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A CHARACTERIZATION PROBLEM IN STATIONARY TIME SERIES

By Eric V. SLup
University of Maryland

If a strictly stationary process {Z:} has residuals Zi+1 — Y% ax,Z;
independent of (Zi, ---, Z;) for all & = m, it is shown that the process is
Gaussian or degenerate or m-step Markovian. Generalized (nonlinear) auto-
regressive stationary processes are defined and partially characterized.

1. Introduction. In standard presentations (e.g. Box and Jenkins, 1970) of prediction
theory for stationary time series, the assumption that a series is Gaussian leads via the
Wold Decomposition or Wiener’s L? prediction theory (Grenander and Rosenblatt, 1957,
pages 61-82) to the approximate correctness of the Autoregressive Moving Average
(ARMA) modeling approach. Current work in stationary time series usually starts from an
ARMA formulation (with or without Gaussian residuals) following the methods popular-
ized by Box and Jenkins (1970). Relatively little prediction theory specific to non-Gaussian
cases (as in Kanter, 1979) has been worked out. Even less work has gone into understanding
the application of linear prediction methods to non-Gaussian non-ARMA series, but an
interesting beginning has been made by Yaglom (1962). The present paper abstracts a
special subclass (the “generalized autoregressive processes”) of strictly stationary processes
within which there is particularly well-defined non-linear prediction. Our results concern
distributional characterizations of such processes satisfying additional assumptions moti-
vated by ARMA theory.

We call a one-sided strictly stationary stochastic process {Z;}%-: generalized autore-
gressive (GA) of order m if for every k£ = m there is a measurable function rv(Z;, - - -, Z)
such that ex+1 = Zp41 — re(Z1, - -+, Z;) is independent of (Z;, ---, Z;). The notion that
trend functions can be subtracted away from (non-stationary) price series to arrive at
independent (non-identically distributed) residuals suggests just such a definition. A priori,
no special distributional form is associated with GA processes. But optimal nonlinear
prediction (in any sense) for a GA process {Z;} is uniquely determined from the functions
rr(+) and the laws of residuals €.

Gaussian stationary processes, the objects of study in standard ARMA theory, are GA
with linear rx(-). We call a stationary process {Z,}%-1 generalized linear autoregressive
(GLA) of order m if it is GA with r(Z, -+, Z;) = Y*.i a;+Z;. The characterization
problem of our title is simply: which non-Gaussian processes can be GLA?

We prove in Section 2 that GLA processes of order m are Gaussian, m-step Markovian,
or linearly degenerate. Section 3 contains a brief discussion of non-Markovian GA pro-
cesses, and of the bearing of the GA class on goodness of fit problems in time series.

2. Characterizing GLA processes. A fundamental observation on generalized au-
toregressive processes is provided in the following Lemma.

LeEmMA 2.1.  Suppose {Z;.}%-1 is stationary with Zy«1 — ry(Zy, «+ +, Z3) = €441 indepen-
dent of (Zy, - -+, Zy) for k = m. Then for each k = m, there exists &, > 0 such that

E (exp{it[rec1(Zy, <+, Zps1) — 1e(Zay =+ oy Zisi)) Y| Zay + oy Zips1)

almost surely does not depend on Zy, -« +, Zy+1 for | t| < 8.
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Proor. If {Z;}7-:is GA, then by stationarity Z,.s — r.(Zz, - - -, Z+1) is independent of
(Z2, +++, Zi+1) for B = m, so that

E (exp(it[rr+1(Zy, +++, Zps1) + ehsa — 1e(Zay « ooy Zp)D| Zay -+ ¢, Zis1)
= E(exp(itek+z))-E(exp(it[rk+1(Z1, coes Zips1) —re(Zay o e, Zk+1)])| Zy + ooy Zrs1)

is almost surely constant as a function of Zs, - - -, Z,.:. However, since E (exp(ite;+2)) is
non-zero for ¢ in a sufficiently small neighborhood [—8;, 8], our Lemma follows. [

Using the polygonal characteristic functions described in Feller (1971, pages 503-505),
one can easily construct random variables Z,, Z,, Z; with ¥ (Z,, Z,) = ¥ (Z2, Zs) for which
Z1,Zs — ri(Z1), and Zs — ra(Z1, Zo) are independent, but ro(Z,, Z,) — ri1(Z>) is not independent
of Z2 .

The main application of our Lemma 2.1 will be to GLA processes. First we write a
functional equation for the joint ch.f. of (Z1, - - -, Z,) when {Z:} is GLA of order m.

LEMMA 2.2. Suppose {Z):1' is stationary, With em+1 = Zpn+1 — Y71 a;Z; independent
of (Z, -+, Zy). Let g(s) = E(exp(i(s1Z1 + +++ + SuZn))), and f (t) = E (exp(iten+1)). Then

() &(8) =f(sm)-g(sma1, Sm@r + 51, =+, SnGm + Sm-1).
The proof is obvious, since (°) simply expresses the stationarity of the joint ch.f. of

(Z1y + s Zmy &me1 + Y71 a;Z)). Tt is also easy to check that if {Z,} 72! is non-degenerate,
the matrix

0 . a

1 0 az
A= . .

0 1 an

must have maximum modulus (spectral radius) <1. In this case, iterating (°), we find for
n=1,

) £(8) = f(sn) - f(nm + Sn-1) +++ f((A"7'8)n)-g(A"S)

and there is at most one g(-) satisfying (°) for fixed a and non-constant f(-).

THEOREM 2.3. If {Z,}%-1 is GLA of order m = 1, then {Z,} is m-step Markovian or
linearly degenerate or Gaussian.

PROOF. If we write Zn 41 = Y71 @i Z; + em+1, Zm+2 =371 b;Z; + €m+2, then by Lemma
2.1, the conditional characteristic function of Y75' 8,Z; —Y. %' a;1Z; given (Zs, « + +, Zm+1)
does not depend on (Zz, - -+, Zn.1) for | t| < 8. Now b, = 0 would already imply that
(Z3, +++, Zm+1) is linearly degenerate unless b; = a;_; for j = 2, ---, m + 1 (in which case
(Z1, +++, Zm+2) is m-step Markovian). Otherwise b; 7 0, and

(*) E {exp(it[Z, + Y75 (b — a-)bT'Z))| 22, - -+, Zm+1}
does not depend on Z,, « -+, Zp4; for |t|=38,,

while Z,, .1 — Y71 a;Z; is by hypothesis independent of (Z1, - -+, Zn). If by+1 = am and m
= 2, then locally near 0 the conditional characteristic function of Z,,+; given Z;, «++, Z,
does not depend on Zi, i.e., the conditional characteristic function of ¥7-: a;Z; given Z,
locally does not depend on Z;. It follows using (*) when b,,+; = a» and m = 2 that (Z:,
«++, Z,) must be linearly degenerate unless a; = 0, in which case (Zi, -+, Z,+1) ism — 1
step Markovian, {Z,}%-1is GLA of order m — 1, and the proof starts over inductively with
m replaced by m — 1. If b,,+1 = @ and m = 1, then E (exp(itZ1)| Z,) a.s. does not depend on
Z, for small enough ¢, and again a; = 0 unless Z,, Z, are linearly degenerate. Finally, if b, .1
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# an, then the Skitovich-Darmois Theorem (Kagan, Linnik, and Rao, 1973, page 89)
implies Z,,+1 — a1Z; is conditionally normal given Zs, - - -, Z,,. Since &+ is independent of
(Zi, +++, Zm), €m+1 is a Gaussian variable. Now, by relation (}) above, if {Z;}7}' is not
linearly degenerate then (Zi, - .-, Z,,) is jointly Gaussian.

The GLA process {Z,}%-1 of order m is a fortiori GLA of order n for each n > m.
Applying the proof from the previous paragraph successively forn=m + 1, m + 2, .- -, we
conclude that {Z,}%- is linearly degenerate, m-step Markovian, or Gaussian. [

As has been pointed out by an anonymous referee, the special case of our Theorem
where m = 1 can be made to follow from Theorem 10.3.1 of Kagan, Linnik, and Rao (1973).

3. Non-Markovian GA examples and time series. It is easy to find m-step
Markovian examples of nonlinear Generalized Autoregressive processes. In fact, if p: R™
— R is any nonlinear contraction, and e»+1 a random variable with E (max(log| &xm+1], 0))
< oo, then there exists a unique stationary law for (X;, -%., X, +1) such that X, .1 —
o(Xi, -++, X»n) is independent of (X;, - - -, X,,) and has the same law as &, +1.

More generally, we can give a typical inductive step in the construction of continuous-
valued nonlinear autoregressions. Suppose (Z;, ---, Z;) has stationary law, with ¢ = Z;
— re-1(Zy, -+, Zr—1) independent of (Z, -+, Zp—1). If L(Z:| 2>, -+, Zp) (with d.f.
Fzz,...z(- | ) is a.s. nonatomic and if & (e:) is not prime with respect to convolution,
then we can define Zy+1 = rv-1(Zs, -+, Zi) + 9 (Fgyz,... 7(Z1| Zs, « -+, Zt)) + €r+1, Where
er+1 is independent of (Z:, ---, Z;) and ¢ is a monotone function such that #(e;) =
L (Fyyz,....221| Zs, + -+, Zt)) + €r+1). Automatically from this definition £ (Zi, - - -, Z;)
= L (Zz, +++, Zr+1), so that (Z,, - .-, Z,+1) is stationary. Special nonlinear non-Markovian
GA processes are readily constructed with this inductive step. For example, if 8 > 0 and
a; >0 are fixed fori =1, 2, .. ., so that a = }7-; a; < o, then there is an essentially unique
way to construct a GA stationary process {Z,} with ¥ (Z,) = I"(a, 8) and L (ex) = T'(}5=
a;, B). Since the ch.f’s of ¢, are non-vanishing, Lemma 2.1 implies r+1(Z;, « -+, Zr+1) —
rr(Zs, «« -, Zp+1) must actually be independent of Zy, - - -, Z; 1, and the only freedom in the
inductive definition of ry.:1(-) lies in the choice of (not necessarily monotone) function
().

The form of the general inductive step of the previous paragraph renders it unlikely
that there are any simple examples (with all r(-) defined in few recursive steps from
elementary functions) of non-Gaussian and non-Markovian GA processes. Moreover,
Kagan, Linnik and Rao (1973, Chapter 4) have many deep results restricting the types of
Y(Zﬂ or functions rk+1(Zl, e, Zk+1) — Tk (Zz, ooy Zk+1) = Rk (Z) for which Rk (Z) and (Zz,
-« +, Z+1) can be independent. In the (m-step) Markovian case as well, (¢) of Section 2 is
a very special relation subsisting between the law of ¢,,+; and the law of (Z, - - -, Z,).

We take the GA processes to be relevant to statistical practice wherever the goodness
of fit of time series models or hypothetical trend lines is assessed by testing residuals for
independence (cf. Box and Pierce, 1970). Further work along the lines initiated by Yaglom
(1962) is needed to see how bad linear model identification and prediction could be for
nonlinear autoregressive processes. The richness of the GA class may make it the proper
arena for examining the robustness of time-series prediction methods.

REFERENCES

Box, G. and JENKINS, G. (1970). Time Series Analysis: Forecasting and Control. Holden-Day, San
Francisco.

Box, G. and P1ERCE, D.(1970). Distribution of residual auto-correlations in auto-regressive integrated
moving average time series models. J. Amer. Statist. Assoc. 65 1509-1526.

FELLER, W. (1971). An Introduction to Probability Theory and its Applications, vol. II, 2nd ed.
Wiley, New York.

GRENANDER, U. and ROSENBLATT, M. (1957). Statistical Analysis of Stationary Time Series. Wiley,
New York.



TIME SERIES CHARACTERIZATION 633

KacaNn, A, LiNnNIK, Yu. and Rao, C. R. (1973). Characterization Problems in Mathematical
Statistics. Wiley, New York.

KANTER, M. (1979). Lower bounds for nonlinear prediction error in moving average processes. Ann.
Probability 7 128-138.

YacLom, A. M. (1962). Examples of optimum nonlinear extrapolation of stationary random processes.
Proc. of Sixth All-Union Conf. of Prob. Theory and Math. Statist, Vilnius. 273.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND 20742



