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RELATION OF THE BEST INVARIANT PREDICTOR AND THE BEST
UNBIASED PREDICTOR IN LOCATION AND SCALE FAMILIES

BY YosHIkKAZU TAKADA

University of Tsukuba

In this paper a necessary and sufficient condition for a predictor to be the
best invariant predictor in location and scale families is given. Using this
condition, it is shown that the best invariant predictor is expressed by a linear
combination of the best unbiased predictor and the best unbiased estimator
of the scale parameter.

1. Introduction. Statistical prediction is the use of the data from an experiment to
make some statement about the outcome of a future experiment. Let X’ = (X, ..., X,) be
the observed random variables and Y a future random variable. We assume that X and Y
have a joint distribution given by the density

o” " (e = /o, oo (= p) /o, (y — p)/o)

for some known function f, where (y, o), with 6 > 0, is an unknown location-scale parameter.
Let ® = {(u, 0): 0 > 0} be the parameter space and § = (u, o). Let ® be a class of specified
statistics such that if §; € ® and 8§, € @, then ad; + b5, € ® for any real valued constants
a and b. For example the class ® may consist of all linear combinations of observed random
variables. In the sequel we assume that all estimators and predictors belong to ®.

We say that a statistic § (X) is an unbiased predictor of Y if

(1.1) Ed(X) = Eo(Y) forall 6€ 0.

We say that a statistic § (X) is an invariant predictor of Y if for any (a, ) with a > 0,

(1.2) d(aX + be) =ad(X) + b for almost all X
(the exceptional set may depend on (a, b)), where e = (1, ---, 1)".
Let

R,= {§ € ®: 8 is an unbiased predictor of Y}
and
R;= {6 € ®:§ is an invariant predictor of Y}.

In this paper we adopt squared error as loss function. Then §* € R, is said to be the best
unbiased predictor if §* minimizes Ey{8(X) — Y} for all # € ® among all § € R,. In the
same way we say that 8§ € Ry is the best invariant predictor if §; minimizes
Eo{8(X) — Y}*for all # € © among all § € R,.

For the estimation problem, Pitman (1939) has given explicit formulae for the best
invariant estimators of location and scale parameters. Mann (1969) has obtained the
relation of the best invariant estimator and the best unbiased estimator. Using this result,
Kaminsky, et al. (1975) have obtained the best linear invariant predictor of order statistic.

The purpose of this paper is to obtain the relation between the best invariant predictor
and the best unbiased predictor. The method is different to that of Mann and uses a
characterization of the best invariant predictor.
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2. Characterization of the best invariant predictor. Let
So={y € ®: Esy(X) =0, En*(X) <o forall 4€ @).
Then the following lemma is well known (see Zacks (1971), Theorem 3.3.1.).

LEMMA 1. An unbiased estimator §* € ® is a uniformly minimum variance (U.M.V.)
unbiased estimator of g(6) among the class ® if and only if for any 8 € ©® and y € S,,

(2.1) E,{(8*(X)y(X)} = 0.

For the prediction problem, Ishii (1978) obtained the following lemma, the proof of
which is almost the same as that of Lemma 1. We give the proof for later use.

LEMMA 2. An unbiased predictor §* € R, is a best unbiased predictor if and only if
for any 8 € ® and any y € S,
(2.2) Ef{Y -5*X)}yX)]=0.
ProoF. Assume that §* is a best unbiased predictor. For any y € S, let §(X) =
§*(X) + Ay(X). Then § € R, and
Eo(Y — 8(X)} 2= E{Y — 8*(X)} 2 — 2AE[{Y — 8*(X)} y(X)] + N Eo{y*(X)},
which implies Eo[ {Y — §*(X)}y(X)] = 0.

Conversely, if §* satisfies (2.2), for any § € R, let y(X) = —6*(X) + §(X). Then y € S
and therefore

Eo{Y — 8(X)}? = Eo{Y — 8*(X) — y(X)}*
= E, (Y - 8*(X))? + Ex*(X)
= E,{Y — §*(X)}*%
Hence 8* is a best unbiased predictor. This completes the proof of the lemma.

THEOREM 1. If 8* is a best unbiased predictor, then it is an invariant predictor.

Proor. Let R(6,8) = E,[{Y — 6(X)}*/0%] and 6., = (au + b, ao) for 6 = (u, o). For any
(a, b) with @ > 0, let §,+(X) = {6*(aX + be) — b} /a. Then it is easy to see that 8., € R,
and

(2.3) R (0, 8a) = R(0ap, 6%).

Since 8* is a best unbiased predictor, R (6, §*) < R(f, 8.»). Therefore for any (a, b) with
a>0,R(6,8%) = R(0qs 6*). Hence for any 6, # 6,, R (6, §*) = R (6, §*). Then from (2.3)
we have R(6, 8.,) = R(f, §*) for any 8 € O. This shows that 8, is a best unbiased
predictor. From Lemma 2,
Eo{8ap(X) — 8*(X)} 2 = Es([{8ap(X) — Y} — {8*(X) — Y} H{Bup(X) — 8*(X)})
= O,
which implies the theorem.

REMARK 1. From Theorem 1 it turns out that the best invariant predictor is better
than the best unbiased predictor.

We say that y € ® is scale invariant if for any (a, ) with a > 0,
v(aX + be) = ay(X) for almost all X
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(the exceptional set may depend on (a, b)). Let S; = {y € ®: y is scale invariant and
Eg ¥ (X) < »}, where 6, = (0, 1). Then we have the following theorem, the proof of which
is similar to that of Lemma 2, noticing that the mean square error of § € R; is proportional
to o,

THEOREM 2. An invariant predictor 8* € R; is the best invariant predictor if and
only if for any y € St
(2.4) Eg[{Y — 8*(X)}v(X)] = 0.

3. Relation of the best invariant predictor and the best unbiased

predictor. Now we consider the relation of the best invariant predictor and the best
unbiased predictor. For this we need the following lemma.

LEMMA 3. If6* € ® is a UM.V. unbiased estimator of ¢ among the class ®, then *
€S,

Proor. For any (a, b) with a > 0, let 6,4(X) = 6*(aX + be)/a and R(4, 5) =
E[{6(X) — 0}%/0%]. Then the proof follows by an argument similar to that of Theorem 1,
using Lemma 1.

THEOREM 3. Let 8* be the best unbiased predictor of Y and 6* the UM.V. unbiased
estimator of o. Let

¢ = Eg[{Y — 8*(X)}6*(X)] and c2 = Eg,{6*(X)}.
Put
(2.5) 8F (X) = 6*(X) + (c1/c2)6*(X).

Then 8} is the best invariant predictor of Y.

Proor. From Theorem 1 and Lemma 3, 8§; € R;. Now we show that §; satisfies the
condition of Theorem 2. If y € S, then E {y(X)} = Eg{y(6X + pe)} = oEy, {y(X)}.
Therefore y must be of the form

(2.6) y(X) = k6(X)
for some k, where ¢ is an unbiased estimator of o. It follows from Lemmas 1 and 2 that
Eg[{Y - 8*X)} {6(X) —6*(X)}]=0,
and
Ey[6*(X){6(X) —6*(X)}]=0.
Therefore from (2.6) and the definition of ¢; and ¢;, we have that
Eq[{Y — 61 (X)}y(X)] = E,({Y — 6" (X) — (a1/c2)6 *(X)}
X [k{6(X) — 6*(X)} + k6*(X)])
= kEq[{Y — 8*(X) — (c1/c2)6*(X)} 6*(X)]
=0,

which proves the theorem.
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REMARK 2. If X and Y are independent, let g(d) = E4(Y). Then the best unbiased
predictor and the best invariant predictor of Y become the U.M.V. unbiased estimator and
the best invariant estimator of g(6), respectively and Theorem 3 coincides with Theorem
1 of Mann (1969).

ExampLE 1. Denote by X; < X, -.. < X, the order statistics of a random sample of
size n from a population with continuous pdf, (1/0)f {(x — p)/o}, assumed known up to
location and scale. We consider the problem of predicting X,, after observing only X, - -
, X,, where 1 = r < m < n and consider only linear predictors, that is,

® = {8:8(X)=Y-1aX: forsome (ay---,a)}.

Since Eyo(X)) = p + oa;, Cove(X;, X)) = 0%Bi;, i,/ =1, -+, n, where the a; and B, are known
to be constant, that is, free of p and o (see David (1970), page 102), the Gauss-Markov
least-squares theorem may be applied to give linear unbiased estimators of (¢, o). We write
8* and (ii*, 6*) for the best linear unbiased predictor of X,, and the U.M.V. linear unbiased
estimator of (u, ). From the result of Kaminsky and Nelson (1975),

*(X) =p*X) + *Xam + WV HX — i*X)e — 6* (X))o},

where o' = (ay, +++, &), W = (Bim, -+, Bm) and V = (B,;)(1 = i, j = r). Then it is easy to
see that

c1 = Ep[{Xn — 6%(X)} 6*(X)]
= — Covyg, {(1 —w'V'e)i*(X) + (am — W'V 'a)6*(X), 6*(X)} .

Then from Theorem 3 we have the same result of Kaminsky, et al. (1975), page 525.

ExaMPLE 2. In example 1, assume that the parent population is exponential, (1/0)
exp{—(x — p)/o}, x > p, 0 >0, and D is the class of all statistics. It is well known that for
1 < i < n the set of random variables

(2.9) Zi=(n—i+ D)X — Xi-1) i=1,.--,n
(where X, = p) are mutually independent with pdf,-lt; e ™, x> 0. Using (2.9), we have that

2.10) EXn|X) = E{X, + Y7 (Xi — Xi01) | X}
=X, +oYtal/(n—i+1).

Let T(X) = Yi-2 (n — i + 1)(X; — X,_1). Then from Theorem 3 of Epstein and Sobel (1954),
(X1, T) is sufficient and complete for §. Therefore from (2.9) and (2.10) it is easy to see that
the U.M.V. unbiased estimator of o and the best unbiased predictor of X,, are respectively

FX)=TX)/(r—1),8*X) =X, + 6*(X) Yu1 1/(n — i + 1).
From (2.9) we have
Ed{Xn — 8*X)}6*(X)] = Ef{T7 (Xi — Xi0)
—6*X) ¥l 1/ (n— i + 1} 6*(X)]
=—-Yra1/(n—i+ D)V {6*X)}.

Therefore we have that ¢; = — {Y%,+11/(n — i+ 1)} /(r — 1) and ¢; = r/(r — 1). Hence it
follows from Theorem 3 that the best invariant predictor is

S X)=X,+(1-1/nNe*X) Y1 1/(n —i+1).
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REMARK 3. Hora and Buehler (1967) give the best invariant predictor in more general
invariant models, but do not deal with unbiased predictors or with restricted classes ® of
predictors, such as linear predictors.
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