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ON THE ASYMPTOTIC ACCURACY OF EFRON’S BOOTSTRAP!

BY KESAR SINGH?

Stanford University

In the non-lattice case it is shown that the bootstrap approximation of
the distribution of the standardized sample mean is asymptotically more
accurate than approximation by the limiting normal distribution. The exact
convergence rate of the bootstrap approximation of the distributions of sample
quantiles is obtained. A few other convergence rates regarding the bootstrap
method are also studied.

1. Introduction and main results. Recently, Efron (1979) introduced a very general
resampling procedure, called the bootstrap, for estimating the distributions of statistics
based on independent observations. The procedure is more widely applicable and perhaps
has more sound theoretical basis than the popular Quenouille-Tukey jackknife. Efron
considered a number of statistical problems and demonstrated the feasibility of the
bootstrap method. The purpose of the present investigation is to examine the convergence
of the bootstrap approximation in some basic estimation problems.

A formal description of the bootstrap goes as follows. Let {X;, X, - - -, X,} be a random
sample of size n from a population with distribution F and let T(X}, - - -, X,; F) be the
specified random variable of interest, possibly depending upon the unknown distribution
F. Let F, denote the e.d.f. (empirical distribution function) of {X;, .-, X,}, ie., the
distribution that puts mass 1/n at each of the points X;, - - -, X,.. The bootstrap method is
to approximate the distribution of T(Xj, . - -, X,,; F) under F by that of (Y7, - - -, Yn; Fy)
under F, where {Y1, ---, Y,} denotes a random sample of size n from F,.

For the present asymptotic study, we have selected only very basic cases of T(X, - - -,
X; F), namely (X, — p), (X, — p)/o and F,'(¢) — F'(¢), where X, = n™' Y%y Xi, p =
Er(X), 0 < 0® = Vi(X), and F,'(¢) and F~\(t) are the right-continuous versions of the
inverses of F, and F respectively, at some fixed ¢ € (0, 1). The attempt in this paper is to
present more or less complete asymptotic results for these basic random variables. The
author would like to mention here that the present paper and Bickel and Freedman (1980,
1981), which also deals with asymptotics for the bootstrap, were prepared independently
at around the same period.

The main findings of this work are contained in the two theorems stated in this section.
The proofs are given in Sections 2 and 3. The statements are valid for almost all sample
sequences, i.e., with probability one under F**. In what follows, Y, = n”' Y%, Y;, s2 =
n_l ?:1 (X, - X,,)2, G,,(x) = #{Y, =X l=:i=< n}/n, U3z = EF(X - M)a, ﬁg = n"‘ZE’:l (X, -
X,)’,and p = Er| X — p|*. P and P* denote probabilities under F and F,; E and E* denote
expectations under F and F,, respectively. || ||.. has been used for sup,cr| |.

Parts A and B of Theorem 1 study the uniform convergence to zero of the discrepancy
between the actual distribution of n'/*(X,, — u) and the bootstrap approximation of it. Parts
C, D and E concern the same convergence problem for the distribution of n'/*(X,, — p)/o.
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In particular, suppose the underlying distribution is non-lattice. Then (1.5) together with
the two term Edgeworth expansion for P(n'*(X, — yu)/o < x) implies that the bootstrap
method has an edge over the approximation by the limiting normal distribution in the case
of the standardized sample mean. The leading term of the Edgeworth expansion for sample
means suggests that the difference in accuracies of the two approximations decreases with
decreasing skewness of the underlying distribution and is non-existent for symmetric
distributions. It follows from Part E of the theorem that the convergence in (1.5) is not
valid in the lattice case. However, as suggested by (1.7), the effect of discreteness caused
by rounding of data at higher decimal points should be negligible for moderate sample
sizes.

Theorem 2 establishes the consistency of the bootstrap approximation of the distribution
of n'?{F,;'(t) — F~'(t)} and provides the exact rate at which the discrepancy converges to
zero. The normal approximation for this distribution is better than the corresponding
bootstrap approximation provided F’(F~'(¢)) is exactly known (see Reiss (1974)). However
it is rare that F’(F~'(t)) is known. In essence, the theorem says that in the case of quantiles,
the bootstrap approximation is as good as the normal approximation, with F’(F~'(¢))
replaced by a sample estimate, such that the difference between F’(F~'(¢)) and the sample
estimate is O(n~"/*(log log n)'’?) a.s.

We now state the theorems.

THEOREM 1.
A. If EX? < o, then
(1.1) |P(n'A(X, —p) =x} — P*(n"*(Y,—X,) =x}||l-.— 0as.

B. If EX* < o, then

lim sup,_.. n'*(log log n) 2| P{(n**(X , — p) < x}
(1.2)
— P*(n (T — %) < )| = (20°V27e) " V2VR(X — p))) a.s.

where Ve((X — w)?) is the variance of (X — j)* under F.
C.IfE|X|? < o, then

lim sup,_.. po °n"2|| P{n"*(X , — ) /o < x}
(1.3)
- P*(n" (Y,-X,)/sn=x}|.<2K as,

where K is the universal appearing in the Berry-Esséen bound.
D.IfE|X|® <  and F is non-lattice, then

(14)  P*n"AY,—X.)/sn<x} =®x) + {us(1 — x9)/(66°n"?)}é(x) + o(n™"?)

uniformly in x a.s. where ®(x) and ¢(x) are the standard normal distribution function
and density, respectively; therefore, in this case

(1.5) n2|P(nV* X, —p/o<x}) — P*(nV (Y, - X,)/sn < x}||o > 0 as.
E. IfE|X|® < « and F is lattice with span h,

P*{(n"* (Y, — X,)/sn < 2} = ®(x) + {ps(1 — x%)/(60°n"") }p(x)
(1.6)
+{h/(on'?)}g(n"*s,h ' x)p(x) + o(n™"?)

uniformly in x a.s. where g(y) = [yl —y + 1/2 for all y € R. Also, in this case,
(1.7)  lim supn_. n'%|| P*{n"*(Y , — X,.)/sx < x}
— P(n"* (X, — w/0 =< x}||e = h/V2m0* as.
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THEOREM 2. If F has bounded second derivative in a neighborhood of F~'(t) and
F(F7Y(t)) > 0, then a.s.
lim sup._.. n'*(log log n)~2|| P[n"*(F;*(t) — F7'(t)} < x]
(1.8)
- P*[n'*{G;'(#) = F'(8) = x]||= = Kep,

a constant depending upon t and F only.

2. Proof of theorem 1. In this section we give the proofs of all five parts of Theorem
1, and towards the end some remarks concerning these conclusions.
Part A. If E X? < o, s2 — 02 > 0 a.s. Therefore, (1.1) follows if we show that
(2.1) | P*{n"* (Y, — X,)/sn < x}) —®x)||-.—0 as.
By the Lindberg-Feller CLT, (2.1) holds provided
SPE* X -X)(|X-X,|=en?s,) >0  as.

for all € > 0. But, since s2 — o and X,, — p a.s., this essentially amounts to showing that,
for all € > 0,

(2.2) Y X — X) I(X? = € n) = o(n) a.s.

E X? < o implies Y%, P(X? = € i) < «, and hence {X? = € i} happens only for finitely many
U’s a.s. Thus, the left hand side of (2.2) is in fact bounded a.s.

Another very interesting way of seeing (2.1) is as follows. By the Berry-Esséen theorem,
the left hand side of (2.1) does not exceed

Ks’n ' 2E*|Y - X, =4 Ks°nVAE* | Y|’ + | X.|) >0  as.

since, as a consequence of the Marcinkiewicz-Zygmund SLLN n*2¥%, | X;|®> > 0 as. if

EX*<o.
Part B. Writing s2 — 62 = E*(Y — p)> — E(XX — u)* — (X, — p)%, and applying the law
of iterated logarithm, we see that, if E X* < oo, then
2.3) lim sup,..n'2(log log n) 2| s2 — 02| = V2Ve((X — p)?)  as.
Due to the Berry-Esséen bound,
| P{n"*(X, — p) < x} — ®(x/0) || < Kpon?

and

| P*(nVX(¥, — X,) < x} — ®(x/s0) ||« < K s2°n’E* | Y — X |>.
Further, using the Taylor expansion and (2.3) it is found that

| ®(x/s0) — ®(x/0) — x(s7" — 67" )p(x/0) |« = O(n ' loglog n)  as.
In view of the above bounds, (1.2) follows from the equality
lim sup,_..n"?(log log n)""?|| x(s;.* — 6 ")¢ (x/0) |» = r.h.s. of (1.2),
which is clearly so because of (2.3) and the identity
| x ¢(x/0) || = o (27 €)™/

Part C. This part is an immediate consequence of the Berry-Esséen theorem. We
approximate both the probabilities appearing in (1.3) by the standard normal distribution
and collect the error bounds provided by the Berry-Esséen theorem.
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Part D. Let us write y(¢) for E(e) and y*(¢) for E*(¢""). Appealing to Esséen’s
lemma (see Feller, 1970, Lemma 2, page 538), we have

| P*(n2( ¥ — Ko /80 < %) — @(x) — {fis(1 = 23)/(6 51"} (1) |1

avn~
= f [4*(t/savn) — e 2(1 + is(it)*/(6 53 Vn)} | £ dt + b/avn

—avn~

for all @ > 0, where b is an absolute constant. For technical reasons, the above integral is
broken into two parts, one over | £| < 8 n'/? and the other over the remaining region, where
8 € (0, a) is to be chosen sufficiently small.

To exploit the non-lattice nature of F for estimating the integral over 8 n'/* < |¢| <
an'’?, we show that, for any fixed a > 0,

(2.4 Supy=a | Y (¢) — ¢*(t)| = 0 as.
To this end, let us note that if E | X | < o, then
(2.5)  supy=a| ¥ (@) — ¥*() | = max{| Y (&) —¢*(O) |; ¢t = £1/n, *2/n, - - -, £[an]/n}

+ O(1/n) a.s.
Further, by an elementary exponential inequality, it follows that for all |¢| < a and € > 0,

P(|y(t) —y*@®)| z= €) = 0(e™)

where A > 0 does not depend upon ¢. This bound, along with (2.5) and the Bonferroni
inequality leads to (2.4). Clearly, (2.4) and the fact that ¢ () # 1 for all £ # 0 imply together
that the integral over the region § n'/? < | ¢| = a n'/? decays exponentially fast a.s. for all
0<é<a.

To bound the integral over | ¢| < § n'/%, we expand ¢*(#) up to three terms and estimate
the remainder. To do that, we write exp(itY) as cos(tY) + i sin(¢Y), and expand both

terms by Taylor’s expansion separately and take the expectation. It turns out that, if we
write

(2.6) UHE) =1 — s2t?/2 + (i) *s/6 + t°r(2) /6
and E | X?| < o, then
2.7) lim.,, lim sup,_.«(a.s.) sup¢=|r(t)| =0

If |t/ &| = § and ¢ is sufficiently small, one can show by using (2.7) and the expansion
log(1 + x) = ¥ 2.(—1)"*'x'/i (valid for | x| < 1) that | ri(¢) | < (£/n + | t|*/n**)? for all large
n a.s. where

2 F (.. ¢ £ F [, t
ri(t) =log| 1 — on + e Uls + rf A + T pm Uiz + P .
Thus,

V*(t/s.Vn) = e°% exp[(£/6 sin"?) (Pfis + r(t/s.n?)} + n ri()].

This expression is approximated by using the bound | e* — 1 — x| < | x|?%¢'*!/2, valid for all
complex numbers. Combining all these bounds together we have

\P*n( ¢ >- e’zﬂ{l 4 }
savn 6 sivn

3
< Itl r( t )e—¢2/2
6svn \s.vn

|t|3 t |t|3 1 —t2/4
+i—=+|—=+—=5 e
Vn vn n¥

for all large n a.s. provided | t/vn | = 8> 0 for § sufficiently small. The desired result (1.4)
is concluded from this last bound and (2.7) as a can be chosen arbitrarily large and &
arbitrarily small.
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Part E. From the Borel-Cantelli lemma it follows that if F'is lattice with span A, then
so is F, for all large n a.s. So, for asymptotic purposes, we can and we do assume that F,
is lattice with span A. In the lattice case the proof given for Part D breaks down in the
region 8 n'* < | t| = a n"2 To arrive at (1.6), we first establish that

(2.8) |A@)* U, || = o(n™?) a.s.,

where A(x) = P*{n"*(X, — Yu)/sn < x} — ®(x) — {fis(1 — x°)/(6 s;in'"*)}¢(x), U, is the
uniform distribution over [—4/2s.n"?, h/2s,n"/*] and * stands for the convolution operator.
For (2.8) we essentially have to show that, forall0 < d<a <

j U*(t/s.n?) sin(t h/2s.n""%) (Eh/25,n"*) 7 dt = o(n™'?)
|¢|€[8Vman]

which is equivalent to

,

— f Y*"(¢/s,) sin(t k)2 s,) dt = o(n”?) ass.
é=<|t|=a

Both the functiqns Y*(t/s,) as well as sin(t h/2 s,) have period 27 s,./h; hence (2.8) follows
if we have, for some 0 < € < 27 o/h,

(27s,/h)—€
f tY*"(t/s,) dt = o(n”"?) as.

As seen from (2.6) and (2.7), for all ¢ in a neighborhood of 0, | {*(¢/s,) | <e"*/* eventually
with probability one. Also, for any 0 < € < 7 a/h, | {*(¢/s.) | is bounded away from 1 over
t € [e, 27 s,/h — €] for all large n a.s., in view of (2.4). These facts lead to (2.8).

Let us now derive (1.6) from (2.8). Since, a.s.

[@(x) + {fis(1 — %% /(6 530"} (x)]x U, = ®(x) + {fia(1 — 2%)/(6 ssn'/*)}¢ (x) + o(n™'?),
(2.8) is the same as
(2.9 P*{n"*(Y,—X,) /s = x}+U, = ®(x) + {us(1 — x%)/(6 6°n")}¢ (x) + o(n™""?) ass.

The distribution of n*/*(Y, — X.)/s, is lattice with span A/s,n'? and 0 is one of the points
with positive mass. Consequently, the expansion given in Part D holds uniformly at all
points of the form (2/ + 1)A/2 s,n'/?, where j denotes integers; and also

P*(n"*(Y, — X,)/sn = J h/sun'?} = (B/s.0'")$ (j h/sun'?) + 0(n™'?)
uniformly over all integers j a.s. As a result of these estimates of the jumps,
P*(n'A(Y, — X,)/sn < x}xU, = P*(n"*(Y, — X,) /sn < x)
(2.10) — g(x n'2s,/h) (the jump at the nearest lattice point from x)
= P*(n"*(Y, — X.)/s. < x} — (h/on"Dg(x n'*s,/h)$ (x) + o(n~""?)

uniformly in x a.s. The proof of (1.6) clearly ends by substituting (2.10) into (2.9).
Turning to (1.7), according to Theorem 3 of Esséen (1945), if F is lattice with span A
and x, is one of its discontinuity points, then

M:s(l - xz) h
—x) +—=g
6 0°Vn ovn

a.s., where x, = {(n xo/h) — [n xo/h]}(h/o n'’?). Thus, (1.7) amounts to showing that
(2.11)  lim supp .. || {g8((x — xa)o n'%/R) — g(x 5,02 /B)}p(x) ||l = 1/V27  as.

_ 1/2
P(nV*(X, — u)/o = x) = ®(x) + (ix——xﬂ—

-1/2
7 >¢(x) +o(n™%)

Since the function g is bounded by 1/2 in absolute value, obviously the lim sup above is
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less than or equal to ¢(0) =1/ V2r. To get the inequality another way, note that the event
{0 — s, > n""*(log log n)'/*} happens for infinitely many n’s, a.s. xs,n'/?/h takes integer
values at x = jh/s,n'? j =1, 2, ---, and at such a value of x, the difference xon'/*/h —
xspn'?/h equals j(o — s,)/s,. As j varies from 1 to [#n'/?] for § > 0, the difference j(o —
5.)/8. grows to more than [6n'?]n""*(log log n)"/*/s,, infinitely often a.s. Consequently,
for any fixed € > 0 and & € (0, 1), there exists z, € (0, €) for infinitely many n’s a.s., such
that z,s,n'?/h is an integer and (2, — x.)on'*/h — 2,s,n"?*/h € (1 — 8, 1). For such a z,,
obviously

|&((2n — x2)on'?/h) — g(2ns.n'?/h) | =1 — 6.
These facts amount to the conclusion that the lim sup in (2.11) is greater than or equal to

(1 — 8) infreq¢(x) a.s. Since € > 0 and 8 € (0, 1) are arbitrary, the desired result follows.

REMARK 2.1. To get some idea about the effect of dependence on the bootstrap, let us
consider the simple case when the X, are m-dependent. Since Y, Y., ..., Y, are
conditionally independent and s2 still converges to ¢” a.s.,

n'*(Y, — X.) -« N(0, 6%) as,
whereas according to the CLT for the m-dependent processes
n'2(X, — p) >« N0, 0% + 2 Y727" cov(Xi, Xi+i)).

Thus, the bootstrap as such should not be expected to provide consistent approximation
even in the case of weak dependent processes; however, if the X, are derived from some
independent sequence of r.v.’s and the exact generating procedure is known, then the
bootstrap can be modified suitably to get rid of such inconsistencies. A detailed study on
this line seems desirable.

REMARK 2.2. P*{n'*(Y, — X.)/s.» < x} can be expanded up to as many terms as one
wants under the usual moment conditions, but we do need to impose the Cramér condition
on F. In particular, the three term expansion easily leads us to conclude that

| P*{n"*(Yn — Xn)/sn < x} — P{n"*(Xn — p)/0 < x} || = O(n"'(log log n)"/*) a.s.
provided E | X |® < o and the Cramér condition about F holds.
3. Proof of Theorem 2. This proof is somewhat long, so we shall separate out the major

steps and present them in the form of lemmas. Further details of the proofs can be found
in Singh (1980). We start off with an exponential bound.

LEmMA 3.1. If &, &, ---, & areiid, & = 1 — p or —p with respective probabilities p
and 1 — p, then for anyu < N,p < B, Z < D and ZNB < D? we have
P{Y &= (1 +e/2)D) < 2e%

The proof is an elementary application of Markov’s inequality and we omit it.

LEMMA 3.2. Under the conditions of Theorem 2
SUP|xj=iogn(l + | x|) V2| Fo(FR () + xn™"?)
— F,(F,'(t)) — F(F;'(t) + xn”'?) + F(F;'(¢)) |
= O(n"**(log log n)'/?) as.

ProoF. Because of the law of interated logarithm for F;'(¢), it suffices to show that
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SUPx|<logn,|y|<logn

Vn

1 y iy L XY -1 y
—F|\F(t)+=—=)|—-F|F (t) + + FF(t) + =—=
()=o) e el Z))]

= 0(n"**(log log n)"/?) as.

1+ |x|)_1/2(Fn<F‘1(t) L Ery )

Let us adopt the following notations: R,(x, y) = the expression inside | | above,
Smal@, b) = Yiim[I(min(a, b) < X, = max(a, b)) — | F(b) — F(a)|]

where m, n are integers, n = m, n, = exp(r'/?) and C, = {n : n, = n < n,+,}. For this choice
of n,,

n/2(r + ) < n.ey — n. < n,/r'’%
An elementary approximation shows that the difference
sup{| Ru(x, y) |; | x| <log n, | y| <log n} — L, = O(n™")

where L, = max{|R.(x, ) |; | x|, |y|=1/n,2/n, ---,[1 + nlog n]/n}. Foralln € C,, nL,
does not exceed the sum L,; + L(r) + Lns + L,/r where the new statistics are as follows:

Lu= max{ S[nr],n<F_l(t) +xj;y , Fi(e) +%> 1+ x))
|x], |y =_1_, ...,M}
n n
L(r) = max{ Sl,[nr]<F“(t) +ﬂf_~/¥’ F'(¢) + \/yr_l;) (1+|x])2
[x],]y] =1, ...,M}
r r
and
-1 zZ [zr(n,/n)'"*]
L, = max{ Sl_[nr]<F (t) + J_Z’ F~(¢t) +—rJn—, ) ’ ,
2| =l’ “.’[1 +2nlogn]}.
n n

Along with the Bonferroni inequality, Lemma 3.1 is applied with varying choices of its
parameters to see that all the four statistics are O(n'/*(log log n)"/?) a.s.

LEMMA 3.3. Under the conditions of Theorem 2, a.s.,
lim sup,_... n**(log log n) ™" {F.(F;'(¢t) + n~'?)
— Fu(F7'(¢)) — F(F.'(t) + ™) + F(F,'())} > 0.
Proor. Let n, = {t — F.(F'(t))}/F'(F~'(¢t)). Using Bahadur’s representation of

quantiles (see Bahadur, 1966), the LIL for ¢ — F.(F~'(¢)) and some standard approxima-
tions, it is verified that the lemma follows if we have

(3.1)  lim supn—. n7"*(log log n) "2 {S1,(F~(¢) + 7. + n”V% F7'(t) +7,)} > 0 as.

Let us define m, = 2. For the sake of brevity, we shall write 0% for m; (mynm, —
m,_1 Mm,_,) and f; for F'(F~'(¢)). Note that, for all » = 2, m,_; < 3(log 2) *m.(log m,) > Now,
for all r = 2, consider the following four events:
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Ar = {|Sim (F7E) + 1, + m 2, F7E) + i, + mi %) | 2 my*).
AL = {|Sim(F7 () + 0, F7H @) + 1) | = mY/*).
Al = {|Sim_(FNt) + ki + m7 2 F7U () + k) | = ml).
A? = ([Sn, i (F'(t) + 0, + i, F7'(0) + i) = 6m}/*(log log m.)'”*).
By the CLT,
(3.2) P(Sn,_m(-, F(t) EW,} > % as r—o

where W, = {—1, =2, ..., —m}*r?}. We have, by an elementary property of multinomial
distributions, that uniformly in & € W,

P{AY|Sn,_.m(—», F7\(t)) = k} ~ ®(—8(log log m,)"*/(fi"*)).

Because of this and (3.2), Y,—1. P(A}) = » if §2 < f.. Since the events A} are independent
(3.1) would follow if the events A,, A;, A happen only finitely often a.s. The later claims
are verified through probability estimates involving Lemma 3.1. The details are omitted.

Proor oF THEOREM 2. Let us notice first that, according to Lemma 3.2
Fo(F'(t) + an2) — ¢t = Fo(FR'(t) + an”?) — Fo(F'(®) + O(n™Y)  as.
= (F(F;'(t) + xn™"?) — F(F;\(¢))}
+ (Fa(F7'(8) + 2n7'%) — Fo(F7'(8))
— F(F;'(t) + xn™'%) + F(F;'(t))} + O(n™") as.
=fixn™? + O((1 + | x|)"’n"**(log log n)"/?)  aus.

Using this bound, some set inequalities on F;'(¢), Lemma 3.1 and the Berry-Esseén bound
it is found that

P*{|G,'(t) — F.'(t)| = log n}) = O(n™") as.,
and uniformly in | x| <logn
P*{G;'(t) — F;'(t) <= xn™'?)
= O((Fu(F7\(t) + xn™V2) — )n 2/ (Fo(F'(8) + xn77)) (1 — Fu(F'(8) + xn7'%)))
(3.3) +0(n™)
= ®(xf(¢(1 — 8))"2 + O((1 + | x|)*n"*(log log n)'/?)) + O(n™"?) as.

= O(xf(t(1 — £))7?) + O(n"*(log log n)'?) a.s.

Putting together the estimates found so far and the Berry-Esseén bound for F;'(¢) —
F7(t) (see Reiss, 1974; the rate n~'/? in Reiss’s theorem can be established easily under
our conditions), we have now that the left side of (1.8) is finite. In the next paragraph we
shall see that the lim sup in (1.8) > 0 a.s. The proof of the theorem is concluded using the
Hewitt-Savage zero-one law.

In the special case of x = 1, consider the expression (3.3) above. According to Lemmas
3.2 and 3.3, ’

00 > lim sup,_.. n'/*(log log n)"? {(n"*(F.(F7'(t) + n™"%) —t) — f,} >0 as.

This also means that F,.(F,'(£) + n™"?) = t + O(n""?) a.s. Thus, the expression (3.3) gives
us lim sup,. n'/*(log log n)"*[P* {n"*(G'(t) — F;'(#)) = 1} — ®(f(t(1 — £))"*] >0
a.s., which implies the result desired.
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