (Kiefer, 1972); indeed, the covariance of a Kiefer process is Kg with g = 1 and Fy
the uniform distribution on (0, ).
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(5.3) PROPOSITION. (a) Assume F(0; -) continuous. Under the measures F(n; T(n, g);
dx), W,(g; ) converges weakly to W(g; -) on C([0, 1] X R). (b) There exist constants a
and b such that whatever be g and {F(0; -)}

Po{| Wi|m >t} < ae™®

where P, is the product measure of (a).

REMARKs. Part (a) was proved by Bickel and Wichura (1971) for the case g identically
constant; the present more general case (independent but not identically distributed
random variables) can be established by arguments within the framework of that paper.
LeCam has shown me that an abstract variant of his Poissonization method will also prove
(a). For the applications of this paper, one needs weak convergence only for the metric
space L,, (instead of C); to prove this weaker result, the methods given in Millar (1981a)
may be used. Finally, for the applications of Section 9, it is easy to see that the
aforementioned proof establishes convergence if the distribution of X,; is replaced by G,
where | F(c(n; i; ) — Gni|m < cn™*/? and the product measure is the product of the Gn:.
Part (b) of the theorem is familiar for the ordinary sample cdf from the work of Kiefer and
Wolfowitz (1958). The present result is a special case of a remarkable recent result of
LeCam, proved by an ingenious and elegant extension of his Poissonization technique to
abstract valued random variables. According to LeCam, the norm in (b) may be replaced
by the supremum norm, and the result holds with no hypotheses on the distributions of
the X,,; other than independence. LeCam’s proof will appear in his forthcoming monograph.

Proposition (5.3) immediately implies consistency results for minimum distance esti-
mators. Let (Y, d) be a separable metric space with metric d, and for each n let {P}:y €
Y} be a family of probabilities on some measure space (S”, &#"). A sequence of Y-valued
random variables ¥, on S” is called a v consistent estimator of y € Y if for every ¢ > 0
there exists ¢ > 0 and n, such that

P2 {(n?d(¥n,y)>t)<e forall y€Y, n=n.

There are many variants of this definition, most of them weaker by not requiring the
uniformity over the entire parameter space. In classical parametric estimation theory, the
existence of such estimators is often the first step to the development of efficient estimators.
In our regression problem, the effective parameter set changes with n; it is {T'(n, g), 8§ €
T’} at time n. Accordingly, one naturally defines estimators Y,, with values in {T'(n, g): &
€ I'} to be Vn consistent relative to d, some metric if

(5.4) limy . lim, oo SUpger Prg{(n?d(¥,, T'(n, g)) >t} = 0.

Here P, is the product measure (2.3). If the reparametrization of Section 3 is used, then
the definition is changed in the obvious way: ¥, should take values in {FT'(n, g); g €T},
d should be a metric on L,, and T'(n, g) should be replaced by FT'(n, g) in (5.4).

Whether or not there are Vn consistent estimators depends strongly on the metric. With
this in mind, the following proposition is of some interest.

(5.5) PROPOSITION. Suppose I' is dense in L. If the parameter set is {T(n, g),
g €T} and if the metric there is |-| . then there are no Vn consistent estimators.

This may be proved with simple considerations involving the Hajek-LeCam asymptotic
minimax theorem (Hajek, 1972; LeCam, 1972). From the point of view of this paper, |-|.
is in general the wrong metric to use on I'. If this metric is weakened to that of convergence
in measure, however, then it is often possible to find Jn consistent estimators. This fact
follows from the next corollary, immediate from (5.3) but which also has a fairly simple
direct proof. The minimum distance estimators in question are constructed from systems
D, with D, =T all n.
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(5.6) PROPOSITION. % F, is a v'n consistent estimator of the parameters {FT(n, g), g
€ I'}, whatever be T, if the metric is |-| . If F(0; t) is continuous in 0, then g, (defined in
Section 4) is Vn consistent estimator of the parameters {T(n, g); g € I'}, for the metric
dp.

That the metric dr is often equivalent to convergence in measure was discussed in
Section 3. In short, it is impossible to find Vn consistent estimators of T (n, g) if the metric
is |+|; but if we go to the “next” weakest metric, such estimators can be found.

6. Local structure and asymptotic distribution. This section shows that the
minimum distance estimators 7% F, defined in Section 4 converge, when suitably normal-
ized, to certain functionals of the Gaussian process W. Since 7%, F.isL, valued, the limiting
distribution will, in general, be infinite dimensional.

We begin with the general formulation in Proposition (6.9). Because of the infinite
dimensional character of these results, the hypotheses appear at first sight a bit compli-
cated. That they can be verified in a number of interesting situations is illustrated in
Sections 7 and 11. The case of finite dimensional I is particularly simple, and is singled out
in Proposition (6.10). The basic results (6.9), (6.10) are asymptotic normality results for
estimators in the reparameterized problem (parameter set {FT(n, g), g € T'}). These
results can be rewritten to assert asymptotic normality of the minimum distance estimators
of the orginal quantities {T'(n, g), g € I'}; this is done in (6.11), (6.12), (6.15).

For the main result assume first that

(6.1) Fi(6;t) = 3/30 F(6; t) exists for each 6 € ©.
Define, if possible, for each g with range in ©, a mapping A(g; -) from L to R%

A(g; h)(s, t) =J' Fi(g(w); t)h(u) du.
0
Assume next that for each such g

(6.2) h— A(g; h) isabounded linear transformation from L to L,,.

This hypothesis requires u — F; (g (u); ) to have mild integrability properties, as discussed
in more detail in Section 11. The next assumption asserts, in particular, the Fréchet
differentiability of the maps g — Fg of L to L,:

(6.3) AssUMPTION. Assume there exists an increasing function r on (0, «) such that if
ri(t) =t"'r(t),thenr, | 0Oas¢t | 0andforh, g

|Fh—Fg—A(g;h—g)|n=r(lg—h|L).

Section 11 shows that in many of the cases of greatest practical interest, r(t) < t*2
Variants of (6.3) more local in character and convenient for the study of exponential
families are discussed in Section 11. Hypotheses (6.4)-(6.7) to follow should be skipped on
first reading; basically they assert smoothness in both variables of A (g; 2) and they insist
that the system {D,} not become complicated too fast. Assume for fixed go € T" that

(6.4) there exists a decreasing sequence y, > 0 such that for any g € D,,| A(T (n, k., &);
T(n, kn, &8 = 80)) |m Zyn| T(n; kn; 8 — 80) |1;

(6.5) there exists a decreasing sequence z, > 0 such that | FT' (n; k.; g) — FT'(n; kn; &) |m
=z, ri' (%y,) for all g € D, with | T(n; kn; 8 — 80) L =11 (%yn);

(6.6) the numbers z,, y, are subject to (a) lim n'2z,ri' (%y,) = o, (b) lim n'?r
(en™2.y71) = 0 for all ¢ > 0;

(6.7) (a) for every ¢ > 0, supgea, o | A (T (n; kn; £0); T(n; kn; g)) — A(&o; &) |m— 0, where
A, c)={gEDu:|g—golr=cy:'}; (b) |A(&o; h — o) |m = yn|h — go|1 for h €
D,;

(6.8) D, is open in span D, for the relative topology of L.
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Define
m = orthogonal projection in Ly, to the subspace {A(g; h): h€ spanT'}=T.
That is, 7x is the point of T* closest to x in the Hilbertian distance |- |.

(6.9) ProPOSITION. Fix go € T'. Assume (6.1)-(6.8). Under the product measures F(n;
T(n, kx, 80); dx) and with respect to the metric |-|n:

78 By = FT(n; ks &) + w(Fy = FT(n; Raj £0)) + 0, (n77%).
In particular,
n"4(wl B, = FT(n; kn; g0)) = 7W

in distribution on L.,,, where W = W(g) is the two parameter Gaussian process defined
in Section 5.

The proof is given in Section 10. As mentioned before, the assumption that I" be finite
dimensional results in substantial simplification.

(6.10) PROPOSITION. Assume (6.1)-(6.3), (6.7), and that | F1(0; t)| > 0 for a.e. (6, t).
Assume T finite dimensional and an open subset of span I'. Assume convergence in the
metric dr on sp I implies convergence in measure. Take D, =T" all n. Then the conclusion
of (6.9) holds, with k, = n.

In the shift model, F;(0; t) = —f(t — 0) where f is the density of F with respect to
Lebesgue measure. According to Section 11, (6.1)-(6.3), (6.7) will hold if sup,|f(t) | < o,
sup;|f'(¢) | < «, and even weaker conditions suffice, depending on m. In the situation of
(6.10), ¥, may be taken constant in (6.4)-(6.7); the result itself follows from (6.9), as shown

in Section 11.

We turn now to translating the foregoing asymptotic normality results back to the
original parameter set {T'(n, k., g): & € T'}. To simplify notation, take %, = n. Consider
first the simplest case: I" = {6g,, # € I} where I is a subinterval of the line and g is a fixed
element of L; this is the typical one dimensional I". Then asymptotically, if 6,8 is fixed,
7o F, — FT(n, 6ogo) is projection onto the one dimensional subspace

{J F1(6ogo; £)(6 — 60)g0, 0 € Rl},
0

so selection of FT'(n, 6go) by 7O F, is a selection of 6 — 6 in the evident way. By the usual
characterization of projection in Hilbert space, if 6, is the 6 “chosen” by 7o F,, it is easy to
see that 6, is asymptotically normal:

(6.11) COROLLARY. Assume the hypotheses of (6.10), and that T = {I'go}. Then under
the product measures FT (n, 6,8)
b, — 8o = (F, — FT(n, 60&), p)n/|p|% + 0 (™),

where p = A (608o; £o).

Evidently a similar argument works if I" is 2-dimensional. For later use, we record the
result for £ = 2. Suppose I' = {6181 + 6:82: (61, 62) € I} where I is an open convex subset
of R? and g € L are fixed. Let (6,1, 6n2) be the point chosen by #3F,. Then under the
product measures associated with the point 68, + 08>
(6.12) @ (01 = 00) = ($n, P )m | P22 + ($ny D2Ym{ D1, P2Ym + 0(R77?),

@Bz = 600) = (s P1)m( D1, P2)m + (§ns P2)m|P1]% + 0(n772),
where

{o=F,— FT(n, og: + 000g2), p.=A(0og + 00082 8), @ =|pi|m|p2|m — (D1, P2)m.
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We conclude this section with one of the possible results asserting the asymptotic
normality of ., defined in Section 4. Assume %, = n, and that the hypotheses of (6.9) hold.
Assume also

(6.13) sup |A(T(n, &); T(n, h)) — A(g; T(n, h))|m — 0,

where the sup is over A € T with | T'(n, &) | < y."; this condition is closely related to (6.7)
and can be checked in the same way (Section 11). For convenience, assume 0 € 0, and
that m puts a unit mass at {0}; this assumption can be removed at the price of a more
extensive, but no more enlightening, argument. Assume

(6.14) | F1(0;0)|>0 all 6.
Define a norm |-|o on L by
(6.15) |hlo=|A(go; h)(s, 0)|c.

Because of (6.14), this indeed defines a norm, under which L = (h:f Ki(w) du < o}
becomes a separable normed space but is not Banach. However (L, |-|o) can be embedded
isometrically and isomorphically in its second dual in the usual way; with this identification
the closure of L—say L—becomes a separable Banach space. Any L valued random
variable can, by the aforementioned identification, be regarded as an L valued random
variable. The random variable g, in particular will be regarded this way.

(6.16) PROPOSITION. With these understandings, n'/*( g, — go) converges under F(n;
T(n, g)) to a normal distribution on L.

Actually this normal distribution is on span I', when T is regarded as a subset of L.
Notice also that if I" is finite dimensional then the norms |-|o, |-|z restricted to T', are
equivalent.

This proposition is proved in Section 10; it is easy to calculate its characteristic
functional using the facts in Sections 8 and 10.

7. Examples. This section illustrates the application of the results of Section 6 to
the two models of greatest practical interest—the shift model and the exponential family
model. For a given T, there are in general an uncountable number of possible systems
{D,} that will produce asymptotically normal estimators; the examples below illustrate
only a very few of the possible choices.

7.A Shift model. Fix a distribution function F; for this model F(6; t) = F(¢t — 0).
Assume F has a density f which is strictly positive on R’, bounded, and has a bounded
derivative f’. Then for any g, € L, A(go; h)(s, t) = [§ f(¢t — go(w))h(k) du is a bounded
linear operator, and differentiability hypothesis (6.3) holds with r(¢) = const. ¥ % see
Section 11 for details. This set of hypotheses is adopted for convenience only; one can
weaken them at the price, for example, of putting hypotheses on m and/or adjusting the
system {D, )} so that its elements keep away from the infinities of £, f. Assume the above
for 7.A(1)-7.A@1v).

EXAMPLE 7.A(i). Suppose I' = {fgo: § € R'} where g is a fixed element of L. If go(s)
= s, this is the familiar straight line regression problem. If go(s) = 1, it is the familiar
location model; see Millar, 1979b, for analysis of this particular case, together with
discussion of the effect of various choices of the measure m. It is a simple matter to see
that here all the hypotheses of (6.10) are satisfied.

ExaMpPLE 7.A(ii). IfT'= {ag: + bgs; & € L; a, breal}, then with g; fixed the hypotheses
of (6.10) again hold, and so the minimum distance estimator of (a, ) is asymptotically
normal, with asymptotic expansion given by (6.12). The standard straight line regression
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has g1 =1, g2(s) = s, and, unlike the least squares estimate, the minimum distance estimate
will be robust (cf. Section 10).

ExaMPLE 7.A(iii). Let I" consist of all g € L which are bounded and have a bounded
derivative g’. Notice that I" is dense in L. Let F be N(0, 1). At time n, the possible
distributions of the data are by hypothesis to be given by product measures F(rn; T (n; ky;
g)), g € T, where k, = n'/’. Let D, consist of all elements g € I" with |g|x < (2 log
log n)'?, | g’ |k < M, where M, is any fixed sequence such that M,n ¢ — 0 and where
|hlx = sup. |A(t)|. Since r(t) = const. £*? in this case, it is not difficult to use the
suggestions of Section 11 to check that all the hypotheses of (6.9) are satisfied. Accordingly,
the minimum distance estimate of {FT'(n; k.; g):g € T'} is asymptotically normal, and
will be robust according to the definition of Section 10; the normal distribution in question
is, of course, infinite dimensional.

ExaMPLE 7.A(iv). Let F again be N(0, 1). Let %, be the.sigma field on [0, 1] generated
by intervals (i/n, i + 1/n]. Take I" to consist of all g such that g is %+-measurable for some
k. Notice again that I' is dense in L. At stage n, the distribution of the data is given by the
product measures F(n; T'(n, g)) for some g € T'. If D, consists, for example, of all &, -
measurable functions bounded by (2 log log n)'?, where a, = exp(k.log 2), k., =
(log n)/6 log 2 then the assumptions of (6.9) hold.

7.B Exponential model.

ExampLE 7.B(i). Let F(6; ¢) be the cdf of the exponential family density exp{fq(u) +
b(0)}, where ® = (a, b). The one dimensional I" has the form I" = {6g,, 0 € I} for some
fixed go € L having range in (a, b). Here I is to be an interval determined by

{0: a < inf,0g0(v) < sup.fgo(u) < b}.

It is possible to allow, for example, go(z) > a but inf, go(z) = a; we shall not discuss this
case here. The operator A(g; h) is given formally by

f Jr h(u){q(x) + b'(g(w))}exp{ g(u)q(x) + b(g(w))};
a 0
if F(0; ) =1 — e " with © = (0, «), then

A(g; h)(s, t)=J’ —te BW gy,
o

If m is arbitrary but finite, and if only range g C O, this operator need not be bounded. For
T" described above, and with g = g for some 6, € I, it is easy to see that it is bounded.
The hypotheses of (6.10) are then easily checked in this case and the estimate of @ is
asymptotically normal with distribution given by (6.11). The general finite dimensional
case can be treated in the same way, if I is replaced by the evident analogue.

ExamMPLE 7.B(ii). Suppose I' consists, as in 7.A(iii), of all g € L which are bounded
and have a bounded first derivative g’. For simplicity let us begin with the model F(4; t)
= 1 — exp(— 0¢) which already exhibits all the features of the general case. The model at
stage n will be given by the product measures F(n; T(n, k.; g)), & € I" and where %, =
n'/*(log n)~. To find a suitable system D,, we work with the variant of Proposition (6.9)
given in Section 11. If ©, = [a,, «) and we arbitrarily choose a, = (log n)~* then working
through Section 11 and making several other more or less arbitrary choices, one is led to
the following choice of D, as one of the many possibilities:

D,={g€e€L:|g'ls<n"%(logn)™ (logn)™' < g <log log n}.
With D,, so chosen, the hypotheses of the modified (6.9) are satisfied and so the minimum
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distance estimator based on D, will be asymptotically normal and robust. Evidently one
can alter the upper and lower bounds in D, quite a bit and still get another system that
works.

For the general exponential model with ® = (a, b) one again chooses subintervals ©,
= (@, bn), @ | @, b, 1 b such that on ©, both F, F; are bounded, say, by cx; here F»(6; t)
= aF.(8; t)/a0. Using standard properties of exponential families (cf. Johansen, 1979) one
easily sees that this can be done, and that a,, b, can be chosen so that ¢, increases as
slowly as desired. Moreover the function r associated with each @, as in Section 11.A will
be r(¢) = ¢¥2. It is then routine to arrange (11.4a), (11.4b) and to ensure the other
hypotheses. In practice, one would no doubt replace each D, just constructed by a finite
dimensional subset D, thereof, such that still D;, 1 I'.

ExampLE 7.B(iii). Bring in again the model F(f; ) = 1 — exp(— 6¢) and as in 7.A(iv)
take I to be all g € L such that g is %.-measurable for some n. The distribution of the
data is given by the product measures F(n; T'(n, g)), g €T. If D, consists, for example, of
all g € L such that (log n) ' = g <log log n and g is %, -measurable, where a, = exp(cnlog
2), ¢, = (log n)/(7 log 2), then the hypotheses of (6.9) will be satisfied, and so the minimum
distance estimator is robust and asymptotically normal.

8. Gaussian experiments indexed by Hilbert space. This section introduces
statistical experiments parametrized by the points of a certain Hilbert space H,. Such
statistical experiments are key prerequisites for the study of robustness given in Section 9.
As a by-product, this section furnishes added structural information about the Gaussian
process W(g; s, t) of Section 5. The function go € I" will be fixed throughout this section
and the next; it will not always appear explicitly in notations which actually depend on it.

To begin, suppose that each F(@; ¢) has a density f(0; t) with respect to a sigma finite
measure g on the line such that f(6; ¢) > 0 a.e. p. Define Hy to be the subspace of
L%([0, 1] X R, ds du) consisting of all finite linear combinations of elements in L? of the
form e(u)h(go(x); v) where e is a function on [0, 1], A is a function on [0, 1] X R and

f h(go(w); v) f*(&o(u); V)u(dv) =0

for almost all u. Define
(8.1) H, = closure of Hy in L*(ds dp).
Then H, is a Hilbert space; denote by (,), its inner product. Define the bounded one-to-
one linear operator M mapping H, to L® by

r t
(8:2) (MR)(s, t) = f J’ f*(go(w), v)A(y, v) dup(dv).

0 0
Of course, M depepds on go. This operator M is closely related to the operator A(go; #) on
L. Indeed, define f(8; t) = 8f(0; u) /a0, and for h € L,

he(u, v) = f(go(w); V) f(&o(w); V)T *h(u).

Assuming the evident integrability properties, ks € H, and A(go; h) = Mhy.
Define for each s, ¢ the function

(8.3) B, v) = Loy (u) f*(go(w); V)L i-=a(v) — F(&(); £)].
Then each h,, belongs to H, and by direct calculation
(8.4) Mh(s, t) = (hsl) h)w h e HM

and, if K(go; s1, t; Ss, t2) is the covariance of the Gaussian process Wg, of Section 5, then
again by direct calculation
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(8.5) K (&o; 1, b $2, &) = (Psyeyy Py,

Let @ be the standard normal cylinder measure on H,; that is, @ is a finitely additive
measure on the cylinder sets of H, with characteristic functional (k) = exp{— %|h|2},
h € H,. Let @ be the image of @ under the mapping M. On the basis of the preceding
paragraph, it is easy to see that

(8.6) @ is the distribution of Wgo.
Define for A in H,, probabilities @ on the Borel sets A of L by
8.7 Qr(A) = Qu(A — Mh).

Then by basic theory the measures @, are countably additive, mutually absolutely
continuous, and the distribution of log(d@:/dQo) under @, is N(—%|h|2, |h|%). See Millar
(1979a) and references therein for discussion of these notions.

Next, for each h € Hy and each n, we construct probabilities @} such that
lim, d@%/dQ% = d@n/d@o in distribution, under {@7}. These measures figure in the
robustness analysis of Section 9. Suppose A(u, v) = Y, aye(u)h;i(go(u), v), a finite sum; this
is the typical element of Hy,. For such an A, construct densities £, by the recipe

(8.8) () = (1 = | guanl )22 (c(n; §; &); %) + Guun(:),

where c(n; i; go) was defined in (2.2) and

1 : :
quin(x:) =5 %, awb(r; &5 k)hjleln; & &); %),

b(n; i; k) = n'/? f I—1y/n,im(u)er(u) du.

Define
(8.9) Q7% = product measure on R" having density ]'[l, fn(x:).

(8.10) PropPoSITION. Under the measures {Q3}, log(d@7/d@?) is asymptotically nor-
mal N (= %|h|2 |h]?).

ProoF. First one shows sup;|gnir|. — 0 as n — . To see this, it suffices to show (since
range of k, j is finite) that for each % sup;|b(n; i; k)| — 0 as n — . This last is immediate
if e, is bounded; for general e; it may be proved by approximating e, in norm by bounded
functions. Define Y.z = (fnin/ fri0)*(x;) — 1. From the estimate just made,

1
i Yo =37 Qin(2) frif *(x:) — 3 Y | grin|2 + o(1).
On the other hand, straightforward computation shows that
. 1
lim, - 3, |l = 5 1413

This computation may be completed by multiplying out everything, and treating the sum
on { before those on %, j; the computation is facilitated by using elementary properties of
the conditional expectations E (- | %) of (2.4). From the last two displays and the central
limit theorem, ¥; Y. is asymptotically N (— (1/8) |k |2, %|k|:). The proof may be completed
using the development of LeCam (1969).

9. Robustness. This section explains the precise sense in which the minimum
distance estimators of this paper are robust. Assume for convenience that &, = n

If go € T'is “true,” the formulation of Section 2 alleges that the observations at time n
follow the product measure [[F(c(n, i, ), dx). It is a familiar fact in practical statistics



OPTIMAL REGRESSION ESTIMATION 731

that, due to “data contamination,” the observations may not follow this distribution
precisely for any choice of c(n; i; g). Causes of such data contamination can be attributed
to many factors, including human error, roundoff error, and so forth. An estimator will be
robust if its performance does not deteriorate when the assumptions of the model are not
satisfied precisely. There are many ways of giving technical formulation to the various
possibilities. Following Beran (1981), Millar (1981a), Rieder (1981), we will give robustness
a purely decision theoretic formulation, where optimality (= robustness) is to be a local
asymptotic minimax property. The advantages of such an approach are discussed at great
length in -Millar (1981a); since the formulation here is similar to that of the earlier paper,
the discussion will be brief.

To start, fix go € I'. For each n and i < n, bring in functions S(n, i) on R’, and define

9.1) Fo(S(n, i); t) = F(c(n; ; &); t) + n7/?S(n, i)(¢).

Assume S (n, i) chosen so this definition gives a bona fide probability distribution function.
Definition (9.1) gives the possible perturbations to the distribution of the ith observation
that can be attributed to “data contamination.” The distribution of the data actually
observed then follows F*(S(n, :); dx) = [[: Fu(S(n, i); dx)), x = (%1, +++, xn). The
assumption of independence can be relaxed, as pointed out in Section 13. The distributions
of Section 8 having density of the ith observation given by f..» have this form with S(n,
i)(¢) given essentially by 2n'? [* f'”(c(n, i, go); u)qnin(w) du. The formulation of “data
contamination” here includes the possibility that either the regression function g is
subject to error, or the parametric family F(#; -) is inexact, or, of course, both.

The possible distributions F"(S) of the data at time n having been specified, the task is
still to estimate the functions F (T (n, g)), as described in Section 3. Given cdf’s F.(S (n, i);
t) asin (9.1) define

(9.2) F(n; S;t) =n™'3_  Fu(S(n, i); t)

a cdf on [0, 1] X R. If /is a nondecreasing function on [0, »), then a reasonable measure of
loss, when F*(S) is the distribution of the data given by (9.1) and FT (n, g) is chosen from
the decision space is

£n*?|FT(n, g) — F(n, S)|m).

The n'/? in this recipe is reasonable, because according to Section 5, 7oF,, can estimate the
parameters FT(n, g) this closely. It is easy to see, however, that (just as for the location
problem) the present problem is degenerate for this precise loss function (the minimax risk
is easily seen to be #(«) ), so we modify it in the manner of Millar (1981a); many other loss
functions are possible. Define loss at stage n to be

9.3) An'?|70F(n, S) — FT(n, 8)|») = 4(S, FT(n, g)).

The reasonable character of similar loss functions is defended in Millar (1981a) on the
grounds that they can penalize both for bad data and for an inept estimate. With the
foregoing decision theoretic set-up, call an estimator T with values in {FT'(n, g), g €T}
robust if it is locally asymptotically minimax:

lichmlimnaooinf(Tn)supS:|S|,,,sc j {;;(S, Tn)an(S (n) )) ')'
(9.4)
= lichmlimn—»oosupS:IShnsc J 2fr’t('sly T(I)l)an(S(n7 )7 ’)'

Here the infimum in the first expression is over all estimates of the parameters {FT'(n, g),
geTl}.

That this definition of robustness captures the basic stability concept desired has been
argued at length by Millar (1981a), Beran (1981). Evidence that it works in the present
context is provided by the following proposition.
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(9.5) PROPOSITION. Let F(6, dt) be the shift model; suppose the assumptions of (6. 9)
are satisfied. Let £,, be the least squares estimate of {T(n, g), g € '} so thatF&n
the estimator of the reparametrized problem described in Section 3. Then F&n is not

robust in the sense of Definition (9.4).

This can be extended to exponential models, and so forth; see Millar (1981a), to see how
it can be proved for the special case of location models. The counter examples themselves
demonstrate that it is the outliers that disrupt the estimate F&n The main result of this
section is that the minimum distance estimators of Section 6 are robust in the sense of

definition (9.4).

(9.6) PROPOSITION. Assume (6.1)-(6.8); assume as in Section 8, that each F(0; t) has
a density f(0; t) > 0 with respect to a measure . Assume further that

9.7) A(go, h) C M(H,) for any h € span T’
and that the increasing function ¢ of (9.3) satisfies the growth condition
y2log £(y) =0(1) as y— oo,

Then 73F . is robust in the sense of (9.4) and the limiting minimax value is E ¢(| 7Wgo|m).

A trivial condition for (9.6) was suggested in Section 8; see Millar (1981a) for other
possibilities.

Proor. (Sketch). It may be shown that the basic decision theoretic structure forces
good estimators to choose elements of the decision space of the form FT(n, go) +
n~2A(go; h) + o(n""%). With some effort, unenlightening in itself, it may then be shown
that the loss (9.3) may be approximated asymptotically by the local loss

A|7[A(&, &) — A(n, S)]|») where A(n,S) =n"?(F(n,S) — FT(n, &)).

This reduction will use (5.3b). One may now calculate the value of the second expression
in (9.4) using the remarks after (5.3) concerning weak convergence in L,.. The value of the
first expression in (9.4) may be deduced, as in Millar (1979a, 1981a), from the Hdjek-
LeCam asymptotic minimax theorem, using the experiments {@%, 2 € Hy}; for this it is
necessary to note that x — (| 7x|») is subconvex on L,,.

ReMARK. Considerable work can be avoided if it is agreed that since the formulation
is local, the analysis should therefore begin with the local loss function given in the proof
(thus by-passing the complicated reduction beginning with a global loss function). The
local decision space is then {A(gs; g)} and the (local) decision made by 7F, is then
7 W, go. This simplified formulation seems to entail no real conceptual loss.

10. Proofs of (6.9) and (6.15).

Proor ofF (6.9). The proof bears many points in common with other analyses of
minimum distance estimators (cf. Beran, 1977; Millar, 1981a; Bolthausen, 1977; Pollard,
1980; Wolfowitz, 1957). A recent bibliography of Parr (1980) surveys current work on
minimum distance estimators. For a one dimensional shift model, Williamson (1979), gives
asymptotically normal estimates without complete specification of the distribution F, but
no optimality.

Assume n so large that go € D,. Let @, > 0 and set B, = {g € D,: |T(n; kn; 8 — 80) |1
= a,)}. By the triangle inequality, (6.5) and the choice of a, = ri'(%y.),

infeep, | Py — FT(0; ko 8)|m = 2277 (% y2) — 272 Wi |m
where W, was defined in Section 5. Because of (6.6a) and (5.3), this implies with probability
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approaching 1 as n — c:
infeep,n | By, — FT(n; ky; 8)|m = infeec,n?| By — FT (1% ko ) |m

where C, = D, — B,. In short, the minimum distance estimator must be computed only on

3. ¢

g’s “within” a, of go. By (6.3) and the choice of a,
|By = FT(n; s 8) | = Yoy | T(; ko 8 — 80) | — 072 | Walm.

Accordingly, 73F, must be computed by taking an infimum over only those g’s € C, such
that | T'(n; kn; 8 — 80) | < 4n7"%| Wa|my=". For such g’s, relative to the metric ||,

FT(n; kn; 8) = FT(n; ku; &) + A(T(1; ko; &); T (5 ke 8 — &) + 05 (n717)

provided that n'?r(cn ™%y, ') — 0 for every c as n — o; but hypothesis (6.6b) guarantees

that. It follows that within o,(n~"/?)
m9Fn = FT(n; his g0) + n™ AT (05 hos 0); T(t5hni B) + 0(n™%)
where A € span Do, | T(n; knjh) | < 4] Wo|m y2'. Because of (6.7a)
70F, = FT(n; ku; g0) + n"?A(go; b) + o(n™2).

Next, let 7, be orthogonal projection in the Hilbert space L%([0, 1] X R, dsdm) to the
subspace A, = {A(go; h): h € span D,} and 7, orthogonal projection to FT'(n; k.; go) + An.
Because of vn consistency, | B, — FT(n; ky; o) |m < | Wa|mn~"2 so by Pythagoras one can
compute 7:F, by looking at those & such that |A(go; A — &) |m =< | Wa|mn "% By (6.7b),
one need examine only those A’s such that |k — go| = | W,|n""?y;'/2 It follows that

oo = FT(n; kos 80) + ma(Fy = FT(0; b g0))
= FT(n; kn; 80) + n"'?A(go; b),
where & € Dy, |h| =< 4| W,|.y:". By (6.4a), (6.3), (6.8)
ThFn = FT(1; ko 80) + 07 2A(T (1; ks &); T'n; ko B)) + 0(n™"%)
= FT(n; kx; 8o + n~%h) + o(n™"?).
Next, since ;. is a minimum distance operation,
| P — 73F | = | B — FT(n; by 80) + A(go; AR, + o(n™?)
= |F, — 7iB|m + o(n™?)
and, since 3 is also a minimum distance operation,
| B = 7B = | B — FT(1; ko n72B + g0) | + 0(n™"?)
= |Fy = 73F | + o(n 7).
Therefore :
| By = wiBo|m = | B — 7% + o(n7Y2).
By Pythagoras it then follows that
|73 — mhBo|% = | B — 03B |2 — | B — mhFo |2 + o(n7'7?)
S0
15F0 = FT (5 kn; &) + 7a(F — FT(n; ks ) + 0(n™"%).
Proposition 6.9 is then immediate from the following lemma, given without proof.

LEMMA. Let G,n=1,2, --., be closed convex sets in a separable Hilbert space H
with norm |-|y such that G, C Gu+1. Let G be the closure of U G,. Let m, m, be projection
to G, G, respectively. Then lim,|m.x — 7x|g = 0, uniformly for x in compact subsets of H.
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In our application of this lemma, the G, are in fact subspaces; in this case the proof of
the lemma is somewhat simpler.

Proor oF (6.15). Define V to be the mapping of By, = {A(g; h): h € L} to L by
V:A(go; h) — h. Notice that B, is a subspace, not closed in general. Since A(go; h)
determines £, this mapping is well defined and linear. Since m has a point mass at 0, | Vx|o
=< |%|m for x € By. It follows that V may be extended as continuous linear map from B, the
closure of By, to L. Because of (6.13),

n a3k, — FT(n; g0)] = A(go; n'*T(n; &, — &)) + o(1).

But A(ge; n'*T(n; g, — go)) is asymptotically normal, according to (6.9). Since V is a
bounded linear operator, V(A (go; n'/*T(n; &, — &0))) is asymptotically normal; i.e., n*%(g,
— T(n; go)) has an asymptotically normal distribution on L.

Of course, if @ is the characteristic functional of Wgo, then the ch. f. of this normal
distribution is @(V *k) where the asterisk denotes adjoint ahd where 4 is in the dual of L.

11. Discussion of hypotheses (6.1)-(6.8). This section gives easily verifiable cri-
teria under which hypotheses (6.1)-(6.8) will be satisfied. There are many possible
combinations: one can place hypotheses on the family {#(6; ¢)} and can in a number of
ways vary k», D, as well. Accordingly, the matter is somewhat complicated, and the section
is fairly technical..

11A. HYPOTHESIS (6.2). Whether or not (6.2) holds depends in general on F, g and
m. By Schwarz, |A(g; h)|» < C(g, m)|h|, where C*(g, m) = [[ Fi(g(); t) du m(dt), so
a simple crude condition for (6.2) is C(g, m) < .

One way to achieve this is to consider only g’s such that supecr (s |F3(8; t)| = M(g)
where R (g) = range g, and M (g) is a constant independent of ¢. Then it does not matter
what m is. For example, in the shift model, F(6; t) = F(t — 0); if F has density fthen Fy(6;
t) = —f(t — ) and so it suffices that f be bounded. In the model F(§; t) = 1 — exp(— 6¢),
C(g, m) will be finite for any m provided R(g) C [¢, ) for some & > 0.

On the other hand, one can achieve C(g, m) < = for all g by insisting that m satisfy
[ supsF3i(8; t)m(dt) < . For example, in the shift model just mentioned, it would be
enough if m has a bounded density with respect to Lebesgue measure and [ f %(t) dt < oo.
In the exponential model of the preceding paragraph C(g, m) < « for all g if, for example,
[ t’m(dt) < oo,

11B. HYPOTHESIS (6.3), differentiability. The following criterion and its variant in
11B(a) below suffices to handle many cases of practical interest.

(11.1) ProPOSITION. Assume F(0; t) has, for each t, a modulus of continuity w(¢; u):
| F1(8; t) — Fi(0'; t)| = w(t; |0 — 0’|). Assume further that if w(u) = [ w(t; uym(dt), then
lim,,_ow(u) = 0. Assume that S(t) = supe | F1(8; t)| € L(R*, dm). Then (6.3) holds with
r(u) = u{w@? + Su"?}, where S is a constant multiple of { S(t)m(dt).

(11.2) COROLLARY. If Fx(0;t) = aF(0; t)/00 and if supe|F2(0; t)|, supe|F1(6; t)| are
bounded independently of t, then (6.3) holds with r(u) equal to a constant multiple of
u.’3/2‘

For example, in the shift model F(6; t) = F(t — §), the condition of (11.2) will hold if F
has a density f having a bounded derivative. Proof of (11.1) is given at the end of this
subsection.

11B(a) A vARIANT. The following variant of hypothesis (6.3) is indispensible for the
study of general exponential models. The altered assumption puts a condition on the sets
D,. Fix g, € T; assume there exists an increasing function r on [0, ©) such that if ri(t)
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= t7'r(t), thenr, | 0 as t | 0 and for h € D, there are numbers p, such that
(11.3) |Fh — Fgo — A(&o, h — 80)|m < par(|h — &|L).

Under (11.3), Proposition (6.9) continues to hold provided y,, z, are subject to
(11.4a) lim 7%2,r 7 (%yn/ pn) = o,

(11.4b) lim n*?p,r(cn~"2y;") =0 for every c>0.
To see this, essentially the same proof may be given, but with a, there taken as
rl_l(l/zyn/pn)-
This variant may be applied as follows. If @, is a convex subset of ©, ©, 1 ©, suppose
supece, | F2(0; t)| = bn, supece,| F1(0; t)| = bn

for a sequence of real numbers b,. Assume all g € D, have range in ©,. Then a simple
variant of (11.2) shows that (11.3) holds with p, = b, and r(f) a constant multiple of %2
For example, in the model F'(6; t) = 1 — exp(—8t), one could take 0, = [a,, ©) where a. is
a sequence of numbers decreasing to 0; then b, = (a,)? suffices to bound F; and F; over
©,.. Notice that by proper choice of a,, the numbers b, can be taken to increase to infinity
as slowly as desired.

11B(b) Proor oF (11.1). Fix ¢, t. Then
| Fh(s, t) — Fg(s, t) — A(g; h — &) (s, t) |

s rh(a)—gla)
j j (Fi(g(a) + u; t) — Fi(g(a); t)}duda
o Jo

=|w(t |h—gD|lh - gl
If A > 0, the Chebychev inequality implies

1
J w?(t;| h(s) — g(s)|) ds < w?(&; A|g — k(L) + 4C*(O)P{s:| h(s) — g(s)| >A |h — gL}
0

=w’t; A |g — h|) +4C*)A 2
Choose A = | A — g|z'/* to complete the verification,

11C. HYPOTHESES (6.4)-(6.6), k, =n. Let C,,n=1,2, ..., be a sequence of closed
convex subsets of L, C,, C C,+:. Suppose I' = U C,. This subsection shows under mild
hypotheses that it is always possible to find integers n; < n; < --- such that if D, = C;
when n; < n < n;, then hypotheses (6.4)-(6.6) hold with k., = n. That is, almost any

increasing family of convex subsets D, can be used, and (6.4)-(6.6) will still hold provided
that D, increases slowly enough.

To formulate the requisite hypotheses, assume (6.1)-(6.3) and define S,h = A(T'(n; g);
T(n; h)), Sh = A(go; h). Assume next that

(11.5) each C; is finite dimensional,

and /

(11.6) the bounded linear operators S,, S are 1 — 1 on span C}, for each j and n sufficiently
large.

Since C, is finite dimensional, the condition T'(n; k) = T(n; hs) will imply A, = h; for A,
€ C, provided n is chosen large enough; assume henceforth that » is so chosen. Then it is
easy to see that (11.6) can be guaranteed if F,(g(s); £)hi(s) = Fi(g(s); t)ha(s) for all ¢, a.e.
s implies A = h; a.e. This happens, of course, if | Fi(8; t)] > 0 for a.e. 6, ¢. For example, in
the shift model, (11.6) is guaranteed if F' has a density f that is strictly positive.
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Assume further that
(11.7) lim,|S.h — Sh|» =0 foreach h€C;
Since C, is finite dimensional, this implies

lim,, supj=1,respc,| SA — Suht|m = 0.

See (11E) for criteria on (11.7).
Finally, assume

(11.8) if h,,h€ C; and dp(h,, h) > 0, then h,— h in measure.

See Section 3 for criteria on (11.8).

(11.9) ProPOSITION. Suppose given an increasing sequence of closed convex sets C;
as described in this subsection. Assume (6.1)-(6.3), (11.5)-(11.8). Then there exist integers
ny <ng --- such that if D, = Cj, nj < n < nj1, then (6.4)-(6.6) hold.

PrOOF. Let ;S, ;S, denote the operators S, S, restricted to span C;. Let ||; denote the
operator norm here, so | ;S — ;S.|, = 0 because C; is finite dimensional. Again because of
finite dimensionality of Cj, |,S,'|; = |;S™'|,. Therefore for each j there exists n;, n; <
n,., such that 1/] ;8" |, = % 1/| ;S™'|, for all n n,. Moreover if 2 € sp C;, | T(n; h)|. < |A|
= |,;S8%"|;| jSnh |m. So if D, is defined to be C;, n, = n < n;, then (6.4) holds with y, =
% 1/|;Sz |, n; <= n < nja.

Next, fix n and go € D,; suppose n; < n < n;.1. There exists v; > 0 such that if g € D,
= C;and | T(n; g8 — go|r > ri'(y»), then | FT(n; g) — FT(n; go) | »v;. Indeed, suppose not.
Then there exists a sequence g, in C; such that | FT(n; gx) — FT(n; g)|» — 0. But then by
(11.8) g, converges to g, in measure; since C; is finite dimensional, g, converges to go in
norm. But then T'(n; g:) converges to T(n; g¢) in norm, and that is a contradiction.
Therefore, if 2/ is defined by v; = 2ri ' (}y;), then (6.5) holds with z, = 2} for n; < n <nj..
Finally, it is clear that by taking the n; even larger, if necessary, the other hypothesis can
be satisfied.

(11.10) REMARK. A special case of practical interest occurs when I’ is finite dimen-
sional. Then one naturally can take C; = I" all j; i.e., under the hypothesis (11.5)-(11.8) one
can take D, =T in n, and, of course, y,, 2, are then independent of n.

11D. HYPOTHESES (6.4)-(6.6), k, << n. This subsection shows that, under mild condi-
tions, essentially no matter what sequence D, 1 T" is used (even infinite dimensional ones),
it is possible to choose %, so that (6.4), (6.5) hold. To achieve (6.6) it is then a matter of
making k, increase much slower than n. Here are the requisite hypotheses for this
development. Assume (6.1)-(6.3). Assume further

(11.11) there is an increasing sequence of subsets ®, C ©, ©, 1 © such that C2 =
[ infyco, F1(6; t)ym(dt) >0,

(11.12) if g € D,, range g C 0,..

(11.13) PrOPOSITION. Under these hypotheses, (6.4), (6.5) hold; y, and z, may be
chosen to be constant multiplies of Cy/kn.

Hypotheses (11.11), (11.12) are easy to satisfy in many examples: one needs only
| Fi(8; t) | > 0 for all § and a few ¢. Usually there is enough smoothness so that one may
take C, decreasing as slowly as desired by proper choice of ©,. Using this, and making %,
increase very slowly, one can then ensure (6.6); typically there are a great number of ways
of arranging this. In the shift model F(6; t) = F(¢ — ), where the density fis (say) A4(0, 1),
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appropriate ©, might be [—~b,, b.] for some increasing sequence B,; if m places any mass
at all near 0 then one could take C, = (27)~"%exp(—b2/2) essentially.

Proor. The proof is based on the following lemma. Define the compact operator 7
mapping L to L by (78)(s) = [§ g(u)du. Let %, be the sigma field on [0, 1] generated by the
intervals [i/n, (i + 1)/n) and let 5, . be the sigma field generated by all step functions T'(n,
k; g),8 € L.

(11.14) LEMMA. (a) There exists a constant C > 0 such that if g is %, measurable
then |7g|L = Cn7'| g|. (b) Let k, be a sequence such that k./n — 0. There is a constant
C > 0 such that if g is #, »,-measurable then | 178 |. = Ck;'| g |1 It is easy to see that the
rate n”' of (11.14a) is best possible.

To apply this lemma, notice that if ¢ is fixed then
A(T(n; ku; £0); T(n; kn & — £0)) (s, 1) = (rhy)(s),
where
hd(u) = Fi(T(n; kn; &) @); £)T(n; ks 8 — 80) (w).

Of course, A, is #;, ,-measurable. Therefore, by the lemma,

| A(T(n; kn; 80); T(n; ko & — 80)) (-, 8) | = Chi' | e e
= Cky'infoco, | F1(0; t) || T(n; kn; & — 80) |-

Integration by m(dt) then completes the verification of (6.4). An entirely similar argument
suffices for (6.5).

To understand why the lemma holds, consider the case (a). Let e;, 1 < i < n be the
indicator of the interval ((i — 1)/n, i/n] and set g; = e;+1 — e;, 1 =i <n, g, = e,. Then the
8. are linearly independent, span the space of % n measurable functions, and the lemma
holds for each g, by direct calculation. Using the Gram-Schmidt orthogonalization, one
may show, with some tedium, that the lemma continues to hold for any linear combination
of the gi. The system g, was chosen, of course, so that the images 7g; have essentially the
same orthogonality properties as g;. Part (b) may be proved by similar methods.

11.E. HYPoTHESIS (6.7). Roughly speaking, it is clear that (6.7) will hold if T (n; g) is
uniformly close to g for g € D, and if A(-, -) has sufficient joint continuity. Here is one
way to ensure this. By Schwarz, if ¢ is fixed,

|A(T(n; &); T(n; ) (-, ) |2
=|Fu(T(n; &); t) || T(n; &) — gle + | Fi(T(n; go); t) — Fi(go; t) |L|&]e.

Let @, be an increasing sequence of subsets of ®; assume g € D,, has its range in ©,. Set
vi= f Supsee, | F1(0; t)|’m(dt), wh = j supseo, | F2(0; t)Pm(dt).

Then, ignoring a few constants,
|A(T(n; go); T(n, 8)) — A(&0; &) |m =< 0a | T(n, &) — g + wn|g | T(n; &) — &o |-

In typical applications, the numbers v,, w, can be made to increase as slowly as desired by
appropriate choice of ©,. The sets D, can easily be chosen to ensure sup,ep, | T(n; g) — gl
— 0 as n — . For example, if every g € D, has a continuous derivative bounded by M,,
then |T'(n; g) — g|l. = M,/n and it is then a matter of choosing M, so that M, 1 « and
(vn + wp)M,/n — 0, while keeping the norm of elements of D, from getting big too fast. In
the case I is finite dimensional, it is particularly simple to guarantee (6.7).
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12. Proofs of (3.6), (3.7). We prove here the characterizations (3.6), (3.7) of conver-
gence in the metric dr of Section 3; proofs of the criteria (3.8), (3.9) are omitted.

ProoF OF (3.6). It is enough to prove that dr(g,, g) — 0 implies g, converges to g in
measure, because the reverse implication is trivial. For this, fix s; then the sub probability
measures of mass s having distribution function Fg,(-; s) converge to one with df Fg(-; s).
The characteristic functions of these measures therefore converge, leading to

lim J’ exp{iag.(u)}du = J exp{iag(u)}du, alls,a,
0 0

since F(6; t) = F(t — 6). The result is then immediate by the following amusing result,
whose proof, and the many ponderous generalizations thereof, will be left to the reader.

(12.1) LEMMA. Letg,,n=1,2, - and g be measurable functions on the Lebesgue
unit interval. The following are equivalent:

(a) g. converges to g in measure,

(b) g. converges in distribution to g on every subinterval [0, s] (i.e., for each s, if f is
any continuous function on [0, s, then lim [§ f(g.(u))du =[; f(g(w))du),

(c) for every continuous f on [0, 1], f(g.) converges in the weak topology of L to f(g).

PRrOOF OF (3.7). Suppose dr(gn, 8 — 0. It will be shown that every subsequence of g,
has a further subsequence that converges in measure to g; since convergence in measure
is metric, this will prove the result. Select any subsequence g, of g,. Since Fg.(,) con-
verges in L, to Fg, there is then a further subsequence g,, converging a.e. dsdm and
therefore, since Fg is a continuous distribution function, Fg,, (s, t) — F(g(s, t)) for all s, ¢.
Fix s, so Fgy,,(s,t) — F(g(s, t)) for all ¢. Since the elements of I' are L-bounded by
hypothesis, the distributions of the g, are tight. There is, for each s as above, a further
subsequence g,, weakly convergent on [0, s] to some g,. Here weak convergence is in the
usual sense of probability distributions; the subsequence n; depends on s, a priori. Since
F(0; t) is continuous in 8

lim,,J' F(gn(u); t)dw=J’ F(g.(u); t)du.
0 0

Since n; is a subsequence of ns, [§ F(g.(u); t)du =[3 F(g(u); t)du so by (3.12) g,(u) = g(u)
a.e. on [0, s]: i.e., the limit in distribution on [0, s] of any weakly convergent subsequence
of g.. is always g. It follows that g,, converges in distribution to g on each interval [0, s].
Appeal to (12.1) completes the proof.

13. Extensions.

(13A) Multidimensional ©. The theory of this paper can be extended to include
families F(6; t) where 6 € ©, a convex subset of R%. For such ©, one can define cq(n; i; g),
where g = (g1, -+ + , 8a), & € L, to be the point in R given by (c(n; i; 81), - - , c(n; i; &a)).
Then the modified regression model consists of independent real random variables X,
«++, Xnn, where the distribution of X,,; is F(ca(n; i; g); dx). Of course g will have to be
chosen so that c4(n; i; g) € 0. Need for this particular extension arises often; it was not
treated in the basic development of this paper because it involves substantial notational
complication, with no particular gain in insight. For a simple familiar example, consider
the “straight line” regression problem where X,; has the form X,.; = a(i/n) + b + Z,, with
Z; independent, N(0, c?), and the numbers a, b, ¢ unknown; the task is to estimate (a, b).
This is a special case of a two-dimensional ® with F((6., 6:); t) = F((t — 6:)/6:). The
relevant functions g = (g1, g2) that arise, of course consist of all g; having the form as + b
for some real a, b and all g, with the form g:(s) = ¢ for some ¢ > 0. This particular model
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assumes that the variance of each “error” Z; is the same (but unknown) at every
observation. The development of this paper allows as well for a formulation in which the
variance c2; of X,; varies arbitrarily with i: evidently it is just a matter of replacing the
allowable functions g just mentioned by the set of all elements of L that are positive a.e.
Finally, one can even set up the model so that, not only are the variances arbitrary, but
the means as well: this means only that the allowable functions g1 be augmented to all of
(or to a dense subset of) L. In each case, the evident analogues of the minimum distance
recipes of Section 4 are easily formulated, and, with some personal pain, the asymptotic
results can be recovered by the methods of this paper.

(13B) Dependent observations. The assumption that the X,; be independent can be
weakened. If, under the envisioned dependence, (5.3) still holds, and if independence is a
special case of the type of dependence under consideration, then the main results may be
recovered. In particular, the proposed estimators will still be robust under small departures
from independence. :

(13C) Testing. The results of this paper automatically suggest tests of various hy-
potheses. For example, in testing g = 0 (i.e., the observations are identically distributed),
one naturally would reject the null hypothesis if F, were too far away from FT(n; g0)(&o
= 0) in the distance ||.. An asymptotic minimax definition of robustness can be developed
for the testing situation, and tests such as the one just proposed may be shown to be
robust. Their asymptotic behaviour can be derived from the asymptotic results of this
paper. See Millar (1979b), to see one possibility for the location model (among others).
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