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INFERENCE FROM STRATIFIED SAMPLES: PROPERTIES OF THE
LINEARIZATION, JACKKNIFE AND BALANCED REPEATED
REPLICATION METHODS

By D. KrRewski! anD J. N. K. Rao?

Health and Welfare Canada and Carleton University

The asymptotic normality of both linear and nonlinear statistics and the
consistency of the variance estimators obtained using the linearization, jack-
knife and balanced repeated replication (BRR) methods in stratified samples
.are established. The results are obtained as L — o within the context of a
sequence of finite populations {I1.} with L strata in I, and are valid for any
stratified multistage design in which the primary sampling units (psu’s) are
selected with replacement and in which independent subsamples are taken
within those psu’s selected more than once. In addition, some exact analytical
results on the bias and stability of these alternative variance estimators in the
case of ratio estimation are obtained for small L under a general linear
regression model.

1. Introduction. Many large scale surveys now involve large numbers of strata with
relatively few primary sampling units (psu’s) selected within each stratum. One segment
of the Current Population Survey (CPS) conducted by the U.S. Bureau of the Census, for
example, involved 110 strata with only three psu’s selected within each stratum (Gurney
and Jewett, 1975). In recent years, problems of statistical inference based on data from
such stratified cluster samples have received considerable attention. In particular, three
general methods of estimating the variance of nonlinear statistics such as regression and
correlation coefficients have been advanced: Taylor expansion or linearization, the jack-
knife and balanced repeated replication (BRR).

Previous work on the properties of these methods in stratified samples has been largely
empirical. Using data from the March 1967 CPS and sample designs involving the selection
of two psu’s from each of L = 6,12 or 30 strata, Kish and Frankel (1974) studied the degree
to which the statistic T = (§ — 6)/v/2(d) followed a ¢ distribution with L degrees of
freedom. Here, f is an estimator of some parameter 6 and v(d) is an estimator of the
variance of # based on one of the three methods mentioned earlier. They found the ¢
approximation to be adequate for purposes of constructing two-sided confidence intervals
for a variety of population parameters (excepting possibly multiple correlation coefficients)
with as few as 6 or 12 strata. The BRR method performed consistently better than the
jackknife which in turn performed better than the linearization method, although the
differences were small for relatively simple statistics such as ratios. When the stability of
these variance estimators was examined, however, their performance was found to be in
the reverse order. Further empirical investigations of the properties of these three methods
have been made by Bean (1975), Campbell and Meyer (1978), Lemeshow and Levy (1978)
and Shah, Holt and Folsom (1977).
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In this paper, a theoretical basis for the construction of approximate confidence intervals
for @ using the statistic T is provided for designs involving large numbers of strata. The
three methods of variance estimation are outlined in Section 2 and the asymptotic
normality of T is established for each method in Section 3. These asymptotic results,
obtained as L — o within the context of a sequence of finite populations {II,} with L
strata in I1;, are valid for any stratified multistage design in which the psu’s are selected
with replacement and in which independent subsamples are taken within those psu’s
selected more than once. Finally, some exact analytical results on the bias and stability of
these alternative variance estimators are given in Section 4 for the special case of ratio
estimation in stratified simple random sampling. These results are obtained under a fairly
general linear regression model, facilitating an examination of the impact of changes in the
values of the model parameters on the properties of the variance estimators.

2. Variance estimation. Many parameters such as ratios, correlation and regression
coefficients may be expressed as a nonlinear function of the vector of population totals, say
6 = g(Y), such that g(Y) o« g(Y). Here, Y = Y/M where M denotes the number of units
in the populatlon which may be unknown. A natural estimator of 6 is given by § = g(Y)
where ¥ = (¥, ---, p)’ is an unbiased linear estimator of Y = (Y, ---, Y,)’. Since T =
@ -6)/v'*0) = (g3) — g(V)/v"*(&(§)), where ¥ = (Y, ---, ¥,) and § = G, -+, 5
withy, = Yi/M (=1, ---, p), we may write § = g(Y) and § = g(y) when investigating the
asymptotic distribution of the statistic 7" even though M may be unknown.

ExampLE 2.1. The ratio § = Y,/Yz = Y1/ 7, is often estimated by 8 = ¥,/ ¥» = 7./.
2.1. The linearization method. This well known method is valid for any sample design

provided that an unbiased estimator v (¥:) of V(¥:) is available. (Such an estimator can
usually be obtained from standard sampling theory for linear statistics.) Noting that § —

0 = Y (7 — Yi)gr(Y), where gi(t) = ag(t)/at, with t = (¢, ---, ¢,), the “linearization”
variance estimator is given by
(2.1) ve(@) = 3 g F () + 2 T Tiet 86(F)&UF)cOV (T, 7).

Here, 2 cov(yz, y:) ) = v(yr) — v(yx) — v(y:) where ¥, corresponds to the variable y,; = y;
+ y:. The calculation of p variance and p(p — 1)/2 covariance terms may be avoided by
writing v.(8) = v(Z), where Z corresponds to the derived variable z = Y 8x(¥)yr (Woodruff,
1971).

One drawback of the linearization method is that the evaluation of the partial derivatives
gx(-) may be difficult for certain parameters (e.g., multiple and partial correlation coeffi-
cients). However, useful approximations to the required partial derivatives may be obtained
using the numerical methods of Woodruff and Causey (1976). In the case of a multiple
regression equation with m + 1 coefficients, Tepping (1968) has developed a systematic
method of evaluating g.(¥) which involves solving (m + 1) (m + 4) /2 sets of linear equations
with (m + 1) equations in each set.

ExaMPLE 2.1 (continued). For § = 31/¥2,
v(B) = (v(7) + 8°v(5) — 20 cov(F, 72)} /75

2.2. The jackknife method. Estimates of variance obtained using the jackknife tech-
nique are based on the variability among a number of replicate estimates of § computed
from overlapping subsamples of the total sample. Unlike the linearization method, the
partial derivatives of g(-) are thus not required.

Properties of the jackknife in the case of simple random sampling (srs) with replacement
have been extensively investigated (see Miller (1974) for an excellent review). Some large
sample results for srs without replacement are also available (Krewski, 1978a; Majumdar
and Sen, 1978). Letting 6" denote the estimator of 6 computed from the sample after
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omitting the ith observation, the jackknife estimator of the variance of § when sampling
with replacement is given by

(2.2) @ =nn-1)"3 @ -8)=n"(n—-1) 3% @ -6,

where §' = nd — (n — 1)8* are pseudovalues, 4, = ¥ @*/n is the jackknife estimator of 4
and = 6*/n.

The extension to stratified samples is not immediate, however, and several different
versions have been proposed. Both the jackknife and BRR methods developed to date,
moreover, require that the psu’s be selected with replacement, except in the special case
of stratified srs (Jones, 1974; McCarthy, 1966). We will thus confine ourselves to stratified
multistage designs in which the psu’s are selected with replacement and in which indepen-
dent subsamples are taken within those psu’s selected more than once.

Suppose that n, = 2 psu’s are selected from the N, psu’s in the Ath stratum with
probabilities p,, > 00 =1, -+, Ny; A =1, --., L), where Z,’;”i pri = 1. Then an unbiased
estimator of the stratum total Y, is given by Y. = St Yo/ (napr), where ¥, is an
unbiased estimator of the total Y, for a selected psu based on sampling at the second and
subsequent stages. Hence, Y is unbiasedly estimated by Y=Y Y, and Y is unbiasedly
estimated by § = ?/M, where M = Y M, and M, denotes the total number of units in
stratum A. Letting W), = M,/M denote the weight of the Ath stratum, we can write y =
Y W,.¥n, where ¥» = Y71 yn/ny and yn = ?h,/ (Mypr;). Note that for each A, the y..’s are
independent identically distributed random variables whereas for 4 # A, y» and ys, are
independent but not necessarily identically distributed.

Let " denote the estimator of Y computed from the sample after omitting y (i = 1,

cee,nph=1,..., L) ie,

¥ = Ywun WaFn + Wr(nngn — yr)/(nn — 1).
Then Jones’ (1974) jackknife estimator of V(@) is given by
(2.3) v$(8) = Vo1 ni(nn — 1) Ti(@™ — 677,

where 8" = g(§") and 8" = Y\, §*/n, (see also Brillinger, 1977). Replacing §" by 4 in
(2.3) leads to the modified jackknife variance estimator

(2.4) v (@) = Sk nit(ns — 1) T (@™ — )2

Kish and Frankel (1974) and Lee (1973) have considered v?(d) in the special case of all n,
= 2, although Kish and Frankel actually compute " by deleting y, from the sample and
including ys, (j # i = 1, 2) twice. Two other variations of v"(9), denoted by vS”(9) and
v$9(d), may be obtained by replacing 6" in (2.3) by ¥ ¥ 8"/n and ¥ 8"/L respectively,
where n = Y, ns.

With pseudovalues defined by 8% = nx8 — (n, — 1)8™, both

(2.5) 9 =Yk, S @/n and 89 = Yo ng' Y §7/L
represent natural extensions of the jackknifé estimator of 6 proposed by McCarthy (1966)

in the special case n,, = 2 for all 4. The corresponding jackknife variance estimators vP(0)
and vS? () are given by

(2.6) v @) = Yy nil(ny — 1)L (@™ — §50)?

with v.$9(d) obtained by replacing 85 by 8 in (2.6). The jackknife statistic 8 has also
been considered by Folsom, Bayless and Shah (1971). Their jackknife variance estimator
is obtained by replacing 5" by Y1 8%/n, in (2.6) and is identical to v " (d).

Jackknife variance estimators requiring less computational effort may be constructed
using only a random sample of size m(< nx) of the r, psu’s in the sample in stratum 4. For
example, v.? () would be computed as

(2.7) 0P @) = Tk mit(nw — 1) (6" - §)>.
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When n, > 2 foz some A, however, such estimators will be less efficient in the linear case
g(Y) = Y2_, ¢,Y, than the usual estimator

(2.8) v(e’y) = DF)e

of V(c'y) = ¢'D(y)c, where ¢ = (cy, - -+, ¢,)’ (Krewski, 1978b). Here,

(2.9) D) =3 Wils/na

is an unbiased estimator of the covariance matrix D(y) = ¥ W3I's/ns, where
(2.10) L = S0 (yn — $0)(yu — §)'/(n — 1)

is an unbiased estimator of T, = E (yn — Y)(ysn — Ya), with Y, = Y,/M,. All of the
jackknife variance estimators discussed previously reduce to (2.8) in the linear case, as
does (2.7) when all n, = 2.

As in the case of simple random sampling, the jackknife can also be used to reduce the
bias of 8. The jackknife estimators 83", §? and

(2.11) 09 = (1 +n—L)§ - Yki(nn — 1)8"

(Jones, 1974) may be considered in this regard, although empirical evidence (Kish,
Namboodiri and Pillai, 1962; Frankel, 1971; Bean, 1975) suggests that the bias of § is
largely negligible in large scale surveys. (One exception to this consensus is the multiple
correlation coefficient for which Frankel found the relative bias to be as high as 20-25%.)
We will thus focus our attention on the jackknife variance estimators and associated T
statistics and refer the reader to Krewski and Rao (1978, 1981) for results on the properties
of the jackknife estimators of 6.

2.3. Balanced repeated replication. When ny = 2 for all h, McCarthy (1966, 1969) has
proposed a method of variance estimation based on a number of half-samples formed by
deleting one psu from the sample in each stratum. The set of S half-samples used may be
defined by an S X L matrix A = ((§,,)) where §,, = =1 depending on whether the first or
second sample psu in the Ath stratum is in the jth half-sample, and Y7, 8 = i) 8
=0 (h#1’). Aminimal set of L + 1 < S =< L + 4 balanced half-samples may be constructed
using the methods of Plackett and Burman (1946).

Let ¥’ denote the estimator of Y based on the jth half-sample and let §’ = g(3"").
A BRR variance estimator is then given by

(2.12) v @) =Y @Y - )¥s.

Letting 89’ = g(y“’) denote the estimator of 6 based on the complement of the jth half-
sample, two additional BRR variance estimators are given by

(2.13) v(0) = 3 8V — 8)?/(48)
and
(2.14) v (@) =3 {8V - 8)* + B - 8)%}/(28).

Due to the orthogonality constraints on A, all of the BRR variance estimators reduce to
the usual variance estimator in (2.8) in the linear case.

More generally, when n, = ¢ (a prime) for all 4, Gurney and Jewett (1975) discuss the
use of orthogonal arrays in constructing balanced subsamples comprised of one psu in each
stratum. Since no such method is at present available for arbitrary n,, however, BRR is
less widely applicable than the jackknife.

3. Large sample results. A framework for the development of asymptotic theory is
provided by the concept of a sequence of finite populations {I1;}$-; with L strata in I1;.
For simplicity of notation, the population index L will be suppressed in what follows and
all limiting processes will be understood to be as L — oo. Writing Y = (Y1, + - +, Yap)’ and
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Y. = (Yn, -+, Yn,)’, we shall first study the asymptotic properties of § and D(¥) under
the following regularity conditions.

Cl. Yhei WhE | yns — Yur|**® = 0(1) for some § >0 (k =1, - .-, p).
C2. maxi<p<r nr = O(1).

C3. maxicp=r Wi = O(L7?).

C4. n ¥ Wils/n, — T (positive definite).

Condition C1 is a standard Liapounov-type condition on the 2 + § absolute moments.
Condition C2 (bounded allocation) reflects our intention to focus on surveys with large
numbers of strata with relatively few psu’s selected within each stratum. Thus, we will
requlre that no strata be of disproportionate size (C3). Except in the case of v (d) and
v$(@) in Theorem 3.4 below, we note that it is possible to replace C2 and C3 in what
follows by the single and somewhat weaker condition max,<x<z Wi/ws = O(1), where w;,
= nu/n. Finally, it is assumed that the limit of the dispersion matrix of y exists when
multiplied by the normalizing factor n (C4).

Since {yx} is a double sequence of rowwise independent random variables (recall that
the row subscript L is omitted), we can make use of an established central limit theorem
(Hoadley, 1971) and law of large numbers (Sen, 1970) for independent nonidentically
distributed random variables {X,} £, with E(X,) = #: and D(X,) = I'¥, where X, = (X,

* sz)/ and ne = (IJ«zl, e, I‘ftp)/'

LeMMA 3.1 (Central limit theorem). If Y, T?/T— IT'* (pos. def.) and T YL, E | Xn
— pa|*® = 0(1) as T — o« for some 8 >0 and k=1, ---, p, then TV*X — ) —q4 N(0,
I'*), where X =Y X,/T and i =Y p/T.

LEMMA 3.2 (Law of large numbers). If T7' YL, E| X | = O(1) as T — o for some
86>0andk=1, ..., p, then for any € > 0, P{IXk—[.Lk|>€} = O(T™), wherer = § when
d=<landr= (1+8)/2 when 8> 1. Here, X = (X, -+, X,) and i= (&, - -, i)"-

Applying Lemma 3.1 to the random variables Xu = W, (y» — Y») we get, noting that
T =n,

THEOREM 3.1. Under conditions C1-C4, n**(y — Y) -4 N(0, I).
Lemma 3.2 can be used to establish
THEOREM 3.2. Under conditions C1-C3, n {ﬁ()_f) — D(¥)} — 0 in probability.

PrOOF. We can write the kth variance term in nD(¥) as nv(§x) = n{Sk1 W3 ni*-
S (Y — Yu)?/ (e — 1) — it Wa(Tme — Yu)?¥/ (nn — 1)} = Yr Yo Xnir — Yp Xun, say.
Applying Lemma 3.2 to {Xs.} and {X,.} separately we get n{v(7) — V(7)} — 0 in
probability. The covariance terms may be Handled in a similar fashion. O

Thus, ¥ is asymptotically normally distributed and nﬁ(y) is a consistent estimator of
nD(¥) as L — . It is also easy to show that § — Y — 0 in probability under C1-C3. (This
last result also holds with only bounded 1 + 8 rather than 2 + 8 moments in C1.)

3.1. The linearization method. We require two additional regularity condltlons in order
to establish the asymptotic normality of 6= £(y) and the consistency of no(9).

C5. Y. — py (finite) fork =1, -.-, p
C6. The first derivatives gi(-) of g(-) are continuous in a neighborhood of =

(#1, cen, [Lp)/.
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Under C5, it is assumed that the limit of the sequence of population means exists.
Condition C6 is a standard requirement for the asymptotic normality of a nonlinear
function of several random variables. Building on Theorems 3.1 and 3.2, Theorem 3.3
below can be readily established using standard arguments (C. R. Rao, 1973, page 387).

THEOREM 3.3. Under conditions C1-C6, (i) n"/*(8 — 6) —a N(0, o), (ii) nvr(d) — o
in probability and (iil) T = (8 — 0)/v1/*(0) —a N(0, 1), where 6> =Y Y grgv, yir', 8 =
&) and IT' = ((vxr)).

3.2. The jackknife method. Using the method of proof introduced by Miller (1964) for
srs, we shall establish

THEOREM 3.4. Under conditions C1-C8, (i) nv$ () — o in probability and (i) T
=@ -0)/vvP@) —-sN@©O,1) fori=1,---,6.

ProoF. Only the case p = 1 is considered in detail; the extension to p > 1 is relatively
straightforward. Let I = (u — A, p + A), A > 0, be any neighborhood of u in which g’(-) is
continuous. We need the following result.

LEMMaA 3.3. P{all ™, y € I simultaneously} — 1.

ProoF oF LEMMA 3.3. Since y — Y — 0 in probability and ¥ — y, we have P{|7 —
u|< A/2} — 1. Thus, we need only show that

P{maX1sisnh;lshsL I.}Thl - 37| < A/2} - L

To this end, we note that | 7" — y| = (nx — 1) Wi{| ¥ — Y| + | 7» — Y|} where, using the
Chebychev inequality and noting that (n, — 1)™' < 2/n, since n, = 2,

P{maxizizn,i=h=s (nn — 1) "Wy |y — Y | = A/4}
=Y S P{(ny — 1) Wy |y — Vi | = A/4)
= (2°"% /A% (maxi<h<r Wi)'"° St WiE | yp — Ya [P
= O(L—(I-HS))

under C1 and C3. Similarly, P {maxi<p<s (nx — 1)"'"Wj |35 — Ya| = A/4} — 0, establishing
the lemma.

Since lim P(A,) = lim P(A.B,) for any two sequences of events with lim P(B,) = 1, we
may tacitly assume that the events described in Lemma 3.3 hold in the remainder of the
proof of Theorem 3.4. While details are provided only for v, ?(f), similar arguments hold
in the case of the remaining jackknife variance estimators including 5 (9).

When all 7, ¥ € I we may write

0" = g(7™ = g(3) + (7" — Pg'(E")
(3.1) u
=0 — (nn— 1) Wiy — 7 &' (&™)

where £ lies between 7™ and y. Since m(¢) = g’(t) — g’(u) is continuous at ¢t = u, there
exists for any € > 0 some A. > 0 such that |m(¢)]| <efort € I. = (u — A, p + A.). Thus
(3.2) P{maXi<,<n,<r<r | m(£")| < €} = P{all 5™, y € I. simultaneously} — 1

by Lemma 3.3, i.e., maXi<i<n,;1<r=L | m(£")| — 0 in probability (with £** defined arbitrarily
when the events described above do not hold).
Substituting (3.1) into (2.4) we get
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nvf 0) = n Tk Wini' S (yw — 308" W) + m(E™)?/ (ny — 1)
(3.3) =nv()| g W + n Tier Wini' T (yu — ¥a)’m*(E") /(na — 1)
+ cross-product term.

Under C4, the first term on the right-hand side of (3.3) — ¢* = | g’(p) |y in probability due
to Theorem 3.2 (where I' = y for p = 1), while both the second term and the cross-product
term — 0 in probability due to (3.2). Hence, result (i) of Theorem 3.4. Result (ii) follows
immediately from result (i) and Theorem 3.3. 0

3.3. Balanced repeated replication. In the special case n; = 2 for all h, we have

THEOREM 3.5. Under conditions C1-C6, (i) nvg’(é) — o® in probability and (i) TV
=(0—8)/VvF (@) -aN(©,1) fori=1,2,3.

ProoF. As in Theorem 3.4, only the case p = 1 is considered in detail. With the
interval I defined as in Theorem 3.4, we need a result analogous to Lemma 3.3.

LEMMA 3.4. P{ally", y € I simultaneously} — 1.

Proor or LEMMA 3.4. We need only show that
(34) P{maxic,<s |7 — Y |=4/2} - 0.

Let Xh(” = LWh(y;,(,, - Yh) where Yr()) = Yh1 if 81), = +1 and Yh(y) = Yh2 if8,h = —1. Noting
that maxi<p<r, Wit? = O(L™"*?) under C3, it follows that L™ Yi, E|Xx) |*** = 0(1).

Hence

(3.5) P{|yYV — Y| =4/2} = O(L™"*%?)

by Lemma 3.2 (with 7"= L). Since S = O (L), it now follows from (3.5) that
P{max,<,<s |7V — Y| =A/2} = SP{| 7V — Y| = A/2} = O(L™%?).

Hence the lemma.

The remainder of the proof of Theorem 3.5 now follows along the lines of Theorem 3.4
with the use of Lemma 3.4 and the orthogonality constraints on A. For example,

nvf (@) = nST Y5 (7Y - 3% | &' (WP
+nS7 Y (7Y = 7)°’m*(¢Y’) + cross-product terms
= | g W’ +nST" X 3V —yPmPEY)

+ cross-product terms

-, |8 WPy =0?

since max<,<s| m (¢£“)] — 0 in probability. 0

4. Exact results for ratio estimation. We now give some exact analytical results
on the bias and stability of several alternative variance estimators based on the lineariza-
tion, jackknife and BRR methods in the case of ratio estimation (Example 2.1) under
stratified srs with proportional allocation (n, = Wyn). These results are obtained under a
general linear regression model given by (Rao and Ramachandran, 1974)

(41) Yha = ap + ﬁh_}’m + en (l =1, .. ., Ny h = ]_’ cee, L)

where, conditional on the y.., the errors e, are uncorrelated with mean zero and variance
Sny%e (tn = 0). In practice, ¢ has often been found to lie between 0 and 2. In addition, it is
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assumed that the variable ys.» follows a gamma distribution with mean a and coefficient
of variation (CV) a; "% To simplify the derivations, we will assume that the number of
units M} in each stratum 4 is infinite. Hence,

0 = Yie1t WaE(yn)/Th=1 WaE(yn2) = (n/m)a+ B where a=Y npon/n,
B=YmiBr/m and m=Ym, with ms=nsan
4.1 Bias. After considerable algebra, the bias of vL(é) as an estimator of MSE(&) =
E (6 — 6)? is given by

B(ur) = —n*(3m + 2)[m(m + 1),]7'&* — 3[(m + 1)(m + 3)]7'A3
(4.2)
— 2 nn [tiz, + 65(2m + 1) — m][(m + & + 1)4]_1fh(th)8h,
provided m > 2, where (m), =m(m —1) --- (m —r+ 1), A7 = Y ma(Bx — B)?/m and fi(t)
=TI'(ax + )/T'(as). Similarly, afteAr some tedious algebra, the biases of the BRR variance
estimators v (0), v¥(#) and v¥ () when all n, = 2 may be expressed as

B(vg’) = B(v§) = 2n*(m + 2)(m — 3)(3m — 4)[m (m — 2)(m)s]'a>

(4.3)
+ 4 Z [(m + 2t — 4)_1 —(m+t - 2)_1](m + 2t — 2)_1ﬁ,(th)8h
and
B@g§') = n*(m — 3)(3m* + 4m — 16)[m(m — 2)(m)s]'a® — [(m + 2).]"'A}
(4.4)

+23[(m+2th—2)7"m + 26, — 47" — (m + tn — 1)7'1£(81)0n,

provided m > 4.

Examination of (4.2)-(4.4) leads to the followmg conclusions. (i) B(v.) < 0when ¢, = %
for all A, i.e. UL(0) underestlmates MSE(0) (ii) B(v%’) = 0 when ¢, < 2 for all A; i.e. vg)(ﬂ)
overestimates MSE(O) (iii) B(v¥) > 0 when ¢, < % and Br = B for all A, (iv) For B;, =8
and n; = 2 for all A, B(v§)) > B(v¥) > 0 when all #, < % and B(v¥') > B(v®) > | B(v)|
when all ¢, = 1; (v) when a = 0 and n, = 2 for all &, | B(v.)| > | B(v#)| > B(v¥’) = 0 when
all ¢, = 2.

In order to evaluate the biases of the jackknife variance estimators v,}”(é) and v, 2)(9),
we need the inverse moments E (X; + AXz) ™, E(X; + AX2) ™2 E(X: + AXo) '/(Xy + Xp +
X3)7' and E (2X; + X3)'(2X; + X5) 7, where A > 0 (# 1) and X3, X, and X; are independent
gamma variates. (We were unable to evaluate the exact biases of the remaining jackknife
variance estimators.) An explicit expression for E (X; + AX;) ' is given in Lemma 4.1 below;
expressions for the remaining moments may be derived using similar arguments (Krewski
and Rao, 1981).

LeEmMMA 4.1. Let X, and X, be independent gamma variates with means a and b
respectively. Then for any positive constant X (# 1) and integral values of a and b,
EX: +AX) ' = (TGO (@)} 'TIY + A7 T(b + a — 1) {I? + I¥}]
where
IO =Yl ()N T+ k- D)I(a - k),
I? = ()™ P D A - Db+ a—k— 1)
and

I? = (=1)*'A = )" “In A.

Proor. We utilize a method introduced by P. S. R. S. Rao (1974). For ¢ = 0, let ¢ (¢)
= Elexp{—t(X;, + AX3)}] = (1 + £)*(1 + A\t)°. Then



1018 D. KREWSKI AND J. N. K. RAO
EX +AX,) ' = f o (t) dt = f 1+ 81+ A% dt = I(a, b; ).
0 0

Applying integration by parts for a = 2 yields

Ia, b\ = (@—1)"{1 = bI(a — 1, b+ 1;\)}
(4.5)
= (TBOT (@) I + (=1)*'AN“T (b + a — DI, b+ a — L, \)}.

By partial fractions, for & + a = 3,
I b+a-LN=A- D{b+a-2"—I1,b+a—2A)}
(4.6) =Y (=DM A-D*b+a—-k—-17"
+ (D)% — 1)1, 1; A).

The desired result now follows from (4.5) and (4.6) since I(1, 1;A) = (A —1)"InA.O

In the special case n, = 2, ar = a, B, = B and t;, = ¢t for all A, the biases of the different
variance estimators v may be expressed in the form B(v) = C &* + D§, where § = Y 8,/L
(Krewski and Rao, 1981). Since the expressions for B(v"’) and B(vf?) involve expressions
such as that given in Lemma 4.1, we computed these C and D coefficients for ¢ = 1, 2, 3,
L=<12andt=0,1,2.

This analysis led to the following conclusions: (i) B (UL) < 0 when ¢t =1 or 2 as noted
previously; (i) both jackknife variance estimators v (@) and v () also underestimate
MSE(f) when ¢t = 1 or 2 and L > 4 with | B(vy)| > | Bw$)| > | Bw$)| in this case; (iii)
B(v§) > B(v§) >|B(v1)| > |B(vY)| > |B(vy)| when ¢t = 1 and L > 4; (iv) When & = 0,
all five variance estimators overestimate MSE (8) for ¢ = 0, with B(v¥’) > B(v¥) > B(v'?)
> B(v%) > B(vy) in this case. When ¢ = 2, all five variance estimators are underestimates
when a = 0 with the absolute biases following the reverse order to that for ¢ = 0.

4.2. Stability. The mean square errors (MSE’s) of v.(6) and v () may be expressed
in the form MSE(v) = Fa® + Ga?$ + H5% under the model (4.1) with normally distributed
errors ep and ny = 2, an = a, Bn = B, ¢, = t and §, = & for all A, provided that the set of
balanced half-samples for U}g”(ﬂ ) is selected so that the number of units common to each
pair is constant. (Evaluation of the MSE’s of the remaining variance estimators appears
difficult even in this special case.) The expressions for MSE(v.) and MSE(v§’) are lengthy,
however, and are not reproduced here. Moreover, the latter quantity involves inverse
moments of the form E (X; + X3)~%(X; + X3)® where X,, X, and X; are independent gamma
variates and a, b = 1 or 2. (P. S. R. S. Rao, 1974; Krewski and Chakrabarty, 1981).

We have evaluated the F, G and H coefficients in MSE(v;) and MSE(v¥’) for the same
values of @, L and ¢ used earlier. We now summarize the results of this investigation. (i)
Each of the coefficients in the expressions for the MSE’s of vL(é) and v};”(é ) was found to
decrease as L increases or as the CV a2 of the auxiliary variable decreases; (ii) for all
values of a, L and ¢, MSE(v#’) > MSE(v.). The ratios F§/F., G® /G and HY'/H,, are all
substantially greater than one for small values of L and a, but decrease as L or a increase.

vy /H is particularly close to one for moderate values of La, indicating that the stability
of v§(d) is comparable to that of v.(f) when & = 0. (iii) The ratio H };”/HL decreases as ¢
increases so that MSE (v¥’)/MSE (v.) decreases as ¢ increases when & = 0.
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