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CONSISTENCY OF MAXIMUM LIKELIHOOD AND BAYES
ESTIMATES

By HELMUT STRASSER

University of Bayreuth, Germany

It is proved in the paper that every possible set of conditions which
implies consistency of the maximum likelihood method also implies consis-
tency of Bayes estimates for a large class of prior distributions. The method
of the proof is based on a necessary and sufficient condition for the consistency
of maximum likelihood estimates which is due to Perlman (1972). Perlman’s
result is improved as far as certain questions of measurability are concerned.

1. Introduction. Assume that (X, .%/) is a measurable space and 2 = {P;:0 € O} is
a family of probability measures Py |.«/. Assume further that 2 is dominated by a o-finite
measure 4| and let

he = d_,u , 6 0.
No conditions are imposed on the structure of the parameter space ©.

Let (6,)ren be a sequence of estimates of § € © which is approximately a sequence of
maximum likelihood estimates (AML) for the n-fold independent repetitions of (X, <,
2), n € N. The well-known paper of Wald (1949) contains a general set of sufficient
conditions for consistency of such a sequence of AML-estimates. Wald’s ideas are used and
modified in subsequent papers of LeCam (1953) and Pfanzagl (1969). An important paper
is Perlman’s (1972) where it is shown that a suitable modification of Wald’s approach even
leads to conditions which simultaneously are necessary and sufficient for consistency of
AML-estimates.

Several papers have tried to use Wald’s approach in order to obtain consistency proofs
for Bayes estimates. Notable examples are LeCam (1953), and Bickel and Yahav (1969).
Essentially it turned out that any set of conditions for consistency of AML-estimates is
also sufficient for consistency of Bayes estimates. This fact leads to the suggestion that the
mere fact of consistency of AML-estimates could be used as a sufficient condition for
consistency of Bayes estimates. If such a result can be proved then any set of sufficient
conditions for consistency of AML-estimates which is known or will be stated in the future
is automatically sufficient for consistency of Bayes estimates.

In the present paper we prove a result of this type. Assuming that every sequence of
AML-estimates is consistent, we obtain from Perlman’s theorem a necessary condition for
which we show that it is sufficient for consistency of Bayes estimates. The assertion is
valid under some regularity conditions on 2 = {P,;:0 € ©}. These conditions are rather
weak. In particular, it is important to note that they do not imply consistency of AML-
estimates.

As indicated above the main result of the present paper consists of the fact that
Perlman’s criterion is sufficient for consistency of Bayes estimates. Taken literally, such
an assertion is of theoretical value only, due to the technical spirit of Perlman’s criterion.
Nevertheless, the practical value of our result is the possibility to avoid Perlman’s condition
for the proof of consistency of Bayes estimates.

Consider e.g. a case where the original conditions of Wald are not satisfied but where
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it is possible to prove consistency of AML-estimates by ad hoc methods. Such an example
can be found in Kiefer and Wolfowitz (1956, page 904f). There the conditions for consistency
of Bayes estimates of Bickel and Yahav (1969) also do not work since their integrability
condition (A 2.9) is not satisfied. However, in view of our result the mere knowledge of
consistency of AML-estimates implies consistency of Bayes estimates.

Conversely, there are well-known examples where AML-estimates are not consistent
whereas Bayes estimates are; see, e.g. Schwartz, (1965, page 16f). In view of the main result
of the present paper, there is little hope to obtain examples where AML-estimates are
consistent and Bayes estimates are not. Therefore, if one tries to get a consistent method
of estimation which works for a large class of statistical models then the Bayes method
seemts to be a better candidate than the maximum likelihood method. The success which
is obtained in this direction by Schwartz (1965) supports such a suggestion.

In his original paper Perlman considers AML-estimates regardless of whether they are
measurable or not. Hence the sufficiency part of his proof yields consistency of a larger
class of estimator sequences than usual. The necessity part, however, is based on a slightly
overly strong assumption. We show by a minor modification of Perlman’s proof that his
condition is even necessary if only all sequences of measurable AML-estimates are
consistent. Large parts of this proof are quite similar to Perlman’s and therefore we only
indicate what is really essential. A detailed version is available from the author.

Finally, we note that all results of the present paper can be generalized to the Markov
case without any substantial difficulty. An elaboration of this remark also is available.

2. The results. Let us topologize the parameter set © by the distance d(o, 7) = || P,
— P,|, 0 € ©, T € O, where || - || denotes the variational norm for measures on (X, .«/). At
a first glance, the topology seems to be unusual for statistical purposes. But Landers and
Rogge (1972) showed that under the regularity conditions which are usually considered in
the theory of maximum likelihood estimation, the topologies considered there are equiv-
alent to the topology defined here.

The functions f(x, §) = —log hs(x), x € X, § € O, are called likelihood contrast functions.
Let us denote

1
fu(x, 0) = ;Z:LI f(x;,0) if xXEX", nEN,IEBO.

It is easy to see that for every n € N the stochastic process {f.(-, 8)}sco is uniformly
continuous in y-measure. If we assume that (0, d) is a separable metric space, then we
may choose a separable version of { £, (-, ) }sceo

It should be noted, however, that the separable version satisfies

1
fa(x, 0) = ; 2?=1 flxi, 8)

only u"—a.e., § € ©. Another consequence of separability of (0, d) is that the function
(x, 0) - fL(x, 8), (x, §) € X"xO can be chosen &/" ® #-measurable where # denotes the
Borel-o-field of (0, d).

We require some regularity conditions. It should be noted that conditions (2) and (3)
may be omitted if the densities Ay, § € ©, are continuous functions of 4.

Regularity Conditions.

(1) The metric space (0, d) is separable.

(2) The functions (f.(-, ))sce, n € N, are separable and .&/" ® #-measurable random
functions.

(3) The densities Ay, § € O, are lower semicontinuous, i.e. lim sup,_,» kg, < hs p—a.e. if
lim, . d(f,, ) = 0.

(4) For every 8§ € © and o € O there is an open neighbourhood Uy, of ¢ such that
P§ (inf £, (-, Us,)) > — for at least one n € N.
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The last regularity condition needs some comments. If the condition is required for n
= 1, then it is equivalent to a local integrability condition which has been used extensively
in dealing with maximum likelihood estimates. Our condition, which obviously is consid-
erably weaker, has been introduced by Perlman (1972).

There are some technicalities with defining maximum likelihood estimates since the
contrast functions may attain the values + o and — . For convenience, we use the mapping
@:[—, +®] — [—1, +1] which satisfies ¢(x) = x/(1 + | x|). This is a strictly increasing
homeomorphism.

DEFINITION 2.1. Assume that regularity conditions (1) and (2) are satisfied. A sequence
of (", #)-measurable estimates T,,:X" — © is a sequence of approximate maximum
likelihood estimates (AML-estimates) at § € O if

lim supn—« {@ofe (X, T (X)) — inf,co @ofa(t, 0)) = 0 PY—a.e.

It is clear that every sequence of maximal likelihood estimates is a sequence of AML-
estimates. In contrast to exact maximum likelihood estimates which need not exist, there
are always AML-estimates if regularity condition (1) is satisfied. This is proved by a
standard argument.

The following lemma improves the necessity part of Perlman’s Theorem 4.1 in that we
consider only measurable estimates.

LEMMA 2.2. Assume that regularity conditions (1) and (2) are satisfied. Let § € M
C O where M is closed. Then the following assertions are equivalent:
(1) Every sequence of AML-estimates (T,) at 6 satisfies

P%lim inf, . {T, € M} = 1.
(2) There is some open set U D M such that
lim,_, (inf @of, (-, O\ M) — infoey @ofn(-, 0)) >0 Pi—ae.
(3) For every sequence of open sets U; D M, i € N,
limie n lim, .o (inf @ofy (-, O\M) — inf,ey pofu(-, 0)>0  Pi—a.e.
ProoF. It is clear that (3) = (2). The proof of (2) = (1) is essentially Wald’s (1949).

Thus it remains to show that (1) = (3). This is done in Section 3 where the proofs of the
paper are collected. [0

Using the martingale techniques of Perlman, in particular proving an analog to his
Theorem 2.2, we obtain a strengthened version of the preceding lemma.

THEOREM 2.3. Assume that regularity conditions (1)-(4) are satisfied. Let § € M C
© where M is compact. Then the following assertions are equivalent:
(1) Every sequence of AML-estimates (T,) at 0 satisfies

PY lim, .., inf(T, € M} = 1.
(i) lim,_. . infoeo\m fn (-, 0) > Po( f5) P{—ae.

ProoF. The proof follows from Lemma 2.2 by arguments which are similar to those of
Perlman proving his Theorem 2.2. The main steps are indicated in paragraph 3.0

The fact that (i) implies (i) is already contained in LeCam (1953) and elaborated by
Pfanzagl (1969). It will be shown in the following that (ii) implies consistency of Bayes
estimates.



1110 HELMUT STRASSER

Let 7| # be a probability measure which serves as prior distribution. We require some
conditions on 7.

CONDITIONS ON PRIOR MEASURES.
(5) Foreveryd €® ande>0

7{oc € O:Py(f,) < Po(fs) + €} >0.
(6) For every 8 € O there is some ny € N such that

P;‘{x e X" j [I%=1 Ao (xi)7 (do) < 00} =1 if n=n.

If 0 — Py(f,) is continuous and open sets of (@, d) have positive 7-measure, then
condition (5) is satisfied. Condition (6) has been used previously by Bickel and Yahav
(1969).

Bayes estimates are consistent if the posterior distributions concentrate around the true
parameter value. The following definition makes things precise.

DEFINITION 2.4. Assume that regularity condition (6) is satisfied. For every n = ny, B
€ # and x € X" let

[Ti=1 Ao (x:)m (do)

F,.(B) =22
f 121 ko (x:)7 (do)
e

if the denominator is positive, and F, x(B) = 0 otherwise. The function B — F, x(B), B
€ 4, is called posterior distribution based on the prior measure .
Now we are in a position to state our main result.

THEOREM 2.5. Assume that regularity conditions (1)-(6) are satisfied. Let § € M C
© where M is compact. If every sequence of AML-estimates (T») satisfies

(a) P} lim,_. inf{T, € M} = 1,
then
(b) PY{limpo inf Fpx(M) =1} = 1.

PrOOF. The proof is given in Section 3, which follows. 0

Let us indicate what the preceding assertion means in terms of consistency. To this end
we assume that (0, d) is a locally compact space. If every sequence of AML-estimates is
(strongly) consistent then (a) is satisfied for every compact neighbourhood Mj of any 8 €
©. Hence (b) is also satisfied for every compact neighbourhood M, of any § € ® and hence
even for every neighbourhood. This implies that the posterior distributions concentrate
around @ with P{-probability one.

3. Proofs.

PRrOOF OF LEMMA 2.2. We have to show that (1) = (3). Assume that (3) is not satisfied
for a sequence (U;) of open sets U; D M, i € N. We will construct a sequence of AML-
estimates (7T), for which

PY limuen{To € M} < 1.
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Define
A: = {infiey lim,_« (infoco\mr @°fn (-, 0) — infocv, pofa (-, 0)) = 0}
and
1
App:=UZ, {infaee\M @°fn(+, 0) — infoey @ofu(-, 0) <Z} , n€E€N, kEN.

According to our assumption we have PY(A) = a > 0. It is easy to see that A C N5y
Us—m A, i for every k € N. It follows that there is a strictly increasing sequence (N (k))ren
such that N (k) 1 « and

1
PYUYRE (A UA) = a<1 - -2-m> kEN,

and therefore
«
Py N UNYS T (Anrn A) = 3> 0.

Choose k(n) € N in such a way that N(k(n)) = n < N(k(n) + 1), n € N. Note that
Anrimy € F",n € N.If X € A, 1(n) choose T, (x) € ©\ M such that

. 1
pofn (X, Ty (X)) — infoeo\mr ofn (X, 0) = m ,

and if X & A, ) choose T, (x) € © such that
. 1
@ofn(X, Tn (X)) — infoeo @ofn (X, 0) = o

Since (0, d) is separable this can be done in such a way that T, is (./", #)-measurable.
(T,) is a sequence of AML-estimates at 6 since for x € A, x(n

1
@ofn(x, T (X)) < inf,ee\n p°fa (X, 0) — )

. . . 1 1
=< min {mfaes\M @°fn (X, 0), supsen infoev, pofa(x, 0) + m} + )

. 2
= lnfaes (] fn(x, 0) + m.

But the sequence (T}.) leads to the desired contradiction since

Ak C{Tn & M}, neN,
and
noo Uoo A = noo Uoo A ) noa UN(k+1)-—1A
m=1 n=m L1n,k(n) k=1 n=N(k)+1 Ank(n) < k=1 n=N(k) n,k(n)

N(k+1)—1
=Ni=1 Un-iﬁ(k)) An’k- O

PrOOF OF THEOREM 2.3. Let us try to sirhplify the assertions (2) and (3) by computing
the limits

lim,,_,m infgeU (P°fn('y 0), Ug 0.
First we consider an open subset U C 0O such that for some no € N
PY(infocv fo(+, 0)) >— oo

Noting that (inf,cv f.(+, 0))renis a reversed supermartingale for the symmetric o-fields 7,
C «", n € N, we obtain from the Hewitt-Savage zero-one law that

lim, . infoev ful+, 0) = supreny P¥(inf,ev fo(, 0)), PY—a.e.
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Consider a fixed element 7 € ©. Lower semicontinuity implies for every sequence of
open neighbourhoods U of 7, U | {7}, Ux C U, k € N, that
lime Pi(infoe v, fu(-, 0)) = Po(f;).

To prove it one has to choose (f;).ee in such a way that it has lower semicontinuous
paths u—a.e. This is possible in view of a result of Pfanzagl (1969). Thus we obtain that for
every compact M C © and every € > 0 there is an open set U. C M such that

—o < supnen P¥(infoe v, fu(+, 0)) < infoerm Po(f,) < supnen P§(infoe v, fo(-, 0)) + €.

Now it is easy to obtain the assertion of Theorem 2.3 from Lemma 2.2. O

PRoOF oF THEOREM 2.5. We will use the following inequality: If A € &/, P(A) >0, and
f = 0 is &-measurable then

1 . 1 1
;logjf dPZlogm)-J;fdP+;logP(A)

which follows from Holder’s inequality

f 1fdP < ( j I dP)l/n< J L dP)H/n.

As a first step we show that

exp(—nfu.(x, 0))7 (do)
) P 21imy 0o SUp Frx(M’) # limy .o SUp —— =0.
j exp(—nfn(x, 0))7 (do)
e

To this end it is sufficient to show that for some no € N

J exp(—nf.(x, 0))7 (do) >0 if n=n,, PH—a.e.
e
Let € > 0 and define M, = {0 € ©:Py(f,) < Py(f,) + €}. It follows from Fatou’s lemma that

lim, ... inf% log J exp(—nfy(x, 0))7 (do)
(<]

1
= lim,_, inf log ’IT—(AT)_J exp(—fn(x, 0))7 (do) + lim, % log 7 (M)
€ Me

1
(M)

=log

j exp(—Py(f,))m (do) = —Po(f;) —€¢  PY—ae.
M(

This proves (7).
Furthermore, we have (denoting (X),: = (%,+1, Xn+2, *++))

1
lim, . sup —1
imp.. sup — ogJ

exp(—nf.(x, 0))7 (do)
w

1
=li n—so0 -1
im,,... sup — log J

M

exp(— Yieng+1 (%, 0))exp(— Y1 f(x,, 0))7 (do)
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i=1

. 1, . 1
< lim, .« sup(— - infoemr Yimn,1 (2, o)) + lim, o o log J 1%, h.(x)7 (do)

= _lm‘nam inf infoeM‘, fn((x)n,, M’) Pgl_a-e‘

Putting terms together, we obtain
lim,, ... sup % log Fox(M') = —lim,o infoepr fu((X)n, 0) + Pol(fy) + € PY—a.e.
Let
A, = {lim,,_,eo infoe m fo((X)n,, M') = Po(fy) + -:: }, re N.

Since P{'|«/" is strictly stationary, Theorem 2.3 implies

P{(UZA) =1

Now the assertion follows from

1
Pyug, {lim,Hoo sup — log Fx(M') < — ~1—}
n 2r
N g : 1 , 1 1
= Py’ UL § limy, sup — log Frox(M') = — - + —
n r 2r

. . 1 1 1
=Py Uz, {—hmn_m inf e fr((X)n, 0) + Po(fy) + > =-= + > }

=Py U A =10
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