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UNBIASED ESTIMATION FOR SOME NON-PARAMETRIC FAMILIES
OF DISTRIBUTIONS'

By N. I. F1sHER
CSIRO Division of Mathematics and Statistics

This paper is concerned with the theory of unbiased estimation for non-
parametric families of distributions subject to “generalised moment” restric-
tions. Necessary and sufficient conditions under which symmetric statistics
are unique minimum variance unbiased estimators of their expectations are
obtained, and some new boundedly complete families of distributions are
exhibited.

1. Introduction. In 1946, Halmos published the first paper which gave formal
justification of the heuristic principle that statistics which are symmetric functions of a
random sample are to be preferred (in terms of minimum variance and unbiasedness) when
estimating parameters of some general families of probability distributions. This was
accomplished by showing that if a given parameter § admits an unbiased estimator of finite
variance, then there exists a unique symmetric unbiased estimator of § with smaller
variance than all other (asymmetric) unbiased estimators based on the same sample. In
essence, Halmos’ paper introduced the concept of “completeness” as it pertains to esti-
mators (or more formally, to families of distributions), as it is shown that any symmetric
unbiased estimator of zero must be identically zero.

Halmos’ results were confined to families of discrete distributions comprising all
distributions concentrated on finite subsets of a given set X. Subsequently, Fraser (1954,
1957) showed that similar results were true for some general families of continuous
distributions (e.g. all distributions on the real line which have probability density func-
tions). Fraser’s discussion was in terms of the order statistic of a random sample, since a
function which is symmetric in its arguments is a function of the order statistic, and
conversely. Thus, for the nonparametric families considered by Halmos and Fraser, the
order statistic is a complete sufficient statistic. The uniqueness of symmetric statistics of
finite variance as uniform minimum variance unbiased estimators (UMVUE’s) is then a
consequence of the Rao-Blackwell theorem, and the class of all parameters § admitting
UMVUE’s is obtained by computing the expectations of all the symmetric statistics of
finite variance.

Fraser’s results were extended to general probability measure spaces by Bell, Blackwell
and Breiman (1960).

Hoeffding (1977a, b) considered situations similar to those studied by Halmos and
Fraser, but in which a certain amount of information is (assumed) known about the
distributions: each distribution P in the family of interest satisfies the & “generalised
moment” conditions

(1.1) jui(x) dP(x)=c¢, 1=i<k,

for some constants c;, - -+, cx. (For example, the first £ moments of each P may be fixed
at the common values ¢;, - - -, ¢; by choosing u; (x) = x*, 1 < i < k). He showed that when
the restrictions (1.1) are imposed (thus reducing the size of the family of distributions), it
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604 N. I. FISHER

is no longer necessarily the case that a symmetric unbiased estimator of # is unique as
such. (That is, the order statistic is no longer complete, although it is still sufficient.) For
cases of non-uniqueness, Hoeffding established the general form

(1.2) fe=1 2f=1{ui(xj) - ci}hi(xl, cre y Xj—1y Xj+1y 0y Xn)

(where Ay, - - -, h;, are arbitrary symmetric integrable functions) for all symmetric unbiased
estimators of zero. On the other hand, if the restrictions possess a certain “unboundedness”
property, then the uniqueness of a bounded symmetric statistic as an unbiased estimator
is still true. (The order statistic is then boundedly complete.) Formal statements of
Hoeffding’s results are given in Section 2.

At this point, two general questions arise:

(a) are the sort of results obtained by Hoeffding for families of distributions satisfying the
“linear” restrictions (1.1) also true for a broader class of “nonlinear” restrictions of the
form

1.3) | f-nju(xl, e, 2) dP(x1) -+ dP(x) = c

for symmetric u and real c¢?

(b) do there exist parameters 6 possessing unique symmetric UMVUE’s for the families of
distributions considered by Hoeffding, and for other such families arising from (a), and if
so, how may they be characterized?

Concerning (a), only the case & = 2, with the condition
(1.4) ffu(xl,xz) dP(x1) dP(x;) = c

is considered herein. For certain types of u it is possible to deduce the analogue
1.5) Yoz {u(x, x,) — c}h(xy, ++-,x;), arbitrary symmetric integrable 2

of (1.2) for a symmetric unbiased estimator of zero, and also the condition (essentially,
that u be unbounded) under which the order statistic is boundedly complete. (See the end

k, because the nature of their derivation is, in part, peculiar to the case 2 = 2. On the other
hand, it is clear that condition (1.4) does not always imply that every symmetric unbiased
estimator of zero must have the form (1.5), contrary to what one might expect from the
results in Hoeffding (1977a).

Concerning (b), it is possible to characterize the class of parameters 6 possessing unique
symmetric UMVUE'’s for the families of distributions considered by Hoeffding, and also
for those families of distributions satisfying (1.4) for which symmetric unbiased estimators
of zero can be shown to be of the form (1.5). An implication of these results is that the
price of imposing restrictions on the class of distributions under study is a (possibly
considerable) reduction in the class of functions § which admit unique symmetric
UMVUE’s.

The answers to (a) and (b), taken together, provide a set of results parallel to those of
Halmos and Fraser, and useful in situations where some information is known about such
nonparametric families. They throw new light on the structure of unbiased estimators, and
lead to new classes of boundedly complete families of distributions.

Section 2 contains some examples which illustrate the preceding remarks, and Section
3 contains formal statements of Hoeffding’s results and of the new results presented in this
paper. Section 4 contains some discussion of the conditions on u (x;, x2) under which the
results are applicable. Sections 5 and 6 sketch the derivation of (1.5) and the bounded
completeness property of the order statistic; the full details are very technical and are
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available from the author upon request. Section 7 gives the proof of the characterization
of the class of UMVUE’s.

NoraTtioN. The following notations and abbreviations are used throughout the paper.
A(r, s) is the set of all s-tuples of specified indices r1, -+, rysuch that r; =0, ..., r,

=0,r; + -+ + 71, =r;e "k is the set of distinct partitions of {i;, - - - , i,} into & parts,
with the ith part consisting of precisely r; elements, 1 < i < &, and in particular 2" is
the set of all permutations of i1, -+« , is. (n; ry, ---, rs) denotes n!/(ry! «-- re!), ri+ -+
+rs=n.

I(A) is the indicator function of set A. R', R} and C are respectively the real line,
positive real line and complex plane.

We write w; for u (x;, x,) g;,...; for g(x;, -+, x;),and g};...;, forg(xs, -+-, %1, -+, 2N,
-+, xn) wWhere x; occurs Jj; times, i =1, .-+, N.

2. Examples. For convenience of exposition, we shall assume (without loss of gen-
erality) that the constants c;, -- -, ¢; in (1.1) and c in (1.4) are zero. Thus (1.1), (1.4) and
(1.5) reduce respectively to

(2.1) f ui(x) dP(x) =0, 1<i<kFk
(2.2) f j u(x1, x2) dP(x1) dP(xz) =0
and

(2.3) Y onnssua, xi,)h (g, <00, X)),

ExaMPLE 1. Let A(x) be a continuous, strictly increasing function on the real line such

that A(—x) = — A(x). If F(x) is a continuous distribution function such that
(2.4) jm A(|x|) dF(x) < oo,

define

(2.5) J(F) = f‘” {F(x) + F(—x) — 1}’ d A (x).

J(F) may be regarded as a measure of the deviation from symmetry about 0. Condition
(2.4) means that (2.5) can be rewritten in the form

J(F) =j f w(x1, x2) dF (x1) dF (xz)

where w (x1, x2) = 2 sgn(x;x2) A (min( | x1 |, | x2| )). Now consider the family of all probability
measures P absolutely continuous with respect to Lebesgue measure, whose distribution
functions F = Fp satisfy the conditions (2.4) and

(2.6) J(F) = ay
(2.6) is equivalent to (2.2) with u (x;, x2) = w(x;, x2) — a. We distinguish two cases:

(i) A bounded. Then (2.4) is no restriction. If « = 0, (2.6) defines the class of all continuous
distribution functions symmetric about 0. It is clear in this case that a symmetric unbiased
estimator of zero need not have the form (2.3), since every bounded, measurable function
f(x) such that f(—x) = —f(x) is an unbiased estimator of zero. This particular example is
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discussed using a different approach, in Hoeffding (1977b), where further discussion is
given. If « > 0 (and not too large), the function u (x1, x.) may be shown to satisfy one of the
conditions sufficient for a symmetric unbiased estimator of zero to have the form (2.3).
The relevant condition is C4 in Section 3, namely that there exist points x1, x2 € X such
that u(x1, x1) <0 and u(xz, x2) > 0.

(ii) A unbounded, e.g. A(x) = x. For a > 0, u(x1, x2) is unbounded and the family is
boundedly complete.

ExampLE 2. Consider the functional Jy(F) = [ {F(x) — Fo(x)}? dF,(x), where Fois a
fixed distribution function, continuous and strictly increasing. Jo (F') is the Cramer-von
Mises goodness-of-fit statistic. The condition Jo (F') = a is of similar type to (2.6). It can be
reexpressed as [ [ wo(x1, x2) dF(x1) dF (x2) = o, where

wo (X1, X2) = % + % {F3(x1) + F5(x2)} — max {Fy(x1), Fo(x2)}.

With « = 0, the condition implies Fo(x) = F(x). With « posifive but not too large, the
results are similar to those in Example 1.

The key to representing functionals like Jo (F) in the form [ [ wo(x1, x2) dF (x1) dF (x2)
is the identity F(x) = [ I[y = x] dF(y). This does not even require that F be continuous.
The functional [{F(x) — F, (x)}%dF (x) can in general be rewritten in the general form
oo f W, -+, xx) dF(x1) -+ dF(xx) with & = 3, but it will reduce to the form with
k = 2 if both F and F,, are continuous (in which case Jy (F) and [ {F(x) — Fo(x)}*dF (x) are
identically equal, since [ (F — Fo)?d (F — F,) = 0). Another example, [ F(x){1 — F(x)} dx
=% [ [|x1 — x2| dF (x1) dF (x3), is considered in Example 5 below.

ExampPLE 3. The condition Pr{(X; + X;) > 0} = % (or = a) is related to the Wilcoxon
one-sample signed-rank test for symmetry about 0. The function u (x1, x2) = I[x1 + x2 > 0]
— a satisfies the condition on u given in Example 1, for the family of distributions
considered therein.

ExaMmpPLE 4. Consider a random sample of vectors{X; = (X{", X{?), 1 =i < n} with
the condition

P{XP - XP)XP - XP)>0) =% (or = a);

the left hand side is the probability that X; and X, are concordant. This is related to the
rank correlation coefficient known as Kendall’s tau. The remarks in Example 3 are also
pertinent here.

Either of the conditions mentioned in Examples 3 and 4 imposes a severe restriction on
the class of parameters §(P) admitting UMVUE’s. The characterization theorem
for UMVUE’s implies that 8(X;, ---, X,) can only be a UMVUE of its expectation if
[ [ ulxi, x2) 0(x1, -+, x2) dP(x1) dP(xz) = 0 for all P in the relevant family P, and
examples of such statistics are not easy to find.

ExampLE 5. Let u(x, y) = 8(|x —y|) — a, where §(0) = 0, and 6(2) is an increasing
function of z (> 0). Then u is of a form which defines a class of measures of dispersion; for
example, with §(2) = z, condition (2.2) fixes the mean deviation of P at a particular value,
and with §(z) = 22, (2.2) fixes the variance of P at some other prescribed value. For this
general form of u, a = 0 implies that the family of distributions comprises only degenerate
distributions, whereas if a > 0, the following condition on u (see C5 in Section 2) is both
necessary and sufficient for the validity of the representation (2.3) for symmetric unbiased
estimators of zero: namely, that u (x, x) =0, £ 0, all x (resp. < 0, £ 0, all x) and that there
exist x1, x2 € X such that

w1, %) < — {wlxr, 2)uxz, x2)}2(resp. ulxi, x2) > {ulxr, x)ulx:, %)}%).
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3. Statement of Results. Let X, ..., X, be arandom sample from (X, S,, P) where
S. is the collection of all subsets of an arbitrary set X, and P € P, the family of all
proability measures (pm’s) concentrated on finite subsets of X. The induced family of pm’s
of the order statistic 7= {Xi, - .-, X,} will be denoted by PZ.

Let P, be the sub-family of P comprising those P in P for which (2.1) holds, where u,

., Uy are S,-measurable functions.

THEOREM 1. (Hoeffding, 1977a). (i) Let C. be a convex family of probability mea-
sures on (X, S;) which satisfy (2.1), and let C. D Py.. If g is a symmetric S ”-measurable
function such that [ gdP" = 0 for all P € C,, then there exist k symmetric S& -
measurable functions hy, .- , hy which are P"* '-integrable for each P € C,, such that

(3.1) g1, + oy xn) = YN o1t ()i (X1, + oy o1, Xjt1, v 00, Xn)

for all (x1, ---, x,) € X" R
(ii) If, in addition, g is bounded and every non-trivial linear combination of u.,
<+, U is unbounded, then g(x1, - -+ , x,) =0 for all (x1, +--, x,) € X".

In the same paper, Hoeffding derives corresponding results for dominated families of
pm’s, and Hoeffding (1977b) provides extensions of these results to families of pm’s
symmetric about zero, and to two-sample families.

Denote by P*® the sub-family of pm’s P € P for which (1.3) holds (with ¢ assumed
zero), where u is a symmetric S ¥-measurable function. (Henceforth, we assume that % =
2 except where specified.) Theorem 2, the analogue of Theorem 1 for the family P®, has
been established under certain conditions on u(x;, x2). Each of the following conditions C1
through C6 is sufficient for the validity of Theorem 2.

Cl:u(x, x)=0.

C2: u(x1, x2) = v1(x1)v1(x2) — U2 (1) V2 (x2) (= vHi(x1)v%(x2) + v (%1)v% (x2)) With v1 (x) *
constant X vy (x).

C3: for every x1, «++, x, € X there exist N> n, X541, -+, X, EX, p1>0, -+« , pn-1>0
such that (i) @ > 0; (i) u(xn, xn) # 0 and u (xy, x3)(QY* — L) > 0; (iii) for x1, « -+, xn
fixed, @'/* is not rational, considered as a function of py, - -+ , py_1 Where

L=YN"ux, xv)pi, Q=3N7" T (w (i, xv)u(ay, xn) — w(, x)ulxn, xv)} pibj.
C3 is implied by any of the following conditions.
C4: there exist x;, x € X such that u(x;, x;) and u(x2, x2) have opposite signs.
C5:u(x,x) =0,%0,all x (resp. <0, £ 0, all x) and there exist x;, x» € X such that
w(x, x2) < — {wx:, x0)u(x, x2)}7%  (resp. u(x1, %) > {w(x1, x10)u(x, 22)}7%).

C6: there exist x;1, x2 € X such that u(x:, x;) = 0, u(x1, x2) <0, and u(x, x) = 0(f 0);
provided that u does not satisfy C5, and that

SN s ulxr, )pi ¥ T YN ou(xi, x)pip;
for at least one pair of sets {x1, --+, xv € X}, {p1 >0, .-+, py > 0} satisfying
Yy u (i, %) pip; = 0.

(The notation } signifies “does not divide”.)

To obtain some idea of the stringency of these conditions, suppose that u is a two-
valued function. Without loss of generality, the two possible values can be taken to be 1
—a and —a, 0 < a < 1. Then it is easily seen that u satisfies either C4 or C5 unless

3.2) u(x,x)=1—a and a=1%,
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or equivalently, u(x, x) = — a and a = %. The particular case of (3.2) with a = % gives
u(x1, x2) = v(x1)v(x2) where v(x) = £1/ V2 , which is covered by Theorem 1. Other cases
of (3.2) can be investigated easily by choosing N = 3 in C4. For example, if u(x;, x2) =
—oa when x; # X2, then u satisfies C4 for %2 > a > 5, and C2 for a = .

Thus, the class of two-valued functions to which Theorem 2 applies is quite extensive.

THEOREM 2. Let P® be the sub-family of probability measures P in P which satisfy
(2.2), where u is a symmetric S®-measurable function satisfying one of the conditions C1
through C6. Ifg(xi, - - -, x,) is a symmetric function such that [ g dP" =0 for all P € P?,
then there exists a symmetric function h which is P"*-integrable for each P € P?, such
that

3.3) 8x1, =+ vy Xn) = Poroo sy, X5 (xyy + o0, 25,)

for all (x1, -+, x,) € X" .

(ii) If, in addition, g is bounded and u is unbounded, then g(xi, ---, x,) = 0 for all
(x1, +++, %) € X" That is, P?" is boundedly complete.

REMARK 1. In contrast to Theorem 1, the results in Theorem 2 do not extend to a
convex family C® of pm’s P on (X, S,) which satisfy (2.2) and such that C® D P®, since
the assumption on convexity of C®, together with (2.2), would imply that

f f u(xi, x2) dPi(x1) dP2(x2) =0, all Py, P, E Cc®,

REMARK 2. Theorem 2 does not apply to functions u(x:, x2) of the type u;(x1)u:(x2)
+ «+« + up(x1)ur(x2), because in this case the condition (2.2) is equivalent to (2.1), the
condition under which Theorem 1 implies another specific form (3.1) for g(xi, ---, xz).
Only in special cases will this form also be of the form (3.3).

Now let S be a o-field of subsets of X, u a o-finite measure on (X, S), and P(u) the
family of all pm’s on (X, S) dominated by g, so that P(u) contains all pm’s P for which
dP/dy is a simple function of sets in S. Let A be a class of sets A in S such that

‘U,2(A1><A2)+j |u|du2<oo

A;xAy

for all pairs A;, Az in A, and define

U(A,, As) =j u dp?,

A, xA,

all A;, A; € A. Further, let C1(p), ---, C6(n) denote the analogues in terms of U of the
conditions C1, - - ., C6.

THEOREM 3. (i) Let P? () be the sub-family of probability measures P in P (n) which
satisfy (2.2), where u is a symmetric S®-measurable function which satisfies one of the
conditions C1(u) through C6(u). If g(x, - - -, x,) is @ symmetric S ™-measurable function
such that [ g dP™ = 0, all P € P®(u), then there exists a symmetric S ®-measurable
function h which is P" %-integrable for all P € P®(u), such that (3.3) is satisfied a.e.
[P®(w].

(ii) If, in addition, u is P(u)-unbounded and g is P(p)-bounded, then g(x1, « -+, x,) =
Oa.e. [P®(u)]. (An S®-measurable function u(x:, x;) is P(u)-unbounded if, given a € R',
there exists P € P(u) such that P(|u(xi, x2)| > a) > 0.) In general, h will not be
independent of p.
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For the family C, defined in Theorem 1, and with a square-integrability condition on
u;, -+, U, the following result characterizes the class of functions §(P) which admit
UMVUE’s.

THEOREM 4. Suppose that the functions wi, ---, u; defining the family Py are C-
square integrable. In order that a symmetric S{"-measurable function §(X, - -, X») be
the unique uniform minimum variance unbiased estimator of its expectation, relative to
P,, it is necessary and sufficient that, for all xz, - --, x, € X,

(3.4) Iui(xl)é(xl, e, %) dP(x1) =0, 1<i<kFk, all PEC,.

It will be clear from the proof of this theorem that analogous results hold for the family
P® considered in Theorem 2 and for the corresponding dominated families.

Condition (3.4) is quite stringent; however, non-trivial examples can be found in which
it can be applied. Thus, if P; is the particular subfamily of P satisfying [ x I[|x| > a]
dP(x) =0, all P € P, for some a € R, then any symmetric statistic 9(X1, .++, X,) which
is zero outside {|x1| = a, -, | x,| = a} will be the UMVUE of its expectation.

4. Some sufficient conditions on u for the validity of Theorem 2(i). The nature
of the proof of Theorem 2(i) will depend on which of the sufficient conditions C1, C2, or C3
u satisfies. Apart from the condition C2, in which u has a particular functional form, the
other conditions arise from the assumption in the proofs given in Sections 5.3 and 5.4 that,
given n arbitrary points xi, ---, x, € X, there exist points x,+1, --+, xy € X and real
numbers p; > 0, - - ., py > 0 such that

(4.1 Y YN ulx, x)pip; = 0.

Condition C1 asserts that if u(x, x) = 0, then this can always be achieved. Condition C3 is
the complementary assertion which would have to be checked for the given function ,
whilst C4, C5 and C6 are particular cases in which C3 is satisfied. In this section, the
condition C1 will be justified, and some limited discussion of C4, C5, C6 given.

To avoid trivialities, assume that u takes both positive and negative values. For u(x, x)
= (, (4.1) reduces to

(4.2) 2 Disi<j=N Wipip; =0
whence, assuming for convenience that u(xy-1, xy) # 0,
Pn = —(} Vi=icj=N-1 UiPiD))/ D 1=i=N-1 UiNDi.
There are two distinct cases to consider, depending on whether or not
S unpi | ¥ Yizi<jsN-1 UsDiD;
for all N and all x;, .- -, xy € X, as a function of py, - -+, pn—1.

N-1
I. The case 2i=1 U;n pDi | Elsi<jsN—1 Ui pi p;j.

If there exist three points xn—_2, xn—1, xv € X such that u(xy_2, xnv-1) < 0, u(xn-1, XN)
> 0 then it is easily seen that (4.2) can be satisfied for some p; > 0, - - -, px > 0. Otherwise,
it must be the case that, for any xo € X, either u(x,, x) =0, all x € X, or u(x,, x) <0, all
x € X. Let xy-3, Xn-2, Xn—1, Xn be four points in X for which u(xn-3, xv—2) <0, u(xn-1,
xn) > 0; then (4.2) can again be satisfied for p; >0, ---, py > 0.

IL The case ¥ N7" uinpif Y Yi<icjen-1 WyipiD;, @I N, allxi, .-+, xnEX.

ProrosITION. Let u(x1, x2) be a function symmetric in its arguments such that u(x,
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x) = 0. A necessary and sufficient condition that u has the form v:(x1)v:1(x2) — va(x1)v2(x2)
is that for any N = 3,4, ---, and x, - - -, xny € X, the (non-trivial) linear form u(x, xy)p1
+ ««+ u(xn-1, xn)pn—1 divides the quadratic form

2 215i<jsN—1 u(x:, %) pip;.

Proor. Suppose
Nt (i, xn)pi | Y Yi<isjen—1 u(x1, %)pip;

foral N=3,4,..-,and x1, - - -, xy € X (at least one u(x1, xn) # 0). Then it is easy to show
that (i) for every x1, x2, x5 € X, either ui2 = w13 = us3 = 0 or precisely one of these is zero,
(ii) for every x; there exist x2, x3 € X such that u;2 = 0, ui3 # 0, and (iii) for every x;, x2,
x3, x4 € X such that u2 # 0, ugs # 0, either uiatiss = w13Us4 OF U12Uzs = U1sUs3, depending on
whether Uig = Uz = 0or Uiz = Uzg = 0.

Now let xo € X and define X; = {x € X: u(x, x0) = 0}, Xo = {x € X: u(x, x0) # 0}. Then
(i), (ii) and (iii) may be used to prove that {Xi, X,} is a partition of X independent of the
choice of x; and with the following properties:

Pl:x; € Xy, x2 € Xo = u(x1, x2) #0;
P2x,yeXi=ulx,y) =0, i=12
P3: x1, y1 € Xy, x2, ¥2 € Xo = u(x1, x2)u(y1, y2) = u(x1, y2)u(xz, y1).

Choose y1, y2 € X such that u( y1, y2) > 0. Then for any x; € Xj, x: € X,, P3 = u(x1, x2)
= w1 (x1)ws(x2) say, where wi(x1) = u(x1, y2)/ {u(y1, y1)}/?, waxe) = wlxz, y1)/ {31, y2)}'>.
The definition of w; and w; may be extended to all x € X by defining w(x) = 0, x € X,,
wz(x) =0, x € X;. Then

u(x1, x2) = wy(x)wa(xz) + wixz)wa(x1) = v1(x1)v1(x2) — v2(x1)v2(2),

where 2v; = w; + w2, 2vs = W1 — we.

Conversely, suppose (X1, x2) = v1(x1)v1(x2) — v2(%1)v2(x2). Then u(x, x) = 0 = vi(x)
= v3(x). Define X; = {x € X: v1(x) = v2(x)}, Xo = {x € X: v1(x) = —v2(x)}. It is easily seen
that {Xi, X,} is a partition of X satisfying P1, P2 and P3, and hence that

N u(x, xN)Pi | Y Dimicj=n—1 U(Xi, %) Di Py
foral N=3,4, ...,and x3, -- -, xy € X (at least one u(x;, x2) = 0). The proof is complete.
Thus in this case u has the special form given by condition C2; the proof of Theorem
2(i) for this situation is given in Section 5.2.
When u(x, x) # 0, suppose u(xn, xy) # 0 and solve (3.1) for py to yield
“.3) unnpy = — Y1 uinpi £ (Y isicj=n-1 Wivttiy — uyunn)pips}*?
=—L(p1, -+, pn-1) £ @*(p1, + -+, Pn-1).

The proof of Theorem 2(i) under condition C3 relies on the assumption that ©/? is not
a rational function. The exceptional cases when this is not so are (i) @ =0, and (ii) @ = a
perfect square. It is easily seen that (i) = wu(x1, x2) = v(x;)v(x2), in which case Theorem 1
is applicable, and (ii) = wu(x1, x2) = vi(x1)v1(x2) — va(x1)v2(x2), which is condition C2.

These cases aside, the problem is to find necessary and sufficient conditions on « such
that one form of (4.3) is satisfied for p; > 0, - - -, p~ > 0. Such a solution will not be possible
if, for example, @ is non-positive definite; a particular instance of this occurs when u(x1,
X2) = U1(x1)U1(x2) + « -« + U (x1)Ur(x2). Conditions C4, C5 and C6 are sufficient conditions
which may be derived from (4.3) by elementary manipulation. None of these conditions is,
in general, necessary, even under the assumptions of the conditions, although there are
two interesting special cases in which C5 is also necessary (c.f. the general result quoted in
Example 5 in Section 2).

(a) X = interval of R'; u(x;, x2) = (%1 — x2)? — 2¢?, which restricts the family of pm’s on
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(X, S;) to those with variance ¢ u(x, x) = —2c, so C5 requires u(x:, x2) > 4c? that is,
| x1 — x2| > 2¢, for at least one pair x;, x; € X. Thus C5 is also necessary if the family is to
be of interest, for any distribution whose support is the interval [a — ¢, a + ¢] must have
variance less than or equal to c¢?, with equality if and only if the distribution assigns mass
% to each end point.

(b) X = interval of R'; u(x:, x2) = |x1 — x2| — c% Arguing as in (a), C5 requires the
existence of x1, x» € X such that | x; — x2| > 2¢?. This condition is also necessary, since X;,
X, are independent with common distribution P concentrated on [a — c?, a + c?], then
Ep| X; — Xz| = 2¢?, with equality if and only if P{a — ¢} = P{a + ¢®} = %.

5. Proof of Theorems 2(i) and 3(i).

5.1. Preliminary results.

LEMMA 1. Let R(z) be a rational function of the complex variable z, analytic in a
domain D containing the open interval (a, b) of the real line, and let I1(z) be a non-
rational function of z, analytic in a domain D’ which also contains (a, b). If R(z) = I(z),
z € (a, b) then R and I must be identically zero throughout the complex plane C. (For the
purpose of this statement, the function which is identically zero in C may be considered
either rational or non-rational.)

LEMMA 2. A homogeneous polynomial on R which is zero on a non-degenerate N-
dimensional interval is identically zero on RY.

The next two lemmas are immediate corollaries of Theorem 2(i).
LEMMA 3. Letxi, «++, xn,y be any n + 1 points in X, with u(y,y) # 0. If g(x1, + - -, X»n)
admits a representation of the form (3.3), then

h(xl) M) xn—?) =Z;L-2 Zgz%] ZSr,s {D(r’ S, n)g(xi,_]) e X )yt ",y)

(5.1.1)
X [TTe=1 iy, 2, MTT =201 (s, )1/ [0, 9T,

where S, s = {(i1, ++ +, In—2) € 0528223 ,_2,} and the quantities D(r, s; n) do not depend on
X1, ++y Xn_g OF Y.
LeEMMA 4. Suppose that u(x, x) = 0, and let x, - - -, Xx, y1, y2 be any n + 2 points in X,
with u(y1, y2) #0. If g(x1, - - -, x,) admits a representation of the form (3.3), then
h(xy, + oy Xn2) = Z’r:n=2 E/I’(Fl,g;(ﬁefz 252/12] Z;=1 Zsmm {D(r, m-—r,s;n)

(5.1.2) Xg(x;m,l, e Xy oy Yers 000y Yoy Yeos "',ylz)
;—.w.—.—l — \,——J

15 r m-—r
X [TTe=t wlxs,_,, 20, NTT7285250 w(xi,, y2)]
X [Hzl’_r-zfs—l u(xip yfz)]}/[u(yly y2)]m_s

where Smrs = {(i1, + ++, in-2) € 05 w5 22r—s—1)} and the quantities D(r, m — r, s; n)-do not
depend on xi, +++, Xpn—2, Y1 O ¥a.

5.2. Proof of Theorem 2(i) under Condition C2. It is given that u(x1, x2) = vi(x1)v1(x2)
- U2(X1)vz(x2). Then

Epu=0e (Eplil)2 - (Ep02)2 =0 EP(UI + 02) X EP(vl - U2) =0.
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Define w; = v; + U2, W2 = U1 — Vs, and Q1 = {P (S P(Z’ZEpwl = 0}, Q2 = {P (S P(Z) :Epws
= 0}, so that Q; U Q. = P®, It follows from the assumption that v;(x) # constant X v (x),
that both Q; and Q. are proper subsets of P®, By Theorem 1, there exist symmetric
S{"~P.measurable functions A, and A such that

Z:L=1 wi(x)hi(x1, + <+, Xim1, Xiv1, + -+, Xn), using Q

52.1 ooy X)) = |20 :
621  glxn, -oe %) { For wi(x:)Ra(X, + -, Xim1, Xiv1, ++ -, Xo), USing Qs

for all x1, - - -, x, € X. To prove the theorem, it is sufficient to establish that there exists
a symmetric function A such that
(5.2.2) 8(x1, =y Xn) = Vot W (o Jwe (i) Ay, <+, %3,),
for this implies that

81, +oey xn) =% Y {wi(x; Jwe(x,) + wilxi,)wa(xi)} X hxy, -+, x,)

=Y ulxi,, x,)h(xi, <+ -, %)

Equation (5.2.2) can be verified by proving that Az(x1, - - -, Xx,—1) has the form
(5.2.3) Yot wix)h(x1, - -0, Xjo1, X1, © v oy Xno1)

for some symmetric function A. To this end, let ¥, z be points in X such that V = w; (y)w:(2)
— wi(2)wz(y) # 0, and assume that w; (y)w:(2) # 0, wi(2)wz(y) # 0. From (5.2.1),

w1(y)h1(x1, coey Xno1) — We(Nha(xy, « -, Xno1)
(5.2.4)
=Yoot {Walx )iy, « ooy 2, y) — wi(o)) (%, + -0, %6, 9) ).

Appropriate manipulations involving (5.2.4) lead to (5.2.3) and hence to the result. There
are trivial modifications if V = 0.

5.3. Proof of Theorem 2(i) under Condition C3 or C1. Let x1, ---, xy and p1, - -+, pn
satisfy (i), (ii) and (iii) of C3. Then using (2.2) and the assumptions of Theorem 2,

(5.3.1) Y ¥ uspp, =0, and
(5.3.2) Yamn (571, <o o, IN)EY <o v DT - PR =0.
The structure of the proof is as follows.

I. Solve (5.3.1) for pn and substitute into (5.3.2), yielding an equation of the form Py (p;,
ceo,on-1) = —Q*(p1, -+, pn-1) Pr(p1, - - -, pn—1) where Py, @ and Py are homogeneous
polynomials of respective degrees n, 2, and n — 1, in the variables p;, - - -, py—1. Lemma 1
and Lemma 2 imply that P, and P are identically zero, hence the coefficients of distinct
individual power products of p:, ---, pn—1 in each are zero. The equations obtained by
setting these coefficients to zero will yield a representation of the form (3.3) for g(x, - - -,
Xn)-

II. The function A determined implicitly in I will contain a dummy variable xy; it can be
shown that A is independent of the choice of xx (given the condition u(xy, xx) # 0).

Similar methods are employed to prove the theorem if C1 is assumed instead.

5.4. Proof of Theorem 3(i) under Conditions C1 (u), C2 (1), C3 (n). As in the proof of
Theorem 1B in Hoeffding (1977a), the proof of this theorem may be accomplished by
structuring the assumptions in such a way that the methods in Section 5.2 and 5.3 apply.
Again, according to the various conditions on u (C1(u), C2(u), C3(n)), different forms of
proof are required; the proof for conditions C3(u) will be sketched as an example. Let A,
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..., A, € A, where

J udp®>0
ANXAN

and choose ai, -- -, ay positive so that = a;u(4;) = 1 and ¥, Y, a:a;U; = 0, where U; =
U(A;, A)). Then p(x) = ¥ a:[x € A;] is a probability density with respect to u of a
distribution in P® (u): hence

Saemm (511, -, rn)GE.yar oo ay =0

where

Gi....= G(Ay, ---,An)=J gadp”
A X XAn

X

and Gf...;, is the analogue of g¥...;,. The form of proof in Section 5.3, with p;, X, x;, uy
and g;,...;, replaced by a;, A, A;, U and G;,...i, respectively, may be used to conclude that
there exists a symmetric real-valued function H on A" % such that, for any (A4, ---, A,)
€ A",

G(Ai, -+, An) =Y opp UlAi, Ap)H(Ay, - -+, Ai).

Lemma 3 implies a representation for H(A;, - -+, An—2) in terms of G and U. Further, H
can be written as '

j j h(x1, «++, Xn—2) dp(X,—2) « -+ dulxr)
A Ap—2

where £ is given by (5.1.2) in Lemma 3 with the following alterations: g1...10...0x isreplaced
by

f f g1, « vy Xk, Y1, o +5 Ye) du(ye) < -+ du(y)
An An

and u(x;, y) by
j u(xi) y) d.u‘(y)'
AN

Now write
w(x1, cc xn) = g(xl, M) xn) - Za;";:é" u(xz] ’ xiz)h(xi3; Tty xin)~

So far, it has been shown that F(C) = [c w dx™ = 0 for all sets C = A;X .-+ XA, € A"
Following the proof of Theorem 1B in Hoeffding (1977a), let B € A. Then F(E N B" =0
for all E in S, hence w(x;, - -+, x,) = 0 a.e. [u"] on B".

Finally, let P € P®(p), let P be a version of dP/dp (hence, a simple function of the form
ald[x € A;] + -+ + aI[x € A;] for some integer k, positive numbers a1, - - -, a, and
disjoint sets A;, - - -, A € A), let B, = {x:p(x) > ¢}, and let A € A. It is necessary to show
that B, € A, that is

(5.4.1) fj(lﬂu(x,y)l)du(x) du(y) <o
B, JA

for all A € A. Since B, is just the union of those sets A; among A, - - -, A; for which a; >
¢, the LHS of (5.4.1) is just the sum of integrals over sets A, X A, all of which are finite by
definition. Thus B, € A for all £ > 0. Therefore w(x1, -« -, x,) = 0 a.e. [u*] on Un-1 Bl/m,
a set of P"-measure 1. It follows that g(x1, - - -, X,) = Y, w(xi,, x:,)h(xi,, - - -, %;) a.e. [P"] for
all P € P@(p). h may be shown to be independent of the arbitrary set Ax.
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6. Proof of Theorems 2(ii) and 3(ii). Depending on whether or not u(x, x) = 0,
Lemma 3 or Lemma 4 can be used to prove, sequentially, that A(x;, ---, x1) = 0, A(x1,
ey X1, X2) =0, oo, A(xy, +-o, x0) =0forall xi, -+, x, €X.

7. Proof of Theorem 4. Let 67(X1, .-+, X,) be a symmetric statistic with finite
variance for all P € C,, and let g(X;, - ., X,,) be an unbiased estimator of zero with finite
variance, for all P € C;. Then g has the representation (3.1), where A, .- -, h; are each
C{*V-square integrable; c.f. Lemma 2 of Hoeffding (1977a). By a well-known result
(Lghmann and Scheffé, 1950, Theorem 5.3), d is the UMVUE of its expectation if and only
if § is uncorrelated with all such g, for all P € P,, i.e. if and only if

P E;;lj fé(xl, ooy Xn)Ui(0) Py (%1, - ey Xjm1, K1, ooy Xn)

(7.1)
X dP(x1) - -+ dP(x,) =0

for all P € C; and all symmetric C{""-square integrable A, - - -, hx. By symmetry, (7.1)
reduces to

(7.2) )l J’ e f (s, - -+, X)) ilts, - -+, %) dP(x1) -+ - dP(x) = 0
for all P € C,, all such A, - - -, ks, and (3.2) is sufficient for (7.2) to hold.
Conversely, if (7.2) is true for all Ay, - . -, A, it is true in particular when A; = --. = A,
= 0, leaving
(7.3) f oo f é(xl) cony Xp)w () ha(xz, - -, %) dP(x1) - -+ dP(x) = 0,

all P € C;. Let A,—; be an arbitrary set in SV, Then

f J' {f 62y, - -+, Xa)uar (1) dP(xl)}hl(xZ; coe, X)) dP(xp) -+ - dP(x)
An—l

={(n-11)" 20»,;;;«"] j {j 01, iy, + -+, 2 s (1) dP(xl)}
An-i

(7.4) X hi(xi,, +++, %;,) dP(x;,) - -+ dP(x;)

={(n—-D1)" Z;T‘_lf f {j 01, -+, x)un (1) dP(xl)}
B

X hi(xz, «++, %) dP(x2) -+ dP(x)

for some integer m = 1, and some S{*""-measurable disjoint sets B, - - -, B, which are
invariant under permutations of their coordinates. By choosing successively A;(xz, - - -, %»)
= I[(x2, +--, %) EBj], fori =1,2, ..., m, it follows that each integral in (7.4) is zero,
whence

f e J' {(6(x1, -+, Zo)ur(x1) dP(x1)} dP(x2) - - - dP(%,) = 0
An-1

for all A,—, € S and all P € Cy. Thus [ u;(x1)8(x1, - - -, xx) dP(x1) = 0, all P € C;, and
similarly for us, - - -, ux. The proof is thus complete.

The proof of the corresponding result for the family P® in Theorem 2 is quite similar
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to this; the proofs for the corresponding dominated families are modifications of the above
proofs along the lines of the proof of Theorem 3.
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