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TOTAL POSITIVITY PROPERTIES OF ABSOLUTE VALUE
MULTINORMAL VARIABLES WITH APPLICATIONS TO
CONFIDENCE INTERVAL ESTIMATES AND RELATED
PROBABILISTIC INEQUALITIES!
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Total positivity properties of multivariate densities are useful in deducing
positive dependence of random vector components and related probability
inequalities. In this paper we determine necessary and sufficient conditions
for total positivity of absolute value multinormal variables. The results are
applied to obtain positive dependence and associated inequalities for the
multinormal and related distributions, e.g., the multivariate ¢ and Wishart
distributions. Inequalities of this type yield bounds for multivariate confidence
set probabilities.

1. Introduction. Recent statistical literature encompasses a substantial body of
methods and results on multivariate probabilistic inequalities and their applications to
multivariate analysis and simultaneous inference. Much of this work concentrates on the
normal and related distributions (e.g., multivariate ¢, F, Wishart). A key to many of these
inequalities is the degree of total positivity and/or log concavity properties inherent to
these distributions. Total positivity for the multivariate normal distribution, including
various applications, were studied recently by Barlow and Proschan (1975), Kemperman
(1977), Abdel-Hameed and Sampson (1978), Perlman and Olkin (1978), among others.

The principal theorem of this paper (Theorem 3.1) delineates necessary and sufficient
conditions on the convariance matrix of a Gaussian vector random variable X = (X;, Xs,
.+-, X,) implying that the density of the absolute components vector | X| = (| Xi|, | Xz|,
«++, | X.|) is multivariate totally positive of order 2. This result, apart from its intrinsic
interest, entails a wide scope of applications. At this point it is useful to review basic
information on multivariate total positivity theory essential for our applications. For more
details and ramifications of this material, e.g., see Kemperman (1977), and Karlin and
Rinott (1980).

A nonnegative function f(x, y) defined for (x, y) € & X % C R? is totally positive of
order 2 (TP,) if all second order determinants det{f(x;, y,)} are nonnegative for every
choice, x1 < x2, ¥1 < y2. (In parametric statistics the TP, endowment is intimately related
to the concept of monotone likelihood ratio, e.g., see Karlin (1968, Chapter 1).)

Facr1.1. If f(x) >0forallx = (x;, -+, x,) € R" and f(X) = f(x1, X2, =+ - , X,) is TP>
in every pair of variables when the remaining variables are kept fixed, then for every x =
(x1, «++,x) and y = (3, -+, y2) ER" '

(L1) fxVvy)fxAry) =fx)fly)

where
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1036 SAMUEL KARLIN AND YOSEF RINOTT

X vV y = (max(xi, y1), « -+, max(x,, y.)) and X Ay = (min(x1, Y1), -+ , min(x, y)).

A function f(x) satisfying (1.1) is henceforth called multivariate totally positive of order
2 (MTP:). (Fact 1.1 is essentially due to Lorentz (1953) as noted by Rinott (1973). See also
Kemperman (1977).)

The formulation (1.1) provides a concept of MTP; functions defined on any Cartesian
product of ordered spaces %1 X % X .- %, where each % can be discrete (finite or
countable) sets, continuous intervals or more general totally ordered sets. The number of
coordinates n can even be infinite or a continuum. Some of these extensions and applica-
tions will be dealt with elsewhere.

It lends flexibility and value to the principal theorems of this paper to highlight first a
number of basic consequences concomitant to the MTP, property. For this objective we
present the MTP; concept involving two kernels reminiscent of the monotone likelihood
ratio property in the univariate context.

Facrt 1.2. (Holley (1974), Preston (1974), Kemperman (1977)). Let fi and f, be two
probability densities with respect to Lebesgue measure on R". Suppose that for every x, y
ER™

(1.2) f(x vV ) filx Ay) = LX) AY).
Then for any increasing function ¢ defined on R" (that is, ¢ (x) < @(y) provided x <y
where the ordering connotes x; < y,, i =1, -+« ,n, X = (X1, ++ , X2), Yy = (Y1, * ++ , ¥n))
(1.3) f @ (x)fo(x) dx = f o (x) fi(x) dx.

Rn Rn

Another vernacular for (1.3) is the statement
st
(1.4) fr>h
signifying that the density f is stochastically larger than the density fi.

COROLLARY 1.1. (Sarkar (1969), Fortuin et al. (1971), Barlow and Proschan (1975)).
Let f be a MTP, probability density on R". Let ¢ and y be both increasing (or decreasing)
functions on R". Then

(1.5) J @ (X)Y(x)f(x) dxz(J @ (x)f(x) dX><J Y (x)f(x) dX>-
Rn Rn Rn

The inequality (1.5) is commonly referred to as the multivariate Tchebycheff rearrange-
ment inequality which in one dimension holds for any probability density f(x).

For n > 1 the validity of (1.5) requires some stipulation on fsuch as the MTP; property.
Of course, where ¢ (x) and ¥ (x) are monotone in opposite directions since f(x) is a density,
the inequality sign of (1.5) is reversed.

REMARK 1.1. Let f(a, x),a € R™, x € R” be MTP; on R™*™ and assume { f(a, X) dx
=1 for all a € R™ Then a = b implies f(a, x vV y)f(b, x A y) = f(a, x)f(b, y), and Fact
1.2 can be invoked to obtain the stochastic comparison (1.4) between f2(x) = f(a, x) and
filx) = f(b, x).

REMARK 1.2. Facts 1.1 and 1.2 and Corollary 1.1 continue to hold if R" is replaced by
a product of ordered spaces %) X ... X %, with Lebesgue measure dx replaced by a

product measure ¢ = 0; X --- X o, where o, is a o-finite measure on 2;,i=1, --., n.

It is convenient to express the inequality (1.5) in random variable notation. If X =
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(X, -+, X,) is a random vector following a MTP; density then by (1.5) for every pair of
increasing or decreasing functions ¢ and i, we have

(1.6) E{oX)¥(X)} 2 {(Eo X) H{EY(X)}.
This implies that if ¢, - - - , ¢, are all nonnegative and increasing (or decreasing) then
(L.7) E{g:(X)ge(X) -+ 9.X)} = [T7, Epi(X).

Random variables X, - - - , X,, satisfying (1.6) are called associated (see Esary, Proschan
and Walkup (1967)). In particular, (1.7) entails the relations

(1.8) . Cov(X;, X)) =0

(1.9) PXizc, -, Xnzc) =[] P(Xizc)

PXi=c, -, Xn=c} = ['[:;1 P{X,=c¢}

The latter is commonly called positive quadrant dependence, Lehmann [1966]. For further
ramifications on the connections between MTP; and other notions of positive dependence
see e.g. Esary and Proschan (1972), Barlow and Proschan (1975), Shaked (1975), Jogdeo
(1977), Abdel-Hameed and Sampson (1978) and Karlin and Rinott (1980).

With the incentive of Facts 1.1-1.2 in mind, together with the corollaries of (1.5)-(1.9),
encompassing many basic probabilistic inequalities, it is germane to ascertain the total
positivity character of the normal and related classical densities. Deciding when a multi-
normal density is MTP; is elementary. Specifically,

Facr 13. Let X = (X3, ---, X,) ~ N(0, £) i.e.,, X is normally distributed with
covariance matrix . Then X has a MTP;, density iff the off diagonal elements of —=~" are
all nonnegative (e.g., see Sarkar (1969), Barlow and Proschan (1975)).

In particular, a bivariate normal density is totally positive if and only if the correlation
coefficient is nonnegative.

Our main theorem (proved in Section 3) concerns the MTP; nature of the density for
| X|=(X1|, | Xz|, +++, | Xn|) where X = (X, -+, X,,) follows the distribution of N(0, Z).
Such results would be of interest in establishing bounds for two-sided multivariate
confidence intervals and inequalities for functions of | X | (even functions of X).

THEOREM 3.1. Let
(1.10) X=X,Xp - ---,X) be distributed as N(0,X).
Then a necessary and sufficient condition that the density of
(1.11) [X|=(X|, | X, oo, | Xn )

be MTP; is that there exists a diagonal matrix D with diagonal elements +1 such that
the off-diagonal elements of

(1.12) —D27'D  are all nonnegative.

Our proof of Theorem 3.1, developed in Sections 2 and 3, relies on results of Kelly and
Sherman (1968) pertaining to correlation inequalities for particle systems subject to
interaction potentials.

REMARK 1.3. Since DX D is the covariance matrix of (d,X,, - - - , d.X,) where d, = +1,
=1, ..., n, are the diagonal elements of D, the condition of (1.12) is equivalent in view
of Fact 1.3 to the existence of an adjustment of signs yielding (d; X, .., d.X,) with a
MTP,; density.
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Thus, the MTP; property of |X| = (| Xi|, ---, | X»|) implies by (1.8) that for an
appropriate D = diag(d,, - - - , d,) the correlations between the components of the adjusted
vector (d\Xi, ---, d.X,), which coincide with the entries of DZD are nonnegative. The
converse is not true, indeed, a multinormal vector X = (X;, ---, X,) with all positive
correlations need not have the absolute valued vector | X |, MTP,.

REMARK 1.4. With a bivariate normal density for X = (X;, X5) the density g (z1, 22) of
Z = (Z\, Z,) = (| X1], | X2 |) has the formexp[—bzf — cz5] cosh(az:2;) which is always TP.
(since cosh(azz;) is TP, for z;, z; > 0) without any restriction on the signature of the
correlation between X; and X.

REMARK 1.5. The result of Theorem 3.1 for n = 3 is due to Abdel-Hameed and
Sampson (1978). They phrased this case as follows. A necessary and sufficient condition
that the density of X = (| X;|, | Xz|, | X3|) be MTP: is that

(113) b12b13b23 =0 where B = " by " = —2_1.

It is readily checked that (1.13) is equivalent to (1.12) for a covariance matrix of order 3.
They conjectured the general Theorem 3.1.

We next inquire concerning accessible criteria that enable us to verify (1.12).

For n > 3 the condition of (1.12) is not equivalent to the property that B = — ' satisfies
bybuby = 0 for all 1 < i # j# k < nin the presence of zero terms in B (see Section 3).
Nevertheless, there is a modification of Theorem 3.1 in the spirit of (1.13) which we now
state.

THEOREM 3.1'. Let X and | X| be as in (1.10) and (1.11), respectively, and set B =

| b5l = —=7". A necessary and sufficient condition that the density of | X | be MTP; is the
existence of a consistent assignment
¥ = by 1f by # 0
v +1or—1 if b,=0
fulfilling
(1.14) bbbk >0  forall 1<si#j#k=n.

It is useful to exhibit several classes of covariance matrices fulfilling (1.12).

ExaMPLE 4.1. Let X ~ N(0, ) where £ = A + R with R = ||a;a, || of rank 1, a = (e,
-+, an) and A is a diagonal matrix, A = diag(y1, y2, *++, ), v: > 0,i=1, --- , n. Itis
familiar that ™' admits the representation =™ = A™ — S, S = || 8.8,||. Obviously, for D
= diag(dy, ds, - - - , dn), —DZ7'D has off diagonal elements c;; = d,8:d;8;, and the choice d,
= sign B, renders c; = 0. Thus, the conditions of Theorems 3.1 are fulfilled and the density
of | X|is MTP..

ExaMmPLE 4.2. Let

Y=X+ MU, -+, U, M1V, - -+, A, V)

where

X= (Xl, ce an) ~N(03A)yA =diag('Y1» s yyn)y (Uy V) ~ N<Oy (FI) §>>'

Then, for any A, ---, A, and correlation p the density of
(1.15) | Y|=(Y:|,| Y2l oo, | Yu)) is MTP,.

For details on this example, see Section 4.



TOTAL POSITIVITY AND APPLICATIONS 1039

We analyze in Section 4 the class of examples
Y =X+ MU XU, -, MU, AeidV, oo MV, e W, oo 0, A W)

where X ~ N(0, A) and (U, V, W) are correlated multinormal variables and ascertain the
conditions when | Y | is MTP;. Other cases of covariance structures are also discussed.

We close the introduction by describing a number of applications of Theorem 3.1
forthcoming with the assistance of Facts 1.1-1.3, and the inequalities of (1.3)-(1.7). By
these means inequalities of the type

(1.16) P(XEAnB)=P(XeAP{XEB)

are shown to hold for sets A, B in a class described below, where X ~ N(0, ) and Z
satisfies (1.12). Here A and B are “even” sets, i.e., if x = (x1, X2, -+ -, X») € A then (eix1,
€%z, -+ - , €xXy) € A for all choices of ¢, = *1, and the same holds for B. Also, for any 0 <
x<y€E R" y € A implies x € A, and y € B entails x € B.

The result of (1.16) relates to a challenging conjecture that (1.16) holds for any X ~
N(0, ) for balanced convex sets (i.e., where A = —A, B = —B, and A and B are convex.
(See Das Gupta et al. (1972), Pitt (1977); see also Sidak (1973), Jogdeo (1977), Dykstra
(1979)). In certain respects the conclusion of (1.16) covers a more general situation as we
treat it in that A, B are not necessarily convex, but in other respects less general as we
demand more symmetry (evenness) than mere reflection symmetry (= balanced sets)
along with the MTP; condition.

For another illustration of the power of Theorem 3.1 consider

(L17) |X|=(Xi], --+,|Xn|) possessing a joint MTP; density where X ~ N(0, Z).

Define
(118) St = 2:’/;1 Xl2vy l=1’ 2" ce,n,

where X, = (Xi,, Xovy +++, Xny), v = 1, -++, p are iid. vectors such that (1.17) holds.
Clearly, S, S, - - - , S, have the distribution of the diagonal elements of a random positive
definite n X n matrix S where S is governed by the distribution W,(p, X) (Wishart
distribution with p degrees of freedom). We will establish (see Theorem 6.1) the following
result: Under the conditions and constructions of (1.17)-(1.18),

(119) PI‘{S] = ¢, S = Coy v, S, = Cn} = Hzn=1 P{Sz = Ci},

for any positive c,. Actually the variables {Si, Sz, - - - , Sa) are associated. In particular,
the inequality (1.19) applies if = has the form described in Examples 4.1-4.2.

The finding of (1.19) generalizes a result in Das Gupta et al. (1972), and Jogdeo (1977).
Other inequalities and bounds on the probability content of symmetric sets for the
multivariate ¢ and F distributions emerge from judicious applications of Theorem 3.1, (1.3)
and (1.7) coupled with appropriate conditioning arguments and devices of the theory of
associated or positively dependent random vectors.

2. Some correlation inequalities for binary variables. We begin by introducing
the Kelly-Sherman inequalities in a formulation convenient for our main theorem.

Let 8 =(8y, - - - , 8,) be a random vector such that each component assumes the possible
values *1 governed by the joint probability density

(21) P(ﬁ) =p(81; ttty an) = c exp [2151<15n alj8181]‘

Here ¢ >0 is a normalizing constant and a;, = 0, 1 < i <j =< n. Given a function f(éy, -- -,
8.) we denote the expectation of f with respect to the density p(8) by Eof = Y5 f(8) p(8)
where the sum extends over § in

(2.2) A={8=(8, -+,8):8==x1,i=1-.--,n}.
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Let F4(8) denote the function
fa(dy, -+ ,8,) =[Jicad: where AC{1,.---,n}=N.

Using properties of exponential polynomials Kelly and Sherman (1968) developed an
extensive theory of correlation inequalities of which the following is an important case.

THEOREM 2.1. (Kelly-Sherman (1968)) For any two index sets A, B C N and a,; =
0,l=si<j=n

(2.3) Ey(fafs) = (Esfa)(EsfB).

REMARK 2.1. The density p (8) is MTP; and therefore the component random variables
81, 82, + - -, 8, are associated, so that E(fg) = (E+f)(E+g) when f and g are both increasing
(or decreasing). However, the functions f4 and fz appearing in (2.3) are not monotone in
general.

ProposiTION 2.1. Let Ay, ---, A5 By, -+, Bg; and Cy, -+, C; be any subsets of N
and let a,, -+, a,; by, -+, bs; and ¢y, - - -, ¢, be any nonnegative constants.
Then,

(24)  Eg{exp[Ti-1 a.fa,lexp[Yi-1 b.fs,]} = Eo {exp[Yi-1 a.fa ]} Eo (exp[¥i-1 b.f5,1}
and
(2.5) Ey{exp[}¥i-1 a.fa Jexp[Yi-1 b.fs Jexp[Yi-1 o foar])

= Ey(exp[Yi-1 a.fa,]} Eo{exp[Y;-1 b.f3,]} Es {exp[Ti-1 orfc,])

and similarly for any number of products.

Proor. We deal with (2.4) since (2.5) plainly results by twice application of (2.4). We
expand the exponential terms on the left of (2.4) and rearrange to obtain

Ey {exp[¥i-1 a.fa,] exp[Yi-1 b.f5,1}
= E.s/’{zmm =0 (Zy 1 aqu )" 21—0 (Z,‘—l b,lfB) }

= Zm 0 21—0 Ey’{(z =1 aquy)m(Z,‘iﬂ b,LfB“)l}

1 1 m r m,
'l' {Zm1+...+m,=m (ml e mr) HV=1 (al/fA»)

Dt rtt (zlz> L1 (Buf) ’"}

“saaznolly < mr)q[y;l . <z, ! ,s)
|

(2.6) _Zm 021 =0

~([i=1 5 E s {([T7=1 £2) (L1 fé‘”)}.
Define the sets of indices C and D by the specification i € C(D) if and only if
Y=t m,I4 (i) is odd (¥;-10.15,(i) is odd) where
.1 if i€A, L1 if i1€B
IA,,(Z) = {0 if l¢ Av’ IB (l) = { : l¢ B:,
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and then a little reflection confirms that fc(8) = II;-i[ £4,(8)]1™ and fp(8) = IT=[ fBF(S)]”‘.
By Theorem 2.1 we know
2.7) E, {H:=1 f,ﬁ"y’)(H;zl lei‘,)} = (Ey(]_[::l fANEy (H:=1 fg)),

and this inequality can be applied to the final expression of (2.6). With this done and then
reversing the order of steps involved in (2.6) we obtain the lower estimate

1
{ZLO prp) (ml m mr)(H:=1 @B (I, le:)}

w 1 l s s
) {21=0 ﬁ Z <ll e ls)(Hn=1 b'fn)E“/ (Hn=1 fll;“)}

1 1
= E'/’{Z:r:=0 ﬁ (Zf=1 ayfA”)'"}Ew{Zf;oE (Z,‘f=1 bnyF)l}

= {Ev(exp[Xi=1 aufa )} {Ey (exp[¥,21 bufs,))).

The proof of Proposition 2.1 is complete.

Theorem 22. Leta,=0;1<i<j=n;and x;=0,i=1, ---, n. Define the function

(2.8) glaz, @13, «++ , Anotn, X1,y * o+ 5 Xn) = Y5ealXP [Y1sic,;=n@:60.0,2.%, ]
with the set A given in (2.2). Then g is MTP;, over the positive orthant in all its variables.

Proor. The TP, property with respect to the variables x; and x. is tantamount to the
inequality
(2.9) gz, ooy oty X1, » o+, X0)8(Quz, ++ ) Gn1n, X1+, X2 + B, X3, + ¢+, Xn)
Zg(ae, ++*, Qnotny X1+ R, Xa, o+, X2)8 (A2, « ¢+, Gn1n, X1, X2 + K, X3, -+, Xn)

with A and k& positive. By continuity we may assume x; and x. positive and without loss of
generality we may take x, = 1,i =1, --. , n after substituting a;x.x, for a; and A/x; and
k/x; for h and k&, respectively. Under the convention az; = a2 canceling common factors,
(2.9), reduces to

Eg»{exp[81h ZJ"?“ a1,8, + 82k Zjn,ez (.12]6, + 8182hk(112]}
= Ey {exp[8ih ¥ /1 1,81} E {exp[dk ¥ [z a2;9,1}.

Identifying f4,(8) = 8:6,, v = 2,3, .-+, n; f5,(8) = 88, p= 1,8, ---, n; fc (8) = 6:8: and
applying (2.5) to the left expression of (2.10) the desired inequality results except for the
factor Ey {exp[hkai126:52]}.

To deal with this, set Aka;; = v = 0. Then,
(2.11) E,{exp[hkai20:0:]} = Ey {exp[8:62v]} .

1
= Yo Eo[(6:0:0)F] = 1 + Y1 o= Eo[(6:8:)"].
k! k!

(2.10)

For k even E (8:8:)* = 1 whereas for k£ odd E (8:8:)% = E (8:82) = (E8,)(E82) = 0. Therefore
the quantity in (2.11) exceeds 1 and (2.9) follows.

The proof of the TP, property in any of the pairings (x., x,)(a,, ax) and (x;, aw), 1 < i
<Jj=n,1=<k<I=nfollows the same lines. The proof of Theorem 2.2 is complete.

THEOREM 23. Let X = (X, -+, X,) ~N(@©,Z) and Y = (Yy, ---, Y») ~ N(0, =,)
and suppose £7' = A — A, 35" = A — B where A is a diagonal matrix with elements \,,
cvo,An>0and A = || a,||7)=1, B = | b,||},-1 satisfy a; = b, =0,1<1i,j<nand a, = b,.
Let fix| and fiy| denote the densities of | X | and | Y |, respectively. Then (see (1.1))
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(2.12) fixi(x vV y) fivi(x A y) = fix)(X) fixi (y)

forallx = (xy, -+, x,), ¥y = (y1, +++, ¥n) satisfying xi,y,=0,i=1, .-, n.

ProOF. The joint density of | X|= (| Xi|, -+, | Xn|) at x = (%1, -+, %), . = 0,0 =1,
.-+, nis given by fix/(x1, - -+, x.) = ¢(A, A)h(A, A, x) where

1
(2.13) A\ A, x) = eXP{§ [-X2Z Al + Y aﬁx?]} Yseaxp[Yi=ic =n @y8:8,%.2,].

By Theorem 2.2 h(A, A, x) is MTP; in all components of A and x (A fixed), implying
(2.14) . h(A,A,x Vv y)h(A, B, x A y) = h(\, A, X)h(A, B, y).

Multiplying both sides above by ¢(A, A)-c(A, B), the inequality passes into (2.12).
Theorem 5.2 later presents an extension of this result, in which the assumption a;; = 0
and b;; = 0 is relaxed.

3. The Principal Theorem for Absolute Value Multinormal Variables. We are
now prepared to prove

THEOREM 3.1 Let X ~ N(0, X). A necessary and sufficient condition for the density
of (| X1], -++, | Xx]|) to be MTP; is that there exists a diagonal matrix D with elements
+ 1 such that the off-diagonal elements of —DZ'D are all nonnegtive.

REMARK 3.1 Notice the invariance of the distribution of | X | = (| X1/, « - -, | Xx|) under
the linear transformation X’ = DX where D is a diagonal matrix diag(d,, ds, - - -, d.) with
each d, = +1 or —1. Indeed, such transformations merely change signs in some of the Xj,
.-+, X,. Thus, the densities of (| X1|, ---, | X.|) for the whole class of covariance matrices
DX D with D diagonal as above are identical.

ProoF oF THEOREM 3.1. Sufficiency: On account of Remark 3.1, we can assume that
the off diagonal elements of —Z™' are nonnegtive. Sufficiency then follows on the basis of
Theorem 2.3 (taking A = B).

Necessity. It is required to prove that if (| Xi|, -+, | X.|) follow a joint MTP, density
then we can construct D = diag(e;, - - -, €)(e; = £1) such that the off-diagonal terms of
—DZ7'D are all nonnegative. Scrutiny of the construction reveals that the determination
of D is essentially unique.

By relabeling indices when necessary or equivalently permuting suitably rows and
columns we can assume for reasons given below that for some r < n the first r + 1 rows of
—>'areof theform A = | a;|,i=1,:--,r+1, j=1, .., n; where

a2, -, alkﬁé 0 and a;=0 for >k

(3.1) Qg py+1, * ¢, Q2,7 0 and ax=0 for >k,

Qril b1y * % Qritn 0 for some r<=k - <n.

We may assume k; > i since if k; = i, then X3, .. ., X; and X,.4, - - -, X;, are independent and
can be treated separately by means of induction.

We now construct D = diag(e;, - - -, €,). Since D and —D yield the same transformation
we can fix €; = 1. Then the unique possible choice of the remaining €;’s brings the first
nonzero term of each column of —DX"'D to be positive explicitly as follows

e =sgnay,j=2,---,k; €=sgneay, j=k+1, -, k;
(3.2)
€j=sgne€qs, J=ko+ 1, oo ks; o€ =58N €41Qrs1,;, J=Rr+ 1, .-- 0.
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It is required to show that the off-diagonal elements of —DZ7'D, i.e., a,jei€,, 1 <i <j
< n are all nonnegative. Assume to the contrary, that a;e.€; < 0 for some (i, ) and consider
the “first” such negative term (in lexicographic ordering), i.e., let / < % be such that

(3.3) aneer <0, a;;ec,=0 foralli <jsuchthateitheri<l/—1lori=/j<k—-1
Nowsetx;,= .- =x-1=0v,%,>0, x>0, and x; =0 for [l < i # k. We claim that for

large enough v the function

(3.4) ZaeA exp[21<i<jsn @,j6.0,x;%;]

(where we use the notation A = {8 = (61, - - -, 8,), 8; = £1}) is not TP, in the variables x;,
x, which violates the MTP; hypothesis for the density of (| Xi], - --, | X»|). This contra-
diction can only be averted provided a;e€, = 0 for all i <j as needed to be shown. Since
x, = 0 for I < i # k the quantity in (3.4) is equal to

(3.5)  gulxs, xx) = ZBEA exp[lez<1sl a,;0.6,x.x, + leisl—l awdibrx, X + andi8rx1%1)
and it suffices to show that for some x; < x’, x» < x% (and large enough v)
(3.6) 8o(xy, xr) 8o(xi, Xk) < o(X1, Xk) &u(xi, Xe).

Letting v — o, the leading terms in (3.5) are those where all coefficients involving v are
nonnegative i.e.,

3.7) a,68,=20 forall 1si<j<! and axd:6,=0 forall 1s<is</l—1.

It follows that the ratio of any other term in the summation of (3.5) and a term satisfying
(3.7) tends to zero as v — o. By the construction in (3.2) and (3.3), the case 8 = (ej, - -,
€,) obeys (3.7).

In view of the foregoing discussion, by dividing g.(-, -) by the term exp[ ¥ 1<.</<: ay€.€,%.%,
+ Yi<i<i-1 an€.€xxix:] the inequality (3.6) reduces to

(3.8) (a(v) + ge“™™)(B(v) + qe™™) < (y(v) + g™ )\ (v) + ge™™)

where ¢ = apeer <0, ¢ denotes the number of 8 € A satisfying (3.7), and a(v), B (v),, y(v),
A(v) > 0asv— .

Since ¢ < 0, e“ is SRR, (strict reverse rule, Karlin (1968)) in x, y, i.e., e“e™” < e 'e™*”
for x < x’, y <y’ so that (3.8) indeed prevails for sufficiently large v.

The proof of Theorem 3.1 is complete.

REMARK 3.2. Set Z7'= A — A, A diagonal and A =||a; ||})=1.
(a) If there exists D as in Theorem 3.1, i.e., the off-diagonal elements of —DZ™'D are
nonnegative then for all 1 <i <j <k < n, (ajana;) =0.

PRoOOF. Let e, ---, €, be the diagonal elements of D. Then

(ajanajr) = (ngjzei)(aijaikajk) = (e;€ja;) (€ierair) (€,€ra5) = 0.

(b) Suppose =7! has (at least) one row in which none of the entries vanish, say, row 1
for definiteness. Then the condition

3.9) (ayanap) =0, forall 1<si<j<ks<sn
implies that there exists a diagonal matrix D with diagonal entries +1 such that —DZ™'D

has nonnegative off-diagonal entries.

Proor. Consultation of the construction of the necessity part of Theorem 3.1 shows
that the elements of D = diag(d,, ds, -, d,) are explicitly d; = 1, d; = sign ay, i = 2,
B (3

(c) Theorem 3.1’ (see Section 1) follows by a similar construction with b} replacing a,;.
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The matrix

AN -b -b 0
-b A 0 b
-b 0 A b

0 -b b M\

(3.10) Il =

provides an example where (3.9) holds, however, there does not exist a suitable D such
that —DZ"'D has nonnegative off-diagonal entries. Therefore, for the inverse covariance
matrix of (3.10), | X| = (| X1|, | Xz |, | X3, | X4|) is not MTP..

An interesting matrix consequence of the necessity assertion of Theorem 3.1 is the
following

COROLLARY 3.1. Let X ~ N(0, Z) have | X| = (| X1], | Xz|, - -+, | X |) MTP:. Suppose
2 has all nonnegative elements, then for any partitioning of

(3.11) > = (g” glz) where =i isk Xk,
21 22

the k X k matrix
(3.12) 21— S5 S
exhibits only nonnegative elements and D yielding (1.12) in this case is the identity

matrix.

In the more general case that D = diag(ds, ---, d,), d, = *1, renders —DZ"'D with
nonnegative off-diagonal elements then for D, = diag(d,, - - -, di) the reduction of D to the
first £ rows and columns, the matrix

(3.13) Di(Z11 — 21225 Z01) Dy,

exhibits only nonnegative elements.
Proor. We partition the inverse matrix
A
2—1 —_ 11 12
<A21 A22
corresponding to (3.11). When —DXZ™'D exhibits nonnegative off-diagonal elements, then
plainly

(3.14) —DpA 1Dy, has nonnegative off-diagonal entries

where D;, is the contraction of D to the first £ rows and columns. But A;; is the inverse
covariance matrix of X;, Xz, - - -, X} conditioned on Xz, - - -, X,,, whose covariance matrix
is (3.12). The property (3.14) implies that the vector of absolute values of these conditional
normal variables is MTP;. We refer to Remark 1.3 to deduce that (3.13) involves only
nonnegative elements.

4. Classes of examples of multinormal densities whose absolute components
induce a MTP; density. We develop classes of examples of covariance matrices X
which satisfy the conditions of Theorem 3.1. We first discuss Example 4.2 which extends
Example 4.1 (both examples are described in the introduction).

ANALYSIS OF EXAMPLE 4.2. A standard analysis reveals that Y ~ N(0, ) with

R11 PR12
4.1 =
@ z A+(PR21 R22)

exhibiting the second part in block form composed from the rank 1 matrices
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Ru=[AA, 1%,-1 Ry = | AAs]| B Bk
(4.2)
Ry, =Ry = || >\a>\j || Z=k+1, ,k=1, Ry = || }\a>\,B || 2,/3=k+1-

It is convenient for later purposes to use the notation

A* 0 . .
A = where A* is kXk and A, is n—kXn-—-=Fk

0 A,
(4.3) and
M =3 v\ A=k yi AL

It is easy to verify that =~ has the form

2_1 _ A_l _ ((ZA*_IRHA*_I bA*_lRuA;l)

(4.4) BAT'RuA*'  cA;'RnA;

where we determine a and b from the pair of linear equations: 1 = a(1 + A*) + bpA,, p =
apA* + b(1 + A,) yielding
Lo a+a—p)
1+ A%)(1 +A,) — AN,

P

=TT a ) o

Similarly, we have
o 1+ (1 —p%A*
T+ ARI+A,) — AR,

These determinations reveal that
(4.5) a>0, ¢>0 and b has the sign of p.
We now construct the diagonal matrix D, D = diag(d:, ds, - - -, d») with

[signh, i=12 .-k
(4.6) d‘_{signb}\,, i=k+1,.e,n.

By virtue of the representation (4.4), and the fact of (4.5), we find that —DZ7'D has
nonnegative off-diagonal elements.

ExaMPLE 4.3. We extend Example 4.2 to the case of three groups
(4.7) Y=X+ AU, -, \eU, Aet1 V, <o o, et V, M1 W, oo N W)

where X ~ N(0, A) as in Example 4.2, and the 3-component random vector (U, V, W) is
distributed following N (0, S);

1 p1 p2
(48) S= P1 1 P3|

pz ps 1

The covariance matrix of Y is simply
Ry P1R12 P2R13
(4.9) S=A+|{piRa Rx p3Ros
szal psR32 Rss
with
R, = || >\z)\, ||lk;j=1 Ry = || )\i>\,8 ||?=1,§;lk+1 Ry = ||>\z>\b||’f=1,'£=k+1+1

(4.10) R, = R/12, Ry = ||>\a>\b | ﬁfé=k+1 Ry = " As ||§:5e+1,g=k+l+1

R;; = Ris Rs; = R Rss = || AaAs ||5,6=h141.
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Some direct manipulations establish the inverse of = of the form

aRl bRY% cR%
(4.11) S'=A"—-(bR: dR% eR}

cR% eR% fR§3
where R} = A;'R;A;" and A = diag(Ai, Az, As) entailing also

(4.12) a>0, d>0, f>0.
Apart from a positive factor we routinely determine
(4.13) - sign(b-c-e) = sign[p1 + (01 — p2p3)uallp2 + (02 — p1p3)pe]los + (03 — p1p2) 1]
with
pr=21yiAL e =3E vy pe= TR vi'AL
The evaluations in (4.11) lead us to the proposition:

PROPOSITION 4.1. Consider the multinormal random vector Y as in (4.7). Then |Y |
= (| Y1|, | Yz|, -+, | Yal|) is MTP; if and only if the sign (4.13) is +1.

Proor. Following the dictates of Theorem 3.1 we need to find a diagonal matrix D
implying that —DX ™' D exhibits nonnegative off-diagonal elements. When A, are all nonzero
focusing on row 1 of —DZ7'D, the diagonal entries of D are mandated to be

sign A; 1=1,2, ..+, k
d,-={sign)\ib i=k+1,--- k+1
sign Aic i=k+1+1, ..., n.

With the information of (4.12) the condition b-c-e > 0 of (4.13) maintains consistently the
property that all off-diagonal elements in —DZ™'D are nonnegative. The argument works
in both directions.

REMARK 4.1. Observe that for w;, pe, and p; small, the positivity criterion (4.13)
essentially reduces to p1psps = 0, while for pi, u2, and s all large, the positivity criterion is
that the inverse matrix S™* (of (4.8)) carries a negative product for off-diagonal elements.

REMARK 4.2. The recipe of examples 4.2 and 4.3 can be routinely extended to any
number of groups in the formation of Y. The analog of Proposition 4.1 essentially states
that if = has the representation £~ = A" —|| @R %||7/=1 where m is the number of groups
(compare with (4.11)) then X corresponds to an MTP; absolute value normal distribution
provided that there exists an m X m diagonal matrix D such that the off-diagonal elements
of D| a;| D are nonnegative.

ExamPLE 4.4. Consider an n X n covariance matrix of the form = = || g;;|| where ¢, =
¢ij|. It is elementary to check that the inverse matrix =' = A = || a;|| inherits the same
form a;; = aj.,.

Suppose ¢o = ¢; = ¢ = + -+ = ¢,—1. An examination of cases reveals that in order that
T satisfies (1.12) in the cases n = 3 and 4 we need for n = 3, ¢3 < cco, and for n = 4, cocz
—ci>ces—ci>0.

An explicit condition for general n remains unresolved.

ExAMPLE 4.5. Let 2 = I+ pB where B is a positive definite matrix of positive elements.
Then for p positive and small enough ™' = I — pB and all off-diagonal elements are
negative. Here the criterion of (1.12) works with D = I.
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EXAMPLE 4.6. The matrix 2 = " oy ", with 0, = ami,,(,-,j)bma,(i,j), l,j =1,.--,n where aib,
> 0 and a;/b; < az/bs < -++ < @,/b, is called a Green’s matrix. Its inverse is a Jacobi
(tridiagonal) matrix

¢ d; 0 0
d, C2 dz,.. :
(4.14) 2—1=J= 0 dz... e 0
. ..,,'...:: ............... dn—l
0 0 0 0 "duy " Ca

displaying zeros off the two contiguous diagonals to the main diagonal. It is known (see
Karlin (1968, pages 110-114)) that under the above conditions d. < 0,i=1, ---, n — 1.
Therefore, the covariance matrix = corresponds to a random vector X having | X | MTP;.

5. Some association inequalities for absolute value multinormal random var-
iables. Corollary 1.1 implies:

THEOREM 5.1. Suppose X ~ N (0, 2) satisfying the conditions of Theorem 3.1. Then
(5.1) E[e(|X)¥(IX])] = E[p(|XIEN(X])]

for any pair of increasing (or decreasing) functions ¢ and  of £ = (&1, «++, &), &=0.

REMARK 5.1. In particular, the inequalities (1.16) and (5.1) hold if X conforms with
one of the classes of Section 4. A special case of (5.1) is a result of Khatri (1967) who
stipulated £ = A + R as in Example 4.1. Then

(5.2) P{IXi|=c, | Xa| = ey oo, | Xn| = ea} = [[ho1 P(| X | = ca).

Inequality (1.16) clearly also applies in the case A = {x: [x:| < ¢1, [x2| < ¢, -+, | x|
< cx) and B = {X: | Xg+1| < Cre1, =+, | %n| < €} (cf. Das Gupta et al. (1972)). Pitt (1977)
confirmed (1.16) in dimension n = 2 provided A and B are balanced and convex, for any
covariance matrix 3.

The next application exploits the MTP, property simultaneously in the covariance
parameters and the random variables, i.e., with respect to the components of A = || ;|7 =1
and {x;}1, as in Theorem 2.3.

THEOREM 5.2. Suppose X ~ N(0, =) and Y ~ N(0, Z;) where Sl=A-A4,3"'=
A — B both satisfy the conditions of Theorem 3.1. Suppose | a;;| = | bj|, 1<i<j<nand
a;, = bii. Then

(5.3) fixx vV ) fivi(x A y) = fixi(X)fiv (y)

forallx = (x1, -+, %), Yy = (Y1, +* , ¥n), %, ¥i =0, i = 1, - - -, n where fix| and fx, denote
the densities of | X | and | Y | respectively. Let g(x1, - - -, x») be an increasing function of
X1, o0y Xn, x;=0,i=1, .., n. Then

(5~4) E[g(IXI |) M) anI)] = E[g(l Yl |7 ] I Yn |)]
The inequality (5.4) is reversed if g is decreasing.
Proor. By Remark 3.1 we can assume without loss of generality that a; = b; =0, 1

< i <j < n. The relation (5.3) is a consequence of Theorem 2.3, and (5.4) follows from Fact
1.2

6. Some Applications to the Wishart and t distributions. If (|Zi[, ---, |Zx])
have a joint MTP; density function, then so does (Z3, - - -, Z2), since applying a separate
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increasing function to the arguments, and adjusting the density by a product of factors as
[I'-1 g(2.) does not affect the MTP, property.

We know that the MTP; property for the random variables (Z%, ..., Z%) entails that
they are associated random variables as well (see (1.6)).

Let (Zw, +++, Z») v =1, - -+, p be a random sample such that each vector (| Zy,]|, - -,
| Z.,|) possesses a MTP;, density. Recall that independent random variables are associated
(property P, of Esary et al. (1967)) and increasing functions of associated random variables
are again associated (property P, of [loc. cit.]). Accordingly, if we define

(6.1) Si = (ZPFI thv)l/z = 1) e, n

it follows that S, - .-, S, are associated.

Recall that if (Z,,, -, Z,,) ~ N(0, ) then Si, ---, S, have the distribution of the
diagonal elements of a random matrix S, where S ~ W, (p, Z). (A Wishart distribution
with p degrees of freedom and parameter ). With these facts in hand, we have

THEOREM 6.1. If S ~ W,(p, ) and = corresponds to a MTP; absolute value
multinormal vector then the diagonal elements of S, that is S, - - -, S, are associated.
In particular,
(6.2) P8 zc,i=1,.-.,n)=[[k P(S:=c).

This result was obtained by Jogdeo (1977) for the cases that X is as in Examples 4.1 and
4.2. For X as in Example 4.1 the inequality (6.2) was previously obtained by Das Gupta et
al. (1972).

Application to a multivariate t distribution. Let X = (X, -+, X,) ~ N(0, C). For any
covariance matrix C, Sidak (1967) proved
(6.3) P(|Xi|<ec, oo | Xn|<a)z]][k P(X]|<c)
Let Sy, - - -, S» be positive, associated random variables and independent of X. Then
P(|X1|/Si< ety oy | Xn|/Sn < cn)
=E{P(Xi|/Si<c1, -+, | Xn|/Se<cu|S -+, Sn}
= E{[[% P X:|/Si < ¢ | Si)}

1 /2\ V2 (oS
= E[]’[;Ll . (;) J’ exp(—£2/207) d§:| = E[[[%1 h(S)]
¢ 0

where A, are obviously monotone increasing in S;. Now since {S;} are associated by
assumption (see (1.7)), the final quantity exceeds or equals

L E{(P(|Xi|/Si<c| Si)} =[l=P(| X:| /Si<c).
We thus obtain
(6.4) P(|X,|/Si<e,i=12.-,n)=[[L P(| Xi| /Si< c).

The case where S;, - - -, S, are generated by (6.1) with (Z,,, - - -, Z,,) ~ N(0,Z) and X as in
Example 4.1, and some further extensions, were given by Sidak (1971).

Applying similar methods we can obtain results on association and related inequalities
regarding other versions of the multivariate ¢ distribution, and for various classes of the
multivariate F distribution.
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