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INADMISSIBILITY OF LARGE CLASSES OF SEQUENTIAL TESTS

L. D. BRowN! AND ARTHUR COHEN?

Cornell University and Rutgers University

Assume observations are from a subclass of a one parameter exponential
family whose dominating measure is nonatomic. Consider a one-sided sequen-
tial testing problem where null and alternative parameter sets have one
common boundary point. Let the risk function be a linear combination of
probability of error and expected sample size. Our main result is that a
sequential test is inadmissible if its continuation region has unbounded width
‘in terms of the natural sufficient statistic. We apply this result to prove that
weight function tests, with weight functions that contain the common bound-
ary point in their support, are inadmissible. Furthermore any obstructive test
is inadmissible, where obstructive means that the stopping time for the test
does not have a finite moment generating function for some parameter point.
Specific tests of the above type are cited.

1. Introduction and summary. Consider the one-sided sequential hypothesis test-
ing problem concerned with the natural parameter of an exponential family. There have
been a wide variety of tests recommended and studied for such a problem. An obvious
suggestion is to use Bayes tests for an appropriate loss function; see, for example, Chernoff
(1965) for references. Bayes tests or “Bayes-type” tests form a complete class for many
models. See Brown, Cohen, and Strawderman (1980) and Berk, Brown, and Cohen (1981b).
Another suggestion is the method of weight functions. Wald (1947) suggested this method
for a formulation that incorporates an indifference region separating the null and alterna-
tive hypotheses. Wijsman (1979) and others study certain types of weight function tests
that yield invariant sequential probability ratio tests (SPRT’s); Wijsman (1979) gives many
references. Berk (1970) and Berk (1976, page 905), discusses weight function tests when
there is no indifference zone. Robbins (1970) considers a formulation without an indiffer-
ence zone and uses weight function type tests. Weight functions are essentially prior
distributions. Since Bayes tests are often difficult or unfeasible to carry out, weight function
tests are appealing. They can be carried out easily and they incorporate prior information,
as Bayes tests do.

Among other tests recommended are some closed boundary tests including Anderson’s
(1960) triangular boundary, Schwartz’s (1962) asymptotic optimal boundary, and truncated
versions of other tests. There are also open boundary tests in addition to the weight
function tests mentioned above. These include power one tests, see Robbins (1970, pages
1405, 1408) for references; a test proposed by Darling and Robbins (see Robbins, 1970,
page 1404); sequential generalized likelihood ratio tests proposed by Lorden (1973); and a
test proposed by Whitehead (1975).

In this paper we study some of the above types of tests from the point of view of
admissibility. We assume observations are from an absolutely continuous distribution
which belongs to a one parameter exponential family; there are some further minor
technical assumptions. In particular our results include observations from a normal
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distribution with unknown mean and known variance. Slight modifications will accom-
modate the scale parameter of gamma distributions. The one-sided hypotheses we consider
are contiguous so that the intersection of the closure of null and closure of alternative is a
single boundary point. We assume that the risk function is a linear combination of expected
sample size and probability of error. Our main result is that any test whose continuation
region, in terms of the natural sufficient statistic, has unbounded width is inadmissible.
This result is applied to prove that any weight function test whose weight functions are
such that their support includes the boundary point is inadmissible. We also prove that
many open-ended tests, including the test of Robbins-Darling, some of Lorden’s tests, and
Whitehead’s test, are inadmissible. Tests of power one are trivially inadmissible for the
above risk function. All these open-ended tests are for models without an indifference zone.
The main result can also be applied to prove more generally that any test which is
obstructive is inadmissible. We define an obstructive test as one whose stopping time does
not have a finite moment generating function for at least one parameter point in the union
of null, alternative, and boundary.

Clearly some discussion is needed regarding the significance and practicality of these
results. In this connection it is necessary to discuss (i) the reasonableness of the loss
function, (ii) the nature and pitfalls of the concepts of admissibility and inadmissibility,
and (iii) the realization that some of the open-ended procedures were devised for formu-
lations that are sometimes not concerned with loss functions of the type studied here.

(i) The risk function which is a linear combination of expected sample size and
probability of error is classical in the sense that it was used by Wald (1947), Le Cam (1955),
Lehmann (1959), Ferguson (1967), and others in the development of the subject. More
importantly it is a prototype, for perhaps, sometimes more realistic risk functions corre-
sponding to loss functions that are linear combinations of cost of sampling and loss due to
incorrect terminal decisions. See, for example, Chernoff (1965). The results of this paper
easily extend to some of these other loss functions and can probably be extended to others.

(ii) To assert a test is admissible is not saying much since to be admissible a procedure
need only be very good at a single parameter point. Some degenerate procedures are
admissible. Inadmissibility is a much more compelling property in spite of the fact that
there are occasional examples where intuitive and worthwhile statistical procedures are
inadmissible.

(iii) The open-ended tests shown to be inadmissible here were derived to satisfy certain
properties, that perhaps are not consistent with optimizing the risk function here. This is
certainly the case of power one tests. Nevertheless, if the practitioner feels that a linear
combination loss function would not be an unreasonable formulation for his problem, then
the results of this paper are advising him to be wary of using such a procedure. As such, we
feel that the results of this paper yield important advice to the practitioner.

In addition to the inadmissibility results, we prove that for testing a normal mean, many
of the inadmissihle weight function tests are also obstructive.

In Section 2 we give preliminaries and discuss facts that will be needed to prove
inadmissibility and obstructiveness. Inadmissibility results are given in Section 3 and
obstructiveness results in Section 4.

2. Preliminaries and facts. Let X, X;, X,, .. be a sequence of independent and
identically distributed random variables. Let X = (X;, X5, - - -) and let ® be a subset of the
real line. We assume that there is a probability measure y which dominates the family
{Py(-}, 8 € O} of probability measures for X in the following sense: For each j = 1, 2,
-+« , over the o-field generated by X(,, = (X1, X5, - - -, X,), the measure P, is dominated by
u. Write fy,(x() = dPs/du relative to this o-field. We further assume that X is distributed
according to an exponential family so that its distribution is

(2.1) Py(dx) = B(0) exp{0T(x)} p(dx).

We assume that the measure p is a non-atomic probability measure. The sufficient
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transitive sequence S, =Y’-; T'(X)), at stage n, then has distribution

(2.2) P’ (ds,) = B"(0) exp(Bs,)y"™ (ds»),

n)

where y™ is the marginal distribution of S,. We further assume that y is absolutely
continuous with respect to Lebesgue measure and Y has an interval as its support. The
densities corresponding to (2.1) and (2.2) will sometimes be denoted by f;(x) and fyu(s»)
respectively. The null hypothesis space is ©; C © and the alternative space is ®, C ©. We
assume © = @; U ©,. The closures of ®; and ©; are denoted by ©; and 0, respectively. Let
Q = 0; N O,. We assume Q 7 {D}, the null set, and ®; C .4, O, C .4, where 4 is the natural
parameter space. Also assume there exists a positive number K such that [-K, K] C A/
The facts that fy(x) is exponential family and y"* is absolutely continuous with respect to
Lebesgue measure imply that supseefs(x) < o for almost all x; see Barndorff-Nielsen (1978),
Corollary 9.4, page 151. In this paper we consider only one-sided tests so that ®, = {§ €
0:0=< 0()}, (;)2 = {0 €0:0= 00}, Q= {0()}

A prior probability measure I" on ©(0) will be represented by a mixture =y + ml%.
Here =, is the probability that § € ©, and T, is the conditional distribution of § € ©,. We
write I' = (m, I';, T's). We let I', denote the sequence of posterior probability measures on
0,(0,), given S, = s,, so that for a measurable set A C 0,(9,),

(2.3) Iw(4) = f fon(s:)T.(dB) / {J fﬂn(sn)l—‘l(do)} .
A o,

The support of a probability measure I'(-) is defined as supp I' = N{C:T'(C) = 1, C
closed}.

The action space D consists of pairs (n, ) where n is the value of the stopping time N,
and 7 = 1 or 2, depending on whether 0 is accepted or rejected. The loss function, denoted
by L4, (n, 7)) =cnif 6 € ©,and L4, (n, 7)) = cn + 1if § € ©,. Here ¢ represents the cost
of each individual observation.

Let

(2.4) 8inlsn) = f fon(82)T.(dlB) / {m J fon(s:)T'1(dB) +772J' fon(8:)T 2(d0)},
o, o, 0,

so that 7,gin(s,) is the conditional probability that § € ©,, given S, = s,. Also let 7,(s,) =
min{7,8.(sx):i = 1, 2} and note m181n(Sx) + 7282n S = 1. Whenever 7,(s,) < ¢, the Bayes
test stops at stage n; see for example, Ferguson (1967, page 316). Let 8- denote the Bayes
test with respect to I" and let Nr denote the stopping time of the Bayes test.

Now let ' = (71, f‘l, %) where (T, Tv) is a pair of o-finite measures on ®; and 0,
respectively. Define a test 8(x) to be “generalized Bayes at s,” if among all §(x) it minimizes

(2.5)
WIJ f L(9, 3(X))Pa(dX*),3(9)es'0f‘1(da)+l'7T2J J L(8, 8(x))Py(dx*))B(0)e T (db),
6, Jx* 6, Ix*

where x* = (x5, x3, - -+ ) € x* and recall s; = T'(x;).

The following procedures comprise the class of tests B: At stage 0 accept, reject,
continue, or randomize between these three possibilities. At stage 1, there is an interval
(a1, @z), (—» = a; = @y = ») such that if s; < a; the procedure stops and accepts H,:0 €
©y; if s; > as, the procedure stops and rejects Hy; if a; < s; < a,, then the procedure is
generalized Bayes at s; with respect to a distribution I" = (m;, T, T%), where T,i= 1, 2 are
o-finite measures on ©; and

(2.6) J' eBO)T.(d) < .

0,

(3
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The model and assumptions of this section enable us to establish the following facts:

Facr 2.1.  For testing ©, vs O, the class of tests B is complete. Fact 2.1 is proved by
using Theorem 5.1 of Brown, Cohen, and Strawderman (BCS) (1980), and Remark 3.6 of
Berk, Brown, and Cohen (BBC) (1981b). Theorem 5.1 of BCS (1980) is stated for the case
where the cost of the first observation is zero. When the cost of the first observation is ¢
> 0, the only difference is that one has an opportunity to stop at stage 0, which is now
reflected in the description of the class B. From BCS (1980) it is seen that tests in B are
regular limits of sequences of Bayes tests. Suppose that the cost of the first observation is
¢ > 0. Then for any sequence of priors (71, I'ix, I'2z), if a subsequence of {1} converges
to a number less than c or greater than (1 — ¢) the limiting procedure of the sequence of
Bayes tests would stop at time zero. Hence if the limiting procedure in B observes X; at
stage 1, any subsequences of 71, would have to converge to a limit 7; such that ¢ = m =<
(1— ¢). This explains why in this paper a test which is generalized Bayes at s; is with
respect to a distribution I' = (7, T, ) while in BCS (1980) such a test is with respect to
a distribution f‘ = (f‘], fz)

In what follows it is convenient to partition B into the following three mutually exclusive
sets: Bayes tests, tests which are not Bayes but stop at stage 1 (i.e., a; = ay), tests which
are neither of these but are generalized Bayes at s;. Let these latter tests be designated as
GB. Also it is more convenient to let I' = (m;, I';, I';) represent the distribution for which
Or is Bayes or GB. When I'; and/or I'; are not proper we say I' is a generalized prior
distribution. We allow only those I" that satisfy (2.6). In the remainder of the paper we
write prior distribution to represent proper prior and generalized prior unless a distinction
is necessary. We remark here that the results of the present paper will also apply to the
case where the cost of the first observation is zero.

Fact2.2. Every Bayes test and every test which is GB for testing ©, vs ©, is monotone.
In BCS (1979) Theorem 3.2 and Example 4.1, it is proved that every Bayes test for testing
©; vs O, is monotone. The proof works without any changes for testing ©; vs ©, and for
tests which are GB for testing ©; vs 9.

For every prior distribution T, let the monotone 8r be described as follows: For each n,
if a’(n) < S, < b%'(n), continue to stage (n + 1); if S, < a'(n), stop and accept; if S, = b''(n),
stop and reject. Also define AT(n) = a"(n)/n, and B (n) = b (n)/n.

Fact 2.3. For testing ©; vs Oy, if 6 € supp I',, i = 1, 2, then the stopping time of the
Bayes test or test which is GB is bounded. Theorem 3.1 of BBC (1981a) proves the result
for Bayes tests. The proof however only requires that the posterior distributions, given S,
= 8n, I'nu(+), T = 1, 2, be probability distributions, which is the case even if I" is a generalized
prior.

Facr 2.4. For testing ©; vs ©,, the stopping time Nr for any Bayes test or test which
is GB is exponentially bounded for each §' € ©. See BBC (1981b) Section 2, for the
definition of exponentially bounded stopping time. See Remark 3.6 of that reference for
the proof of Fact 2.4 for Bayes tests. Once again the proof only requires that the posterior
distributions given S, = s,, I'..(+), i = 1, 2 be probability distributions, so that Fact 2.4 is
true for tests which are GB.

Let G, be probability measures on ©,,i = 1, 2. Let X = S,/n and let 0 < 7; <-1. A weight
function test for G = (7, G1, G;) is defined in terms of

@7 7(X) = magon(nX) /71 812 (NX)

=y f B7(0) exp nx8 Go(db)/m j B"(8) exp nx8 G(d#),
0, 9,
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and a pair of constants A, B, 0 < A < 1 < B < «. The weight function test (G, A, B) is as
follows: Stop and accept if r,.(X) < A, stop and reject if r,(X) = B, continue if A < r,(x) <
B. Note that r,(x) is a strictly increasing function of x. It follows that the quantities

(2.8) A, = A.(G, A), B, = B,(G, B) defined by r(A,) = A and r(B,) = B

are uniquely defined. If a(n) = n A, and b(n) = n B, then the weight function test can be
described as follows: For each n, if a(n) < S, < b(n), continue to stage (n + 1); if S, < a(n),
stop and accept; if S, = b(n), stop and reject. The strict monotonicity of r,(x) as a function
of x implies that a(n) < b(n), and so for any finite integer m, there is a set of positive
Lebesgue measure and hence positive probability for all distributions in the model, for
which the weight function test continues at least to stage (m + 1).

We will need to study properties of weight function tests G = (m, G1, Gz) where G,, i
=1, 2 may not be probability measures but G is a generalized prior. Corollary 3.2 of Section
3 will apply to those weight function tests which do not have a bounded stopping time,
which is the case when the G, are proper or G is a generalized prior.

If the stopping time of a sequential test does not have a finite moment generating
function for a value of the parameter 6, say § = 6*, then we say that the stopping time is
obstructive at 8*. In this paper, we say that a test is obstructive if there exists a value of
8, say § = 6*, lying in union of the null, alternative, and boundary such that the test is
obstructive at 6*. See Wijsman (1979) for a slightly different definition and for more
discussion of the notion of obstructiveness.

3. Inadmissibility. The main result is given in this section. We prove that for any
test in B, lim,_{b"(n) — a'(n)} < o, for any prior I". This implies that any test whose
continuation region has unbounded width cannot lie in B and hence is inadmissible. The
main result will be applied to prove that weight function tests based on weight functions
G such that 6, € supp G, are inadmissible. For such weight function tests we show
lim,.{b(n) — a(n)} = . The main result will also yield that any obstructive test is
inadmissible.

Note in Fact 2.1 that B consists of tests which are Bayes or GB for testing ©, vs ©,. Fact
2.3 however, which will be used subsequently, is stated for tests of ®; vs ®,. When testing
0, vs @, it may be possible that if 8, € supp T',, i = 1, 2, that the stopping time is
unbounded. The priors with 6, € supp I, that may result in Nr being unbounded, must put
point mass at 6 as part of ©; and as part of ©,; See BCS (1980), page 382 for clarification
of this specification. Furthermore, there must exist a number 6; < 6, and/or a number 6,
> @, such that I'; puts no mass on the interval (6, ) and/or I'; puts no mass on the
interval (6o, 62), while 8, and/or 6. lies in the support of I'; and/or I'; respectively. Call such
priors, gap priors. For all nongap priors with 6, € supp I';, i = 1, 2, Nr has bounded
stopping time; see the arguments in BBC (1981a). Keep in mind that the weight function
tests to be shown inadmissible are tests for ©; vs @,. Recall from Fact 2.1 that B is a
complete class for testing ®; vs ©; but that tests in B are tests for ®; vs ©,. B is also a
complete class for testing ©; vs @y; see BCS (1980). When we refer to Bayes or GB tests we
regard them as tests of ©, vs @,. It will be necessary to study weight functions tests related
to Bayes and GB tests. That is, in the proofs of the lemmas to follow we need to study
properties of weight function tests with the same prior as the given Bayes or GB test. At
such times these related weight function tests are for ©; vs ©,. As the proofs are developed
the above remarks will be elucidated.

LEMMA 3.1. Let T be a prior on ©, U ©,. Then

(3.1) Af(n) = AT, [¢/(1 = ©)]), B"(n) = B.(T, [(1 — ¢)/c)),
where A, and B, are defined in (2.8).
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Proor. Recall that the Bayes or GB test (hereafter we shall just write Bayes test) will
stop if 7,(s.) < c. In other words the Bayes test will stop whenever 7,g..(s.) < ¢, fori =1
or 2. From (2.4) and (2.7) this will occur whenever r,(x) = (1 — c¢)/c or r.(x) < ¢/(1 — ¢).
]

Now let § = sup{6:0 € supp I'1}, 8” = inf{0:6 € supp I'2}, and t* = {log B(¢') — log
B(@7)}/(8” — &). Note that 6* defined by E,* = t* is equidistant from & and 8” in the
Kullback-Liebler sense. Also assume —o < # < §” < o,

LEMMA 3.2. Let I" be a prior on ©; U @,, but not a gap prior. Let A, B be any pair of
fixed numbers such that 0 <A <1< B < o. Then

(3.2)  limpawAn (T, A) = t*, lim, AT (7) = ¢*, lim,,B. (T, B) = t*, lim,_.B' (n) = t*.
Proor. Consider r,(t) defined in (2.7). Recall r,(¢) is strictly increasing in ¢. For any
fixed ¢ such that t* < t or t* > ¢, it follows using the definition of ¢*, that r,(f) — o or 0

respectively as n — oo, This yields the desired conclusion for A, and B,. Use Lemma 3.1 to
obtain the conclusion for A" (n) and B'(n). O

LEmMMA 3.3. Let T be a prior on ©, U @,, but not a gap prior. Let A, B be as in Lemma
32.If0” — ¢ >0, then

(3.3) lim,_.n{B"(n) — AT(n)} < o and lim,.n{B.(, B) — A.(', A)} < co.
If0” = @ = 6, then
(3.4) lim,..n{Bn(I', B) — A.(T', A)} = .

ProoF. Let A,(t) = log r.(¢) where r,(¢) is defined in (2.7). Note that

(8/3t)An(2) = n{J” 6e™ 8"(6)T'5(db) / J” B (0)T2(d0)
¢ ]

o 6’
- j e B (O)T'1(d6) / j e”a‘ﬂ"(ﬂ)I‘l(dlﬁ’)}.

(3.5)

By Lemma 3.2 we need only be concerned with values of ¢ in a small neighborhood of ¢ =
t*. Uniformly for such values

J 6e™"B™(0)T5(d6) / f "B (0)T(db) — 6"
o o

o 6
and J 0e"’”,8"(0)I‘1(d0)/J "B (0)T1(df) — 6.

Hence (3/0t)A.(t) — n(8” — &), uniformly for all ¢ in a neighborhood of ¢*. It follows by use
of (3.2) and the mean value theorem that

(3.6) {An(Ba(T, B)) — M(An(T, A))}/{B.(T, B) — A,(T, A)} = (3/8t)An(t) |i=¢,
where ¢’ is in the neighborhood of ¢*. Thus, from (3.5) and (3.6) we have
3.7) lim, n{B.(T, B) — A.(I', A)} = {(log B —log A)/ (8" — &)} <

if @ — & > 0. Lemma 3.1 yields the other statement in (3.3). If §” = @ = 6, then given
€ > 0, ¢ arbitrarily small, there exists a neighborhood about ¢, where Eg X = fo, such that
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uniformly for all ¢ in the neighborhood, as n — o, the lim sup of the bracketed expression
in (3.5) is bounded above by 2¢. Thus, in this case lim,_.n{B.(T, B) — A,(l, A)} = (log B
— log A)/2¢. Since £ > 0 is arbitrary, lim,_,.n{B.(I’, B) — A.(I’, A)} = .0

LEMMA 3.4. Let T be a gap prior on ©, U ©,. Then lim,_,..{b"(n) — a’'(n)} < o.

Proor. The Bayes or GB test stops at stage n whenever 7,8,,(s,) < c fori =1 or 2.
Lemma 2.2 of BBC (1981a) implies that the Bayes or GB test will also stop at stage n if for
i =1and 2, T':({6}) > 1 — ¢, for a suitably chosen small ¢ > 0. Hence let us study 7,g..(s:)
and I';,,({6}). Note that

T2 &on(t) = {WzYz,gn(oo)e"w" + 7 j B"(o)enwrz(da)}/

2}

4
{77171,3"(00)8"”’“ +m J' B(8)e"“T'1(d6)
(3.8) -

+ may2B"(Bo) ™™ + j B"(ﬂ)e”wFQ(dﬂ)}
23

= (may2 + w2(8))/{my1 + wi(t) + moy2 + wa(t)},

where 0 <y, <1,i=1,2, and

us(t) = mo f B(0)e™T5(dB) /8™ (8o)e™,
(3.9) "2

[
w(t) = WIJ B*(6)e" T'1(dB) /B" (Bo) €.

Also note that
(3.10) Tri({60}) = my./ {7y, + wi(t)}.

Now let #; be the point such that Ej X = ¢;, and 6; is equidistant in the Kullback-Liebler
sense from 6, and 6;, i = 1, 2. That is, for example, . = {log B(6o) — log B(62)}/ (62 — 6o).
Recognize that u.(t) has the properties of r,(¢) in the sense that it is strictly increasing in
t and tends to o as t — oo, Furthermore for fixed ¢ > %3, lim,_.u2(¢) = o and for fixed ¢ <
£2 lim,_.us(t) = 0. The properties of {u:(¢)} ™" can be similarly expressed. Furthermore for
fixed t > to, where t, = Eg X, lim, ,t:1(f) = 0, while for fixed ¢ < to, lim,_,«u2(f) = 0. These
facts imply that for n sufficiently large the event us(f) > R, is contained in the event
71 &81.(t) = ¢, the event us(t) < R, is contairied in the event I',2({6}) > 1 — ¢, the event
u;(t) > Ry is contained in the event 72 g2,(f) < c, and the event u,(¢) < Ry; is contained in
the event I',1({6o}) > 1 — ¢, where R,j, i = 1, 2; j = 1, 2 are constants such that 0 < R;; =
R < 1;0 < Ri2 = Ry < 1. For t > ty, and ux(t) < Rz and n sufficiently large, I'n2({60}) >
1 — ¢ and I',1({6}) > 1 — ¢ also, since for such ¢, u;(¢) will be close to zero. Similarly for
u1(t) < Ry with ¢ < t,. Thus the w.(t) and R,, determine a pair of stopping boundaries, call
them Uj;(n), such that for all n > m (m sufficiently large) the Bayes or GB test stops at
least as often as ¢ lies outside the intervals [U11(n), Usi(n)], [Uia(n), Usa(n)]. Treating us(t)
as we did r,(¢) in Lemma 3.3, treating frast* G, as 0", 6 as ¢, using the same argument
as in Lemma 3.3 we find

(3.11) lim,,_,n{Us(n) — Uia(n)} < o and lim,_on{Us(n) — Uni(n)} < .

Since the Bayes or GB test is monotone by Fact 2.2 the stopping bounds for 8r are
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contained within either [ U11(n), Us1(n)] or [ Uiz2(n), Usz(n)] for sufficiently large n. It follows
then from (3.11) that lim,_.(b: — al) < .0

A remark pertaining to Lemma 3.4 will be made after Corollary 3.2 below. Now we
prove

THEOREM 3.1. Any test whose continuation region has unbounded width is inadmis-
sible.

PROOF. A complete class of tests is B, where B is defined in Section 2 before Fact 2.1.
Tests which stop at stage 1 have bounded stopping time. All other tests in B are Bayes or
GB. Suppose H = (7!, H,, Hy) is a non-gap prior with 6 lying in the support of H,. Then
it follows from Theorem 3.1 of BBC (1981a) that 85 has bounded stopping time. Hence for
such priors lim,_..n(B — AH) = 0. For priors not satisfying the condition that 6, lies in
the support of both H,, Lemma 3.3, equation (3.3) implies lim n(BY — A¥) < «, while for
gap priors Lemma 3.4 implies lim n(Bf — A¥) < «. This covers all tests in B. Thus all
tests in B have continuation regions with bounded width. 0

COROLLARY 3.2. Let I" = (m, I'y, I's) be a prior on © such that 6, is in the support of
both I'y and I's. Then any weight function test (I', A, B), 0 < A < 1 < B, is inadmissible.

Proor. For the given weight function test, equation (3.4) states that lim,_...n{B,(T,
B) — A,(T’, A)} = . The corollary now follows immediately from Theorem 3.1. 0

REMARK 3.1. Lemma 3.4 was used to prove that (I', A, B) could not be Bayes or GB
with respect to a gap prior. This fact can be proved more easily than in Lemma 3.4 but the
easier proof does not give the property stated in Lemma 3.4. The easier proof is as follows:
Without loss of generality let # = 0. There exists as ¢ > 0 such that for all n sufficiently
large, the Bayes or GB test with respect to a gap prior, will stop at stage n if | X,, | < &. This
follows from Lemma 2.2 of BBC (1981a) and the beginning of the proof of Theorem 3.1 of
that reference. Hence the stopping region for large n includes the set —ne < S, < ne. On
the other hand, from Lemmas 3.2 and 3.3 we have A,(T", A) — 0, B,(I', B) — 0 and either
n B,(T, B) - x or n A,(I'y, A) - —x. Hence the continuation region for the weight
function test must include some of the stopping region for the Bayes or GB test.

COROLLARY 3.3 Any test which is obstructive is inadmissible.

ProoF. Theorem 3.1 implies that for any test in B, im{b*(n) — a’(n)} < c. It follows
as a consequence of Stein’s Lemma, see Wijsman, 1979, page 249, that any such test has
exponentially bounded stopping time for all § € ®; U .. Thus any obstructive test is
inadmissible. 0

The test of Darling-Robbins, Lorden’s tests of contiguous hypotheses, and Whitehead’s
test are all easily seen to be obstructive. This is so because for each test there exists at
least one parameter point in the union of null, alternative, or boundary for which the
expected stopping time is infinite. Tests of power one are obviously obstructive and
therefore inadmissible. However, this result does not require Corollary 3.3, since the test
which rejects without any observations is better than a power one test for the linear
combination loss function.

4. Obstructiveness. In this section we assume X is normal with mean # and known
variance o2, which without loss of generality is taken to be 1. Also 6, is without loss of
generality set equal to 0. Let (G, A, B) be a weight function test and we claim that most
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of the (G, A, B) for which {0} lies in the support of G,, i = 1, 2, are obstructive at 0. More
precisely obstructiveness at 0 could be established for the following four nonmutually
exclusive cases:

(i) Symmetric case: 7 = m, Gi(—df) = G2(db)
(ii) Partly symmetric case: m; 5 m, Gi(—df) = G2(df), with a condition on .

Let Gi(df) = g.(0) df, i = 1, 2. That is, g:(f) are densities.

(iil) limg,o-g1(6) = y1 > 0, limgo+&2(6) = y2 > 0.

(iv) limg_o-g:1(8) = 0 and/or limgo+g2() = 0, and 0 < limye-g*” (f) < o and 0 <
limg0+g¥?(f) < o, where gi* is the k,th derivative of g,(f) and %, is the smallest
positive integer for which 0 <limg_o-g{*V () < . Similarly for 2, andg¥? .

For proving cases (i) and (ii), a theorem of Lai (1977, pages 211-212) could be applied. For
the other cases, a theorem of Lai and Wijsman (1979, pages 675-676), could be applied. We
omit the details.
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