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ISOTONIC MODAL REGRESSION
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For each ¢ in an index set 7, let P, be a probability measure with mode
M(¢). In this paper we consider a maximum likelihood nonparametric esti-
mator M,,(t) of M(t) subject to the constraint that M., (-) be isotonic with
respect to an order on 7. The estimator is a solution to a minimization
problem with zero-one loss. The estimator is not a max-min or min-max
representation of “naive” estimators. Naive modal estimators are used but
they are not linear in the sense of Robertson and Wright (1975) nor do they
have the Cauchy mean value property. Consistency results are given for the
cases of T finite, P, discrete; T infinite, P, continuous; T finite, P, continuous.
An efficient and economical quadratic-time dynamic programming algorithm
is presented for computations. In the case of T finite, P, discrete, the algorithm
operates on a matrix of frequency counts, “backing up” one column at a time
as the optimal completion cells for the modal estimates are searched for.
Illustrative simulations suggest that the estimator performs well in small
samples and is robust to certain kinds of contamination perturbations.

1. Introduction. The estimation of a regression function M(¢), ¢t € T, which is known
to be monotonic (isotonic) with respect to a partial order << on T is a problem which has
attracted some interest in the literature. The following general model provides a framework
for this problem: Let X be a stochastic process indexed by T. For each ¢t € T, let P, be the
marginal probability measure of X (¢, -). Suppose © is a functional on the space of
distributions {P,; t € T'} such that © (P,) = M(t), a real-valued function of ¢, where M(¢)
is known to be isotonic (i.e., s, ¢ € T and s < ¢ = M(s) = M(t)). The problem is to
estimate M(-) from a finite segment of a sequence {(¢,, X,,); n=1,2, --.} such that ¢, €
T and X, is a random variable distributed as P,, . Usually, {X, =1, 2, -..} are also
assumed to be independent.

All estimators of M(-) are themselves required to be isotonic and many of the estimators
proposed in the literature are solutions to the following kind of minimization problem: to
minimize [7 L[ g(t), m(t)] du.(t) within the class of isotonic, real-valued m(t). Here, g(t)
is a given target function—possibly a known, nonisotonic, data-dependent “naive” esti-
mator of M(-). L(-, -) is a nonnegative loss function and yu,(-) is a nonnegative measure
on T which may depend on observational data. A solution Mn( -) to such a minimization
problem is called an isotonic regression of g(-) with weight function y, (-) and loss function
L(., ).

ExamMpLEs. (i) If T is finite and totally ordered, loss is squared-error,
=Y Ley(t), gt) = ¥i-1 XLy (@) /ni,  pa(t) = ny,

we have the classic initial isotonic problem considéred by Brunk (1955). In addition, if the
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X, have independent normal distribution with mean M(t;) and variance o7 the solution
M,.(-) is also a restricted maximum likelihood estimate of M(.).

(ii) If T'is finite and totally ordered, loss is absolute error, n; and u. (-) as in (i) and g(¢)
is the median of the observations taken at ¢, we have the median regression case of
Robertson and Waltman (1968). In this case, if the X; have independent bilateral exponen-
tial distribution with median M (¢,), then M, (-) is a restricted maximum likelihood estimate
of M(-).

(iii) If T is the real line with usual order and n;, g(-), u.(-) are as in example (i), we
have the regression setting considered by Brunk (1970).

(iv) If Tis the plane with usual partial order, loss is squared-error, and n,, g(-), u(-) are
the multivariate analogs of (i), we have the problem of Hanson, Pledger, Wright (1973).

(v) If (iv) holds except that loss is absolute error, we have the problem of Cryer, et al
(1972) or Robertson and Wright (1973).

In each of the cited examples, there is an explicit representation of the minimizing
solution:

(1) M, (t;) = max(,,erymin e nm Mo (X,; j<n, t; € LN K}

where L € % (the class of all lower sets L defined by the conditions that L C T and that
t<sandt€ ¥=s € L), K € ¥° (the class of upper sets, which are the complements of
L-sets), and M, is an estimator computed from the random variables in its argument.
When T is totally ordered, the minimum lower sets algorithm (1) is equivalent to the
simpler Pool-Adjacent-Violators algorithm (see Barlow, et al, 1972). There has been
interest in the statistical properties of (1) independent of its relationship to any minimi-
zation problem (Hanson, Pledger, Wright, 1973; Robertson and Wright, 1974, 1975, 1980.)
Since (1) is an isotonic function, it may receive consideration as an estimator of any
constrained parameter for which M, is a naive unconstrained estimator. This use of (1) has
appeal if it is difficult to formulate or solve an appropriate optimality criterion. Moreover,
the form of (1) suggests ways to apply properties of M, to prove properties of the isotonic
regression. However, it is not clear that independent of a minimization criterion (1) will
have even the most basic desirable properties. An example given by Robertson and Wright
(1974) provides the initial motivation for this paper: Let T = {1, 2}, X;; be independent,
1=1,2;=12 ..., PX), = -%) = P(Xy, = —%) = %, P(Xy, = 0) = ¥, X, distributed as
X, + 1. With probability one, the sample modes converge to the true modes M(1) = 0 and
M(2) = 1. But with probability one, (1) produces estimates converging to 0 and —% if M,
is taken as the sample mode.

Conditions under which consistency of M, implies consistency of (1) were investigated
by Robertson and Wright (1975). These authors impose four general conditions on M,,: (i)
measurability, (i) symmetry in its arguments, (iii) linearity to location shift, and (iv)
monotonicity in its arguments. It seems clear that they have location estimators in mind
for M,,, yet the mode fails their condition (iv). In this paper, we let M(¢) be the mode of P,
and study the problem of estimating M (-) given that it is isotonic. In Section 2 we consider
the case of T finite and P, discrete; in Section 4, T is infinite and P, continuous; in Section
5, T is finite and P, continuous. Our estimator does not have a max-min representation as
in (1), and we believe that it is the first such isotonic estimator to appear in the literature.
The sample mode as a naive estimator is not linear in the sense of Robertson and Wright
(1975) nor does it have the Cauchy mean value property (Robertson and Wright, 1974,
1980) characteristic of most isotonic estimators considered in the literature. Yet our
isotonized estimator is the solution to a minimization problem with a very natural loss
function and it is almost surely consistent. Moreover, it is easy to calculate with our
algorithm (Section 3). We also believe that the estimator has practical utility as well as
theoretical interest. Because the estimator seems to be fairly resistant to outliers, we
believe that it deserves a place among robust methods for “bump-hunting” (e.g., in applied
particle physics), particularly when there is a modest amount of contamination in the
distributions P,. Additionally, it provides a reasonable method for doing regression on
ordinal data. Section 6 contains a few simulation studies which suggest that the estimator
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may perform well even with quite modest sample sizes and in competition with other,
more traditional estimators.

2. T finite, P; discrete. First suppose that T is linearly ordered and identify 7 with
the set of integers {1, 2, -- -, k}. Let % be the o-lattice of right subintervals of 7, i.e., %
= {¢, {k}, {k — 1, k}, ---, T}, and let R(% ) be the class of all real-valued functions g(t)
which are measurable with respect to %, i.e., g7 ([a, ®]) € % for each real a. Note that
& € R(%) if and only if g is isotonic on T. For each ¢ € T, let X, - - -, X,,,, be a random
sample from the discrete distribution P, and let the collection {X;;i=1, ---, n;,j =1,

-, k} be independent. Suppose each distribution P, has a unique mode M(¢), which is
unknown. If no order restrictions are imposed, then the class of all real-valued functions g
on T is the parameter set for the problem of estimating the true modal function {M(¢); ¢
€ T}. If g is such a function and we observe X;; = x;,i=1, .-+, n;,j =1, -, k, it is
reasonable to define the nonparametric likelihood of g as

A& =TIt (T2 Ligiin (x) /1)

Clearly, A(g) is maximized by setting g(¢) = m(t) where, for each t, m(t) is a sample mode
of {xi;i=1, .-+, n,} (if the sample mode is not unique, we are indifferent at this point as
to which one is chosen). However, m(¢) may not be % -measurable. If the statistician has
exogenous knowledge that the true modal path M (¢) is nondecreasing, either from physical
necessity or strong personal belief, it seems obJectlonable in principle to estimate M (¢) by
the sample mode. We propose instead an estimator M, (¢) which is always isotonic.

For a given function g(-), let f (¢, g(¢)) be the sample frequency of g(¢) in the £th sample.
Let F(¢, g(t)) be the probability of g(¢) in the £th population. That is,

2 f(t, 8(8) = Xits Ligiin(xie),  F(¢, g(8) = P[Xi, = g(8)].

In computational work, it is sometimes convenient to replace frequencies of 0 by some
small positive number like %; but this is by no means necessary for the theory and in
practice makes a difference only for very small sample sizes. Let

_J1 if a#b
@) Lia, b)‘{o if a=b
denote zero-one loss. Let
f(t, m(t))
(4) n(t) = log —————,
# )
where M(¢) is the sample mode of the ¢th sample and n = n; + .-+ + n,. Let

f(t, m(t))
f(t, &)

We shall call any function M, (-) which is % -measurable and satisfies A(m, M, =
min{A(m, g); g € R(% )} an isotonic modal regression of m(-). Since the total number of
observations is finite, it is clear that there is at least one such minimizing function.
Moreover, if the sample mode m(-) is isotonic, then M, = m because (5) achieves its
minimum value of 0 by setting g = m. The main reason for our choice of weight measure
(4) is the connection it provides between (5) and the likelihood: Since

(5) A(m, g) = f L(m(e), () dpa(®) = Timi [1 = Limiy (8(8)] log m——
T

A(m, g) = constant — log{[[}-1n;-A(£)},

it is apparent that any isotonic modal regression M, () will also be a restricted maximum
likelihood estimate of M(.). In this regard, one might also note that with p, and L as
defined, A(m, g) is proportional to the log likelihood of the parameters m(-) and g(-).
A would be precisely the log likelihood if we had used relative frequencies in defining
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f(t, g(¢)) in (2) (our procedure is invariant to multiplicative scaling of any of the & sample
frequency sets). It is important to observe that the loss function L is unusual in that it
does not depend at all on the magnitude of m(t) — g(¢). Instead, we judge closeness on the
basis of frequencies. This point is the key to the entire paper.

Simple properties of the estimator.

DEFINITION. Let & denote the class of all real-valued functions on 7. For any g, & €
F define

10, g@)) 1o, F(@, g@)

— 1 k 1oV = | Z T4 2o
d(g, h) = 7 Zi-t log R and D(g, h) =1 log A |

k

Here and in (4),% = log% = —log g = o for any a > 0.

With the equivalence definition in (b) below, the functions in F form a one-dimensional
set. To see this, consider the mapping g < (1/k) Y, log f (i, g(i)). Then d(g, h) is simply
the absolute difference of the images of g and A under this mapping. For other uses of such
mappings in isotonic regression, see Goldstein and Kruskal (1976).

The following properties are easily verified:

PROPOSITION 1. (a) M, is a restricted maximum likelihood estimator of M within the
class of discrete distributions.

(b) d and D are metrics on F provided we identify functions with the same log-
product: g is d- [ D-] equivalent to h if and only if d(g, h) = 0 [D(g, h) = 0].

(c) d(m, M) < d(m, g) for allg € R(U)

(d) d(m, g) = d(m, r) + d(r, g) for all g € R(U) if and only if r = M, (up to d-
equivalence).

(e) d(M, M,) < d(M, m)

(f) M, = M for all min{n;;j =1, ---, k} sufficiently large with probability one.

(g) d(g, h) > D(g, h) asmin{n;;j=1, ..., k) > o forallg, h € %

(h) d(M,, h) > D(M, h) almost surely as min{n;;j=1, ---, k} > o« for allh € .

It should be noted that convergence in the sup metric on & is not equivalent to
convergence in either the d- or D-metric. Indeed, it is possible to choose g and g, such that
f(¢, g.(t)) = 0 [F(t, g.(t)) = 0] for all ¢ but g.(t) — g(¢) uniformly in ¢, which yields
d(gn, 8) = @ [D(g&n, 8) = =]. R

In view of property (f), the asymptotic distribution of M, is uninteresting: a,-
suprer| M. (¢) — M (¢) | is degenerate at 0 in the limit for any a,. Thus, asymptotically, M,
is at least no worse than any other estimator, including an isotonic mean regression, even
when the population mean regression function and mode regression function M(¢) are
identical. The asymptotic distribution of the metric distances d(M,, M) and D(M,., M)
are similarly degenerate at 0. Thus, comparisons of estimators in terms of the relevant
metrics may be meaningful only in small samples. Some simulation comparisons are
presented in Section 7.

Use of our zero-one loss function in practice implies an all-out effort to maximize the
probability of a correct decision and an indifference to alternatives among erroneous
choices. Since the mode maximizes likelihood, zero-one loss, therefore, implies interest in
the mode as the objective of statistical inquiry (e.g., see related problems in Ferguson,
1967, page 51, problem 5; page 174, problem 1; page 180, problem 1, 2; page 190, problem
2). Conversely, interest in estimating the mode leads directly to the criterion of maximum
likelihood and thereby to the metric (5). Thus zero-one loss is the natural criterion for
modal regression.

But when may modal regression be preferred to conventional alternatives? First, one
may really want to know the mode rather than the mean or median. For example, one may
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suppose that patients are randomly assigned to K different treatments, ordered according
to their presumed efficacy. The response may be an ordinal categorical variable with
values ranging from “very negative reaction” to “very positive reaction.” Without arbitrary
coding, the mode is the only location parameter which makes sense here. Moreover, it is
of medical interest to know what the most frequent response to a treatment is. One expects
a trend in the modes of the K treatments which modal regression can estimate, even
though reversals in the trend of the sample modes may occur due to variability in treatment
results.

Second, one may set out to learn the location of a primary distribution, but there may
be present an unknown amount of contamination from a secondary distribution. Robust
methods are called for, and Section 7 suggests that modal regression performs well in these
circumstances.

Finally, even with continuous distributions, one may really be primarily interested in
the mode. For example, one may wish to know whether man’s “natural” lifespan has
increased since the Industrial Revolution. Available data suggest that mean and median
lifespan have increased—the former more than the latter. However, much of the increase
may be attributed to prevention of infantile death and cure of many of the former diseases
of middle age, without necessarily having lengthened the “natural” lifespan. Although the
latter concept is not entirely clear, it is evident that it is neither mean nor median lifespan.
If it is taken to be maximum lifespan, estimation will be subject to the large variability of
extreme values. We think a case could be made for thinking of it as the most frequent, or
typical, age at death. Then modal regression could examine the evidence for monotonicity
over time by means of the procedure of Section 4.

3. The algorithm. The algorithm for computing an isotonic modal regression that
we present below is first developed for the case of finite T and discrete P,. Subsequent
sections describe the modifications to the algorithm needed to accomodate the cases in
which T is infinite and/or in which P; is continuous.

Assume, then, that T is finite and P, is discrete. We have identified T with the set of
integers {1, 2, - -- , K}. Suppose that in the K samples that have been observed, N distinct
values have been observed, say C; < C; < ... < Cy. The data can then be represented as
the matrix of frequencies B, where

B,, = f(J, C.) = the number of occurrences of C, in the jth sample.

Thus, each column of B represents one sample, and within each sample larger observations
are represented by frequency counts in lower rows. Finding an isotonic regression, then, is
equivalent to selecting one element from each column such that (a) the values associated
with these elements are nondecreasing (which is the same as requiring the row number of
each selected element to be at least as great as that of the selected element in the previous
column) and (b) the product of the selected elements is maximized over all such choices
of cells. An example is given in Table 1. In the example, the isotonic regression does not
coincide with the sample modes from the five populations.

A sequence of cells (one from each column) with nondecreasing row numbers is called
an isotonic path. In an N X K frequency matrix, there are N ;} I_( 1— 1
paths. Nevertheless, our algorithm requires computation time that grows only as O (KN).
This computational efficiency is achieved through dynamic programming.

Suppose that elements from columns 1 through K — 1 of B have been selected, and that
this partial path ends at position (i, K — 1). It is a simple matter to complete the path
optimally—just select that cell in column K and in row i or below which has the largest
value. Thus, from any cell in column K — 1 we can easily determine both the optimal path
completion and the contribution of each such path to the maximum product. In particular,
the contribution of columns K — 1 and K to the overall product is simply the product of
the two elements selected from the two columns. The (partial) product of element (i, K

possible isotonic
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TaBLE 1 TABLE 2
Reading scores at each of five grade levels. A possible frequency
(The data are artificial). The isotonic modal matrix
regression is indicated by the boldface array
elements. 1100 0
0]0 1 0
. Grade level 3 2 3 0
Readinglevel g o 19" 11 12 3 3 8 0
Remedial 8 5 4 1 3 g é ? 1 §
Jr. High School 3 4 2 2 4 0 0 0 0ls5
High School 6 6 4 14 5 o 0 1 ol1
College 3 5 10 4 8

— 1) and its optimal completion in column K might be called the potential for the (overall)
optimal path to pass through element (i, K — 1). At this point we can “back up” to column
K — 2 and consider optimal path completions from each element in that column. For each
element i in column K — 2 we select that element i’ in column K — 1 whose optimal
completion (previously computed) has largest product frequencies, that is, whose potential
is greatest. This process is then repeated until the potentials for the first column have
been computed, at which point the maximal product is simply the largest potential from
elements in column 1, and the path which corresponds is obtained by retracing the steps
outlined above.

The following algorithm implements these ideas, with a few refinements to speed
computation. One of these refinements implements the observation that all N completion
potentials for column ¢ may be found with a single pass through column ¢ + 1: start in row
N of column ¢ + 1 and, working upwards, keep track of the partial maxima of the column
(Steps 2 and 3). Moreover, the location of the maximizing potential may be stored in the
path matrix (Step 4). Not until Step 5 is it necessary to multiply the completion potentials
by the B,.’s to obtain the potentials for column c.

ArLcoriTHM ISOTONIC.

Step 1. [Initialize.] For i =1, 2, ..., N set potential (i) < B, ;. Set c «— K — 1.

Step 2. [Initialize current column.] Set r « N — 1, index « N, path(N, ¢) « N, and
maxpot « potential (N). Maxpot contains the largest potential from column ¢ + 1 at or
above r, the current row; the corresponding row is contained in index.

Step 3. [Is current row potential larger than those above?] If potential(r) > maxpot
then set index « r and maxpot < potential(r).

Step 4. [Record optimal path completion]. Set path (r, ¢) « index,r «<r — 1. If r>0
then go to Step 3.

Step 5. [Record column ¢ potentials.] For i = 1, 2, ..., N, set potential(i) « B, -
potential(path (i, c)). Set ¢ « ¢ — 1. If ¢ > 0 then go to Step 2.

Step 6. [Recover isotonic paths g(-).] Select i so that potential (i) = potential (i’) for i’
=12 ...,N.Setg(l) «1i,g(t) —path(git—1),t—1)fort=2, ..., K.

The proof of the correctness of the algorithm simply involves backward induction to
show that after each time Step 5 is performed, the partial paths (pointed to by the path
matrix) are indeed optimal paths from column ¢ through the matrix of the subproblem
consisting only of columns ¢ through %. The details are omitted.

A further refinement, not implemented in ISOTONIC, might be considered for fre-
quency matrices B when large upper right and lower left corners of B are zero. An example
is Table 2. There, it is clear that the isotonic modal regression must be contained within
the dark upper and lower boundaries. The preprocessing necessary to find the lower
boundary is quite simple: if the boundary is to contain row r of column ¢, then it should
also contain the first nonzero row r’ = r of column ¢ + 1. Analogously for the upper
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v
56

FiG. 1. Directed graph corresponding to the isotonic modal regression problem of Table 1. The cost
of traversing the edge from V, , to V. ;. is —log By, ,+1, except that the cost to travel from V5 to Vs
is zero for all i.

boundary. We have found this refinement useful in applying the algorithm to continuous
P te

The analysis of algorithm ISOTONIC is also straightforward. Step 1 is executed once
and has N + 1 assignments. Step 2 is executed K — 1 times and has 4 assignments and one
multiplication. Step 3 is executed (K — 1)(/N — 1) times, has one comparison and at most
two assignments. Step 4 also is executed (K — 1)(IN — 1) times, has two assignments, one
multiplication, one decrement, and one comparison. Step 5 occurs K — 1 times and involves
3N multiplications, N + 1 assignments, one decrement, and one compare. Step 6 is done
once and implies N — 1 compares, at most K + N assignments, and K — 1 multiplications
and decrements. Multiplication counts above include those needed for subscript compu-
tations. If multiplication is the dominant expense, the procedure requires (4N + 1)(K — 1),
however all of the computations are O (KN).

Ties may occur in Step 6 and any method of breaking ties is acceptable; the most easily
implemented is simply to select the first path encountered which satisfies the conditions.
Indeed, ISOTONIC incorporates this method explicitly in its Step 3.

When K is large (it does not matter that N be), or if the elements of B are very large,
overflow or loss of precision may be a problem. Replacing the data by their logarithms and
changing the multiplication in Step 3 of the algorithm to addition remedies the problem.
Of course, the logarithm of the maximal product is obtained instead of the product itself.
In this format our algorithm bears a family resemblance to “sequence comparison”
algorithms based on Levenshtein distance (Levenshtein, 1965). Sequences of letters, protein
molecules, computer codes, phonemes, etc., may be compared with similar sequences in
terms of the minimum weighted number of certain elementary transformations necessary
to change one sequence into another (the Levenshtein distance). “Back up” dynamic
programming algorithms exist which permit the efficient computation of this minimum
distance. In this context, our algorithm could be thought of as transforming the sample
modal sequence into the minimum-distance isotonic sequence via row substitutions. Here,
of course, only the beginning sequence (the sample modal path) is known and the target
sequence must be searched for.

The problem of computing an isotonic modal regression can be reformulated as that of
finding the shortest path from a single-source through a directed graph. The corresponding
graph has NK + 2 vertices, all but two of which correspond to elements of B. The two
extra vertices represent a starting vertex and a terminal vertex shared by all paths. The
edges of the graph connect points v,, to vy ,+1 where i’ = i. The starting vertex is voo and
the terminal vertex is vn.1,x+1. The cost associated with the edge from v, ; to v, ,+1 is simply
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—log F,+1, except all edges to vn+1,x+1 have cost zero. Such a graph is displayed in Figure
1. The graphs which correspond to isotonic modal regression problems display a special
structure which was exploited in the construction of our algorithms—all of the edges
proceed downward and to the right. General procedures for finding shortest paths from
single-sources have time complexity of O (KN? log KN); our algorithm is O (KN). For a
general discussion of shortest path algorithms, see Aho, Hopcroft, and Ullman (1974).

4. T infinite, X, continuous. In this section, we shall consider estimation of an
isotonic modal regression function #(¢) when ¢ lies in the closed interval T = [0, 1] and the
distributions of X, are continuous. The main problems we encounter here arise from the
difficulty of estimating the mode of a continuous random variable and the manner in which
the data points become available to us. By assuming continuity of the modal regression
6(t), we may hope that observations taken near ¢ will behave somewhat like observations
taken at ¢. If so, we may estimate 6(-) by adapting versions of modal estimators previously
considered for a single random variable (e.g., Parzen, 1962; Chernoff, 1964; Venter, 1967).
Of course, a good estimate will require that the observations near ¢ become available to us
fairly rapidly. And because we are estimating the entire curve 6(-), observations must be
fairly dense everywhere in 7.

The estimate. The essential idea in constructing the estimate for the continuous case
of this section is to reduce the problem to the case of Section 2 by discretization. We
construct a gridwork of cells in the plane and record the number of data points lying in
each cell. Applying the algorithm of Section 3 to the matrix of counts just derived, we
obtain an optimal path of cells. The estimate is then obtained by constructing a monotone
nondecreasing curve which passes through each cell of the optimal path of cells. Details
follow.

Choose an integer m = m(n). Let = ¥(m(n)) be the set of all squares of the form S
=@/m, i+ 1)/m]X (J/m, (Jj+1)/m],i=1,2,---, m—1;j=0,%1,+2, ...;0or S =
[0, 1/m] X (j/m, (j + 1)/m]. When plotted in the plane, the squares in S partition [0, 1]
X (—o0, ) into a finite number of columns %, - - -, %, of squares and an infinite number
of rows of squares. Given observations (¢, x:), - - , (£, x:,), we record in each square the
number of observations in the square. The algorithm of Section 3 is then applied to the
matrix of recorded counts to select a path M, ---, M, of m squares—one square from
each column of the matrix—having the greatest product of recorded counts among all
nondecreasing paths. (It is not necessary that M, .-, M,be unique.) For our estimated
modal regression, we choose a function b, (¢), 0 <t = 1, which is continuous and monotone
nondecreasing and whose graph contains at least one point from each of the m squares M,

, M, constituting our optimal path. For our purposes (and in particular, for con-
sistency), it does not matter which of the possible functions 8, (- ) satisfying these conditions
is chosen, except that for consistency we require that (0, 6,(0)) € M, and (1, 6,(1)) € M,.
This requirement will allow us to assert uniform consistency of b, (¢) for 0 == ¢t = 1. Without
some kind of restriction on 6, () at £ = 0 and ¢ = 1, we could assert uniform consistency
only for some subinterval [a, b], 0 < a < b < 1 as in Hanson, Pledger, and Wright (1973)
and Robertson and Wright (1973), (1975). (For example if the range of X, is [0, 1] for all ¢
and the population modal regression is #(¢) = 1/4 + 1/2 t, then the estimate 8, (¢) which
connects centers of M, - -+ , M,, but is tied down at (0, 0) and (1, 1) will fail of consistency
att=0 and £t = 1.) An example of an estimate 9 (-) meeting our conditions’ is 0.(t) =
0 1/2m)for0<t<1/2m,0,(t) = b, (1-1/2m)forl —1/2m < t =<1, and otherwise

8, (t) is the polygonal path connecting centers of the optimal squares M, -, M,.

Of the three approaches to modal estimation mentioned earlier (Parzen, Chernoff,
Venter), our approach here is closest in spirit to that of Chernoff, who estimates a
univariate mode by a point from an interval of given length containing the most observa-
tions. In principle, there is no reason why we could not adapt the methods of Parzen and
Venter. For example, to use the Venter-type estimator, one could determine the columns
%, - - - , 6n by partitioning the ¢-axis [0, 1] at every (n/m)th observation; and the horizontal
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sides of boxes within each column would be drawn at every kth observation (from bottom
to top of the column). Since all boxes would contain the same number of observations, the
algorithm of Section 3 could then be applied to select a nondecreasing path of boxes which
minimizes the product of the areas of the boxes. To adapt the Parzen estimator, choose
a bivariate kernal K (¢, x) and sequences h; = h,(n), hs = h:(n) and define

t— t X — Xt
h hz

F(t,x)=(nhh) ' T K(

in the spirit of Cacoullos’ (1966) multivariate density estimator. Then choose the contin-
uous, nondecreasing path {(¢, F (¢, x)); 0 < ¢t = 1} which maximizes

1
exp{J' log F(t, x) dt}
0

(cf. discrete analog in Section 2).

It may also be possible to combine the three methods of modal estimation. For example,
we might use the Chernoff fixed-interval method to divide [0, 1] into columns and then use
the Venter variable-box method on the data within each column. The method of fixed
squares we have chosen for this section has the advantages of simplicity and easy
applicability.

We now formalize the mathematical assumptions for this section.

ASSUMPTIONS.

1. T = [0, 1]; the finite dimensional distributions of the stochastic process X are indepen-
dent. This is called an independent observations model by Brunk (1970).

2. For each ¢, X, has a distribution function P;(-) which is absolutely continuous with
respect to Lebesque measure on the real line and has a uniquely defined density p(-).

3. For each ¢, X, has a unique mode 6(¢) : p,(6(¢t)) > p.(x) for all x # 6(¢); and V e >0, 3
positive § (independent of ¢) such that |§(¢) — x| > e = p,(6(¢)) > p:(x) + &.

4. The family { p,(8(¢) — x); 0 = t < 1} is equicontinuous at x = 0.

5. 6(t) is a monotone, nondecreasing, continuous function of ¢.

The full force of equicontinuity (Assumption 4) is not used in the sequel. We require
that the P, probability content of intervals close to 8(¢) be uniformly (in ) greater than
the P, probability content of equally long intervals far from 8(¢). In conjunction with the
uniformity condition on § in Assumption 3, equicontinuity yields this but eliminates many
pathologies that Assumption 3 alone permits.

We suppose that the statistician has available the first n observations in the sequence
{(t,, X.);t=1,2,--. } where0=<¢, <1, and Xi, X;, - - - are independent with X; distributed
as P,. At times the statistician will be able to control the points ¢, £, - - - at which he
collects data; at other times he will be at the mercy of chance. For example, the data may
become available according to a jointly distributed random variable (7, X). In this case,
the observations are thought of as a realization of N i.i.d. copies of (T, X) where T =t is
observed according to the marginal distribution of T and then X, = x, is observed according
to the conditional distribution of X given T = ¢ (see Brunk, 1970). Regardless of the
mechanism, we must have “enough” observations in each subinterval of [0, 1] to estimate
8(¢) over that subinterval. At least three distinct definitions of “enough” have been
considered in the literature in other regression contexts:

(i) {t1, t2, --- } is dense in [0, 1].
(ii) For every nondegenerate interval J C [0, 1],

lim inf,_,.n™"' ¥y I(t) > 0.

(iii) {¢i, t2 ---} is a realization of a sequence of ii.d. variables distributed as T which
assigns positive probability to every nondegenerate interval of [0, 1].

In most regressions, the ¢’s are considered fixed, nonrandom points and the analysis is
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conditional on the #’s. We now assume explicitly that ¢, ---, ¢, are fixed and known at
this stage of the analysis, even though they may have been generated earlier as observations
on a random 7. Before we present our definition of “enough,” which is more convenient
for our purposes than (i), (ii), or (iii) above, we introduce some useful notation.

DEFINITION 1. Let A be any set in the plane. Given observations (¢, x1), « - - , (tr, X»),
define

NA)=N,(A) =Y 1 LL(t, X)), QA)=@.(4)=3Y, P, (A,)
where A, = {x; (£, x) € A} is the t,-section of A4,
n= Yt Lymovom(t), j=1, -+, m.

Rmin = MIn{ny, <+, Npm}.

Note that N(A) is the sum of non-identically distributed Bernoulli variables and so is not
quite binomial, but that E{N(A4)} = @(A).
We shall suppose that the following two additional assumptions hold.

ASSUMPTIONS.
6. Yo [m(n)] A m) < 0 forall 0<A<1.
7. m(n) — oo.

Since nmin =< n/m(n) and Assumption 6 requires m(n) = o (fmin), then m(n) is at most
o (n'/?) under our assumptions. In fact, if the points {z;} become available at a “uniform”
rate, then nmin = n/m(n), so a choice of m(n) = O(n'?/log n) but m(n) — o would satisfy
Assumptions 6 and 7. It should be noted that the latter are less general than (i) above,
more general than (iii) (if m (r) = O (n®) for 0 < a < 1/2), but neither more nor less general
than (ii).

THEOREM 1. Under Assumptions 1 — 7, supo<i<1|8.(t) — 0(¢) | — 0 almost surely.

The proof of the theorem proceeds through a series of lemmas, but the idea is relatively
simple. Associated with each nondecreasing path of squares—one square from each column
of squares—is the value which is the product of the numbers of observations in the
constituent squares of the path. Roughly, the greater the probability content of the path,
the greater its product-count should be. Thus we expect to find the largest product-counts
associated with paths lying near the true modal regression, where the concentration of
probability is greatest. However, if square size decreases too rapidly as n grows, observed
product-counts will be too unstable. Assumption 6 ensures that square size decreases at an
appropriate rate. The idea of the proof, therefore, is to show that a path deviating from
the true modal regression by more than ¢ at any point has a lower expected product-count
(thus ultimately a lower observed product-count) than a reference path which we shall
choose uniformly within ¢ of the modal regression.

The first step is to reduce the infinite collection of squares to a manageable finite
number of rectangles by selection and amalgamation. Fix j and focus on column %;. Choose
r=r,s=s,and ur=up, k=0,1, ..., r;such that

f A ={SE L (t0()ES forsomet j/m<t=< (j+1)/m)}
p,=n;' min{Q(S); S € o)

— 0 = <UY< o <U g <U =0

O Ry Ui G D/m] X g )]

& corresponds to ¢ as in Assumption 3

L Q(Ry) = n,p,(l —g)(s -2 '=nrt, k=0,1,.--,r— 1L
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LEMMA 1. Let v > 0, r = r; and choose an integer s = s; <r;.

. . NG leJ) - | < . _§ _oy-lg_ .2 3
P[mmOSer s Q(U,ﬂ le,) T <e ]_rexp[n,p,<1 2)3(3 2) 7 {=»*/2+ O )}]

Proor. For A > 0, the probability in question is less than or equal to
NiZ5 PIN (U Re)) < e™ Q(UEES Ryj)]
= Y725 exp{—Ae QU Ry)YE[exp{—A N(ULS™" Ryj)}]

= exp{—)\e"”njpj(l - g )s(s - 2)"1}

YIS, [1 = Py((UEET! Raj)y) + Po((UEST! Rey)y)e™]

8
= exp{—}\e‘”njpj(l -3 )s(s - 2)"'} YiZ5 exp{(e™ — QUL Ry))).
In obtaining this result, we have used the familiar inequality P(Z < a) =< exp(Aa)-
Elexp(—AZ)], A > 0, the Bernoulli moment-generating function, and the inequality 1 + z

=< exp(z). Setting A = » in the final expression and simplifying, we obtain the upper bound.

LEMMA 2. Let v> 0.
N(S) - _ 8 v?
PI:mln(sEq/] QS)=npi(1-8) T~rar Q(S) <e ] <pj ‘exp[njp,<1 b )S(S —-2)” {'—2— + O(y3)}]

Proor. To obtain this result, observe that {S € «; @(S) = n,;p;(1 — §)} contains at
most p;' member squares S and apply the argument of Lemma 1.

LEmMMA 3. Let {Tl, «++, Ty} be a path of sets such that either Q(T;) = n;p,;(1 — §)
and T, € S or Tj = U™ Rk, for some i. Suppose max r; = O(m(n)). Then

{IT7=: N(T)/(Q(T;)}/™ — 1 almost surely.

ProoF. Let » > 0. By Lemmas 1 and 2,

N s
P[{ :l=l Q:Tj;} <e ] <XYir exp[n.lpj<1 - '2')8(8 -2) { 3 + O(VS)}iI

+X7 p; exp[n;p,-(l — 8)s(s — 2)“{% + O(v”)}}

From Assumptions 3 and 4 it follows that for large n there is a constant ¢ > 0 such that p,
> ¢/m for all j. Replace p; by ¢/m, n; by Rmin, and set A = exp{—c(1 — §)»?/2} in the above
expression. Assumption 6 and the Borel-Cantelli lemma now yield lim inf, . [TIN(T})/
Q(T;)]/™ = 1 a.s. To get the lim sup = 1, observe that analogues of Lemmas 1 and 2 may
be obtained for P[max(expression) > e”]. The proofs use P[Z > a] =< exp(—Aa)E[exp(AZ)]
but are otherwise the same as for Lemmas 1 and 2, and the same probability bounds are
obtained.

We now choose a particular reference path of squares. For each j =1, .-, m, let E; be
any member S € ;. We shall use the path {E, ---, E,.} to prove consistency by showing
that (for large n) any other path deviating from the modal regression by more than ¢ has
smaller product-count. First we note some elementary properties:

ProrosiTiON 1. {E,, ---, E,} is a monotonically nondecreasing path.
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ProposITION 2. {Ei, .-, E,} lies entirely within the band {(0(t) — ¢, 0(t) +¢); 0 < ¢
=< 1} for all large n.

ProposiTioN 3.  {[[7-1 N(E,)/Q(E;)}*™ — 1 almost surely.

The last of these propositions follows from Lemma 3.
We are now ready to prove Theorem 1.

Proor oF THEOREM 1. Consider a monotonic nondecreasing random function én(t), 0
= t = 1, with associated path of squares {Si, ---, Sn; S, € 4}, for which

(7) suposi<1 | 0(¢) — £u(t) | > 3¢
for a particular n and realization of é,.(t). For j =1, ---, m, associate T; with S, in the
following manner:
S it QS)=np(1—9)
(8) T, = Ui Ry, if Q(S,) <njp;(1 —8) forsome i,

where R,, ---, Ri+s-1; coverS,.

If Q(S)) < n,p,(1 — 8), then since n,p;(1 — §/2) = (s — 2)Q(Ry,) we may always find s
consecutive R;/’s to cover S,.
Provided max,r; = O(m), we have

) {II7=1 N(T})/Q(T})}"/"— 1 almost surely

by Lemma 3. But p; > ¢/m uniformly in j for some ¢ > 0 by Assumptions 3 and 4. And
from (6) we have r,/(s; — 2) = p,; (1 — §/2)~' = O(m) uniformly in j. Thus by choosing s,
to be a large but universally bounded number (in j and n), we obtain (9).

Since 6(-) is uniformly continuous on [0, 1], there is some interval on which the
minimum (Euclidean) distance between 6(-) and é,.( -) is no less than 2e. The length of this
interval may be bounded below independently of n and of the realization of f,,(-). Ifnis
sufficiently large, the path of sets {T', --., T} associated with é,.(~) will then contain a
block {T.,, ---, T3} of consecutive sets whose minimum distance from 6(-) is at least e.
Thus for each realization of £,(-) satisfying (7) the proportion of (T4, ..., T} lying at
least & from 6(-) is at least (8 — a)/m, which may be bounded below by a > 0, where a is
free of n and the realization.

It follows from Assumptions 3 and 4 that, for large n,

) .
Q(Tl) < (1 - E)Q(E/)r J T 0 vy, B
Hence,
s\
II7-: &T) < (1 - §> 7-1 Q(E)).
If (7) holds infinitely often, then

(10) lim inf, o {[[71 N(T})/Q(E,)} /" < (1 _ g) <1

Using Proposition 3 with (10), we have
(11) lim inf, .. ([} N(T})/N(E,)}" < 1.

Recall that {M,, - - -, M.} is the monotonic path of squares with maximum product-count.
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So [[%-1 N(E;) < [[%1 N(M,) and N(S,) < N(T}),j = 1, - - -, m because T} covers S;. Thus
from (11),

(12) lim inf, .. {([]7: N(S,)/N(M,)} /™ < 1.
So the path (S, ---, S,} associated with £,(-) is nonoptimal. Hence b(-) may satisfy (7)

only on a set of probability zero.

5. Tfinite, X, continuous. The case of T finite and X, continuous may be treated by
combining the methods of Sections 2 and 4. Let T'= {1, 2, - - -, k}. Mirroring Section 4, we
divide the real line into intervals of the forms S; = [i/m, (i + 1)/m],i =0, £1, £2, .. .. Let
{Xj1, - -+, X;n} be a random sample from the jth population and suppose the samples are
independent for j =1, ..., k. Let

By = Yy, Is,(Xe)

be the frequency of interval S; in the jth sample. Then apply the algorithm of Section 3 to
the matrix of frequencies {B;}. The estimator 6,(j) is constructed by choosing a point
from each interval of the algorithmic path of intervals so that 8,(j) < 8.(j + 1), j =1,
e,k — 1.

Consistency is easier to establish than in Section 4. Because the details are elementary
modifications of those of Section 4, we omit proofs and merely state the result.

THEOREM 2. Let p,(-) be the density of the jth population with respect to Lebesque
measure. Suppose

(a) For each j there is a unique mode 6(j):Ve > 0, 3 positive 8 such that | (j) — x|
> e = p,(0())) > pi(x) + 8,

(b) p,(-) is continuous at 0(j) for each j,

(c) 8(j) is a monotone nondecreasing function of j,

(d) Ty nA™RCe ) < oo for all 0 < A < 1.
Then max;-1,....x | 6.(j) — 6(j) | = 0 almost surely.

The conditions in Theorem 2 are freer than those of Theorem 1 of Section 4. Although
equicontinuity and the uniformity of § follow from (b) and (a) by the finiteness of T’ (d)
allows considerably more latitude than Assumptions 6 and 7 of Section 4.

It is interesting to consider an alternative scheme based on the modal estimator of
Venter rather than that of Chernoff. Choose r,(n) =r;, j =1, - .-, k, and divide the jth
sample into n, — r; + 1 intervals at every r, th order statistic. Apply the algorithm of Section
3 to the matrix of inverse interval lengths. (Counts are no longer used because they are all
the same for the cells within a column. Obvious modifications to the algorithm will be
necessary because the “cells” in adjacent columns may overlap as well as those in the
same column.) The isotonic modal regression 6,(7) is chosen from the algorithmic solution
path of cells. This method is advantageous with moderate sample sizes because it auto-
matically “conditions” the matrix for the algorithm by forcing the cell entries to be based
on a reasonable number of data. Also, consistency and rates of convergence follow
immediately for sup,-1,....x | 6.(j) — 6(j) | from Sager (1975).

6. Examples and computational results. In order to illustrate our procedures, we
performed several small scale Monte Carlo experiments for both continuous and discrete
cases. The simulations that we present are for illustration only; although the results that
we present here are typical of other runs that we have made, we base no claims concerning
the small sample behavior of these estimators on them.
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In the case of T finite, P, discrete, we chose k£ = 9 and four different distributions for P,:

A: X, ~ B(10, t/10),

B: X, ~ .90 B(10, ¢/10) + .10 B(10, 1 — ¢/10),
C: X, ~ .75 B(10, t/10) + .25 B(10, 1 — ¢/10),
D: X, ~ .33 6, + 67 B(10, 1 — ¢/10),

where B(n, p) represents the binomial distribution with probability of success p and n
trials, and where 8. represents the probability measure degenerate at x. A single trial
consisted of generating 9m independent observations: m observations on each of Xj, - - -,
Xs. 100 trials were performed for each value of m that we used (m = 5, 12, and 25) and each
distribution A, B, C, D. For each trial we compared the isotonic modal regression estimator
to three competitors in terms of squared-error loss and zero-one loss. The competitors
were the isotonic mean (see Barlow, et al, 1972), the nonisotonic vector of sample means,
and the estimator which rounds the isotonic mean to the nearest integer (that is the least
squares estimator under the constraints of ordered and integer-valued solutions—see
Goldstein and Kruskal, 1976).

The results of the experiments are reported in Tables 3 and 4. Note that for each
distribution A, B, C, D, the true modal path is (1, 2, 3, 4, 5, 6, 7, 8, 9). In case A the modal
path and the path of means coincide, so we expected the modal estimator to do poorly in
small samples. In cases B, C, D, the primary mode is contaminated by a secondary mode
running in the opposite direction. This kind of contamination may occur when failures are
erroneously tallied as successes in the underlying binomial experiment. In case D, the path
of means is actually decreasing, so the mean estimators should perform poorly. Tables 3
and 4 bear out our expectations. Note that even in the presence of a small amount of
contamination, as in experiment B, and even with a sample of size m = 5, the isotonic
modal estimator is doing quite well compared to the mean estimators, particularly with
respect to zero-one loss. This situation becomes more pronounced as the amount of
contamination and/or sample size increases. The fact that the average losses incurred by
the modal estimator were affected only slightly by the amount of contamination in A, B,
C whereas the losses of the mean estimators were highly unstable suggests that the isotonic
modal regression may enjoy some robustness.

For the case in which P, is continuous, seven distributions were studied:

E: X, ~ N(, 1),
: X~ 9N, 1) +.1 N10 - ¢, 5%,
: X, ~ .75 N(t, 1) + .25 N(10 — ¢, .5%),
: X, ~.8N(t 1) + .2 N(t+3,.5%,
X, ~ .8 N(t,1) + .2 N(¢ + 3, .75%),
X, ~ .75 N(t, 1) + .25 N(¢ + 3, .75%), and
K: X, ~.75 N(t, 1) + .25 N(¢ + 2, .75%),

N Qo

where N(p, 02) is the normal distribution with mean u and variance o>. We again chose &
=9 (t=12 ---,9); a single trial consisted of 9m independent observations—m
observations for each ¢; 100 trials were performed for each value of m (5, 25, 100) and each
distribution E — K. Three estimators were compared: the isotonic modal regression, the
isotonic means, and the (nonisotonic) vector of sample means. To compute the isotonic
modal regression, it is necessary to discretize the problem as in Section 4 by constructing
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TABLE 3
Squared-error loss, frequency weights. Discrete distributions. Average losses and standard errors
based upon 100 repetitions with k = 9 populations and m observations per population.

m=5 m =12 m =20
A. Isotonic mode 8.75 (.43) 6.26 (.33) 4.82 (.20)
Isotonic mean 2.52 (.11) 1.32 (.06) 81 (.04)
Least squares 3.11 (.15) 1.78 (.10) .74 (.09)
Mean 3.19 (.15) 143 (.07) .83 (.04)
B. Isotonic mode 10.04 (.61) 6.31 (.30) 526 (.22)
Isotonic mean 6.36 (.36) 5.07 (.30) 397 (.19)
Least squares 7.19 (.41) 598 (.35) 4.62 (.23)
Mean 9.54 (.51) 6.14 (.41) 432 (.21)
C. Isotonic mode 10.63 (.70) 6.77 (.34) 5.79 (.30)
Isotonic mean 18.60 (1.02) 17.04 (.66) 17.00 (.51)
Least squares 19.33 (1.08) 18.10 (.78) 17.99 (.57)
Mean 26.75 (1.65) 19.92 (.81) 18.74 (.60)
D. Isotonic mode 3.84 (.60) 94 (.34) .22 (.08)
Isotonic mean 57.02 (.61) 59.85 (.22) 60.14 (.10)
Least squares 57.34 (.71) 59.97 (.35) 59.88 (.15)
Mean 115.09 (2.93) 115.23 (2.04) 108.46 (1.50)
Number of times out of 100 isotonic mode had smaller loss than isotonic mean.

Experiment A 2 3 0

B 26 32 33

C 78 95 98

D 100 100 100

TABLE 4

Zero-one lcss, log frequency weights. Discrete distributions. Average losses and standard errors
based upon 100 repetitions with k = 9 populations and m observations per population.

m=5 m =12 m = 20
A. Isotonic mode .087 (.0046) .060 (.0031) .042 (.0021)
Isotonic mean .041 (.0013) .030 (.0010) .022 (.0007)
Least squares .033 (.0018) .020 (.0014) .008 (.0010)
Mean .048 (.0018) .031 (.0011) .023 (.0008)
B. Isotonic mode .102 (.0067) .058 (.0031) .046 (.0024)
Isotonic mean .113 (.0061) .110 (.0053) .094 (.0033)
Least squares .116 (.0072) .114 (.0063) .094 (.0042)
Mean .149 (.0079) .124 (.0067) .099 (.0036)
C. Isotonic mode .096 (.0056) .054 (.0028) .048 (.0026)
Isotonic mean .270 (.0132) .273 (.0089) .284 (.0070)
Least squares .281 (.0146) 291 (.0105) .304 (.0083)
Mean .300 (.0125) .297 (.0095) .304 (.0079)
D. Isotonic mode .384 (.0413) .061 (.0174) .009 (.0023)
Isotonic mean 1.116 (.0128) 1.071 (.0040) 1.070 (.0025)
Least squares 1.177 (.0139) 1.124 (.0042) 1.111 (.0021)
Mean .780 (.0228) .684 (.0143) .702 (.0108)
Number of times out of 100 isotonic mode had smaller loss than isotonic mean.

Experiment A 17 10 19

B 58 82 91

C 92 100 100

D 91 98 100
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TABLE 5
Squared-error loss. Continuous distributions. Average losses and standard errors based upon 100
repetitions with k = 9 populations and m observations per population.

m=5 m=12 m = 20
E. Isotonic mode 593 (.24) 2.50 (.10) 1.44 (.07)
Isotonic mean 1.62 (.07) .35 (.02) .09 (.00)
Mean 1.75 (.08) .35 (.02) .09 (.00)
F. Isotonic mode 6.55 (.28) 2.60 (.12) 1.62 (.07)
Isotonic mean 6.13 (.41) 3.61 (.16) 2.66 (.07)
Mean 8.33 (.58) 3.75 (.18) 2.66 (.07)
G. Isotonic mode 758 (.37) 3.16 (.15) 1.90 (.09)
Isotonic mean 16.90 (.97) 16.38 (.49) 15.70 (.27)
Mean 22.93 (1.52) 17.22 (.54) 15.80 (.28)
H. Isotonic mode 7.83 (.44) 2.94 (.13) 1.81 (.08)
Isotonic mean 6.52 (.32) 3.98 (.12) 3.33 (.06)
Mean 7.63 (.37) 4.00 (.12) 3.33 (.06)
I. Isotonic mode 7.69 (.44) 3.24 (.23) 2.00 (.12)
Isotonic mean 6.65 (.30) 4.19 (.12) 3.41 (.05)
Mean 744 (.31) 4.21 (.13) 3.41 (.05)
J. Isotonic mode 10.63 (.82) 3.26 (.18) 2.14 (.10)
Isotonic mean 9.15 (.42) 5.92 (.16) 5.31 (.07)
Mean 10.19 (.46) 5.95 (.16) 5.31 (.07)
K. Isotonic mode 7.42 (.46) 3.59 (.19) 2.43 (.12)
Isotonic mean 442 (.18) 2.43 (.08) 1.97 (.03)
Mean 4.87 (.19) 2.43 (.08) 1.97 (.03)
Number of times out of 100 isotonic mode had smaller loss than isotonic mean.

Experiment E 0 0 0

F 48 74 92

G 84 100 100

H 42 74 95

I 44 70 90

J 46 86 100

K 20 29 45

a grid. Rather arbitrarily, we spaced grid lines evenly 1.84, .62, and .28 units apart
(beginning at —4) for m = 5, 25, 100, respectively. The modal path was estimated by the
midpoints of the cells selected by our algorithm from the grid-matrix of frequency counts.
The results are presented in Tables 5 and 6. Note that for most of the distributions £
— K, squared-error loss and log-likelihood ratio loss (the latter being the natural analog of
our zero-one loss function) will perform similarly, since they are proportional to each other
in case E and not vastly different in the other cases. Distributions E, F, G are the
continuous analogues of A, B, C. We expected the isotonic mode to do poorly in E. But
even with a small contamination and small sample size (case B, m = 5), the modal
estimator is almost as good as the isotonic mean and improves rapidly thereafter. In
distributions H — K the contamination comes from a string of secondary modes running
“parallel” to the primary modes rather than opposite the primary trend as in E, F, G.
(Actually, K is unimodal with a large “shoulder” on the right.) Although this sort of
contamination appears on the surface to be less severe than for E, F, G, the pattern is the
same for H, I, J: for even the smallest sample sizes, the isotonic modal estimator does as
well as the mean estimators and for moderate and large samples does very much better.
Copies of the programs used in the simulations are available from the authors.
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TABLE 6
Log-probability ratio loss. Continuous distributions. Average losses and standard errors based
upon 100 repetitions with k = 9 populations and m observations per population.

m=25 m =12 m = 20
E. Isotonic mode .329 (.0132) .139 (.0053) .080 (.0036)
Isotonic mean .090 (.0039) .019 (.0009) .005 (.0002)
Mean .097 (.0044) .009 (.0009) .005 (.0002)
F. Isotonic mode .359 (.0138) .148 (.0066) .093 (.0040)
Isotonic mean 342 (.0225) .201 (.0090) .148 (.0038)
Mean .463 (.0317) .209 (.0102) .148 (.0039)
G. Isotonic mode .386 (.01563) 177 (.0072) .110 (.0049)
Isotonic mean 927 (.0532) 908 (.0271) .871 (.0150)
Mean 1.097 (.0598) .954 (.0299) .876 (.0153)
H. Isotonic mode .388 (.0169) .163 (.0070) .100 (.0043)
Isotonic mean .337 (.0146) .221 (.0066) .185 (.0032)
Mean .360 (.0137) .221 (.0067) .221 (.0032)
I. Isotonic mode 371 (.0143) .166 (.0074) .105 (.0044)
Isotonic mean .328 (.0129) 226 (.0064) 187 (.0029)
Mean .351 (.0125) .227 (.0065) .187 (.0029)
J. Isotonic mode .394 (.0144) .170 (.0081) .116 (.0051)
Isotonic mean .399 (.0136) 312 (.0076) .287 (.0036)
Mean 407 (.0122) .313 (.0076) .287 (.0036)
K. Isotonic mode 251 (.0013) 125 (.0049) .088 (.0036)
Isotonic mean 129 (.0040) .088 (.0026) .077 (.0012)
Mean .139 (.0041) .088 (.0026) .077 (.0012)
Number of times out of 100 isotonic mode had smaller loss than isotonic mean.

Experiment E 0 0 0

F 46 72 90

G 88 100 100

H 46 74 95

1 43 70 92

J 48 87 100

K 8 23 49
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