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ON A GOODNESS-OF-FIT TEST FOR MULTIPLICATIVE POISSON
MODELS

By AKE SVENSSON

University of Stockholm

A model for random n X k matrices X is considered. The elements X, are
assumed to be independent and Poisson-distributed random variables with
means «a;exp(yt;,;), where ¢;, are known m-dimensional vectors and (a, y) is an
unknown parameter. A goodness-of-fit test is proposed and an approximation
is derived when the number n of rows is large.

1. Introduction. Multiplicative Poisson models can be applied in situations where an
n X k matrix x of nonnegative integers x;; is observed. In the simplest case the elements of
x are outcomes of experiments that are influenced by two factors, one row factor which is
described by the n-dimensional parameter a = (ay, - - -, a,), and one column-factor which
is described by the k-dimensional parameter 8 = (8, ---, B:). It is assumed that the
elements of x are independent observations on Poisson distributed random variables, X,,,
with expectations «;f3; respectively. In the sequel we shall denote random variables with
capital letters and observations with the corresponding small letters.

The simple multiplicative Poisson model can be generalized so that factors other than
row and column can be taken into account. Let &;; = (¢;;1, -+, tym), L =1, -+, n, j =
1, ---, k, be m-dimensional real vectors. Assume that the elements of x are independent
observations on Poisson distributed random variables with expectations

(1.1) azexp(yti;)

respectively. Here y = (y1, - - -, y») is a m-dimensional parameter.

The simple multiplicative Poisson model is clearly included in the class of models
defined by (1.1). The models are treated in the theory of contingency tables and log-linear
models (cf. Haberman, 1974, 1977).

The main purpose of this paper is to construct goodness-of-fit tests for these models,
i.e.,, we shall test the hypothesis that a given set of observations is generated by a
multiplicative Poisson model with a certain structure. Interest is focused on results which
are valid when the number of rows is large.

In order to make things more clear we shall discuss an example. An experiment with
speed restrictions was carried through in Sweden during the summers of 1961 and 1962.
Periods with free speed alternated with periods with a general speed limit (90 km/h or 100
km/h). The number of traffic accidents with personal injuries that occurred (and were
reported to the police) in day ¢ of year J, x;;, is given in the table below. By using a
multiplicative Poisson model to analyse these data we can relate the nonrandom variations
in the x;,’s to the time of the year (day), the year and the speed restriction. To derive day
effects it is important that days with corresponding characteristics are compared. To
ensure this the days have been numbered so that Monday in week 22 of 1961 has the same
number as Monday in week 22 of 1962, and so on. The observations consist of 92 days (n
= 92) and two years (¢ = 2). The elements of x are assumed to be observations on
independent Poisson distributed random variables, X;;. Define the vector t;, so that
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E X, = {a[exp(yl) if there was free speed day i year 1
o aexp(yr + v2) otherwise
(1.2)
EX,= {ou if there was free speed day i year 2
! a;exp(yz) otherwise.

The a;’s described the day-effects, v, the differences between the two years, and y: the

TABLE 1
The observation matrix x for the speed limit experiments 1961 and 1962. (+ indicates days with
speed limit).

day no 1961 1962 day no 1961 1962
1 9 9 47 37 29+
2 11 20 48 32 17+
3 9 15 49 25 17+
4 20 14 50 20 15+
5 31 30 51 40 25+
6 26 23 52 21 9+
7 18 15 53 18 16+
8 19 14 54 35 25+
9 18 16 55 21 25+

10 13 20 56 25 16+
11 29 17+ 57 34 22+
12 40 23+ 58 42 21+
13 28 16+ 59 27 17+
14 17 20+ 60 34 26+
15 15 13+ 61 47 41+
16 21 13+ 62 36 25+
17 24 9+ 63 15 12+
18 15 10+ 64 26 17+
19 32 17+ 65 27 21
20 22 12+ 66 18 19
21 24 7+ 67 16 24
22 11 11+ 68 32 44
23 27 15+ 69 28 31
24 12+ 19+ 70 17 21
25 41+ 32+ 71 16 20
26 15+ 22+ 72 19 19
27 18+ 24+ 73 18 20
28 11+ 9+ 74 22 29
29 19+ 10 75 37 48
30 19+ 14 76 29 36
31 9+ 18 77 18 15
32 21+ 26 78 14 16
33 22+ 38 79 14 29
34 23+ 31 80 18 12
35 14+ 12 81 21 24+
36 19+ 8 82 39 26+
37 15+ 22 83 39 16+
38 13+ 17 84 21 15+
39 22+ 31 85 15 12+
40 42+ 49 86 17 22+
41 29+ 23 87 20 24+
42 21+ 14 88 24 16+
43 12+ 25 89 30 25+
44 16+ 24 90 25 14+
45 17 18 91 8 15+

46 27 19 92 21 9+
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effect of the speed restriction. In fact 1 — exp(y) is a measure of the relative effect of the
speed restriction on the expected number of accidents.

2. Test of the model. The probability of obtaining the observation x is

(2.1 P (x) = ([[; (e, Hh "M (TTi ardexp(yu’)exp{— Y., auexp(yti))},

where

(2.2) ri= Y xij, i=1--n
and

(2.3) u=7y,;xjt.

We shall use the notation 7} for the 2 X m matrix which has the vectors ¢;, as rows. There
is some arbitrariness in the choice of the ¢;’s. The same probabilities can be obtained
(with other parameters) for different ¢;,’s. It is in fact always possible to choose the ¢;’s so
that the last row of the 7’s contain only zero. This will often be a convenient choice.

The probabilities (2.1) form an exponential family of distributions with the random
variables R; = ¥ ; X;;, i = 1, ---, n, and U = ¥, Xj;t;; as sufficient statistics. We shall
assume that R = (R, .-+, R,) and U are linearly independent. It follows from the
sufficiency that the conditional probabilities of X given R =rand U = u

(2.4) P(x | r,u) = P, (x)/P,,(r, u)

do not depend on the values of the parameters.

In this paper we shall study a conditional goodness-of-fit test that rejects the model
when the conditional probability of obtaining the observation x given the sufficient
statistics is too small, i.e.,

(2.5) Px|ru=se
where ¢ is chosen so that the desired level of the test is obtained, i.e.,
(2.6) PUX;PX|ruy<e}|ru =394

This is an absolute test in the sense of Cox and Hinkley (1974, page 83) applied to the
conditional distribution. Tests of this kind are also called exact tests (cf. Fisher, 1934, and
Martin-Lof, 1973).

Obviously it is difficult to calculate the exact value of e in every situation since it will
depend on the ¢;’s, r, and « in a very complicated manner. It is, however, possible to find
good approximations in certain asymptotic situations. A familiar case is when %, n, and m
are kept fixed and the expected values, a;exp{yt/;}, of the cells grow large. The usual
goodness-of-fit test is the one that rejects the model when

{xi; — dexp(yti)}?

Lis aexp(ytly)
where xi-s(kn —m — n) is the (1 — §) percentile of a x” distribution with kn — m — n
degrees of freedom. The a’s and ¥’s are the ML estimates of the parameters. This test can
be derived as an approximation to the exact test (cf. Martin-Lof, 1973).
In this paper we shall consider the case when % and m are fixed but the number of rows,
n, is large. It is also possible in this situation to find an approximation to the exact test.
From (2.1) and (2.4) it follows that

(2.7) P(x | r,uw) =] (xi;)'H(r, u)

> xis(kn — m — n)

where H is a function of (r, u) only. Since the test defined by (2.5) is conditional on (R, U)
it is equivalent to reject the model when the observed value of the test statistic

(28) Q = z”‘ lI] X,'j!

is larger than some number &(r, u).
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3. The asymptotic distribution of the test statistic. The vectors X; = (X, ---,
X.x) conditional on R; = r; are independent and %k-nomially distributed random vectors
with the probabilities

(3.1) py G | r) = rd([] )7 1o
respectively, where
(3.2) Dij = exp(yti;) /Y. explyti), j=1, .-,k

Conditionally on the row-sums the test statistic @ is thus a sum of a large number, n, of
independent random variables @; = ¥, In X;;!. The same is true for the statistic U (cf.
(2.3)). With this in mind it should be possible to impose conditions on the behaviour of the
r’s and the ¢;,’s so that the (m + 1)-dimensional random vector (@, U) is asymptotically
normally distributed conditional on r.

If we heuristically condition on U = u in this limiting distribution we obtain a normal
distribution with mean

E(@Q]|r)+ Cov, (@ U| r){Var, (U| N}y {U-EU| Yy
and variance
Var, (@ | r) — Cov, (@, U | r){Var, (U | r)}™'Cov’, (@, U | r).

We shall prove that under certain conditions this will indeed be the true limiting distri-
bution of @ given R = r and U = u provided v is chosen as the solution of the equation

(3.3) u=E/(U]|r.
The solution of this equation is the ML estimate of y. With the help of some lemmata of

a technical nature, proved in Section 6, we can prove the following theorem:

THEOREM 3.1. Let X be a random matrix with probabilities given by (2.1) such that
(A) 0<A=aq=B<w 1=1,2 .-+
(b) there exist a positive definite matrix J and a finite number n,, such that

YL aTiT/Y e ai=dJ for all n = ny;

(c) the matrices T take only one of a finite number of values V;, ---, V. and there
exists a positive number nm such that

#li=n; T, = Vu}/n"

are bounded away from zero as n — ». Then Pr(@ =m + vz | r, u) > ®(z) asn — »
where

m=E;(Q|r),v?=Var; (Q | r) — Cov; (@, U| r){Var; (U| )} Covi (@, U| r),
and ¥ is a solution of (3.3).

ProoF: See Section 6.

4. Some special models. We shall apply Theorem 1 to two special cases which are
closely related to the example discussed in the introduction. In both cases & = 2.

4.1 The simple multiplicative Poisson model. A simple multiplicative Poisson model
with £ = 2 occurs when m = 1, t;; = 1 and ¢;» = 0. According to (1.1) the Poisson distributed
random variables X;; have the expectations a;exp(y;) respectively (y2 = 0). The conditions
(b) and (c) are trivially satisfied. If we assume that (a) holds we can apply the theorem.
Now

U=YL Xu and v =In{u/(t — w)}, where t = Y. (xa + xi2).
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The test statistic
Q=Y (In Xy! + In X»!)

is, according to the theorem, asymptotically normally distributed with mean and variance
respectively

YL E(p,r), T D(p,r) — (T C(p, )Y/ {ult — w)/t).
Here

P =exp(1)/{1 + exp(y1))} = u/t.
The functions E, C, and D are defined by

E(p,h) =Y {In x! + In(h — x)!} (2) pi(1 - ),

Cip, h) =Yy x{ln x! + In(h — x)!} (Z) p (1 — p)"™* — hpE(p, h),
and

D(p, h) = Y% {In x! + In(h — x)!)? (:) p (1 —p)" — E*p, h).

4.2 Model with one additional factor. Assume that in addition to the row and column
effects there exists a two-level factor (levels A and B) which has a multiplicative effect on
the expected numbers in the cells. In the model discussed in the introduction the additional
factor was the speed restriction. Let A;; be the level of the additional factor in cell (i, ) and
define the 2-dimensional ¢;;-vectors by

Lo fawo itha=A4
"=l 1 ifh.=B
L _[©0  ifh.=4
2710,1 ifh.=B.

The resulting expectations are given by (1.2). Conditional on R, = r, the random variables
X, are binomially distributed with probability parameters (cf. (3.2))

m = exp(y)/{1 + exp(y1)} if iy = A
(41) P = T = exp(y1 + Y,z)/{l + exp(y; + ‘)/2)} lf h,‘l = B and h,z = A
m = exp(y1)/{exp(y1) + exp(y2)} ifhhn=A and hp=B.

All conditions of the theorem are satisfied if (a) holds and if #{i = n; ps = =.}/n,
v =1, 2, 3, are bounded away from zero as n — . If §;, = 1 when A = c and 8, = 0
otherwise then

U= (27:1 Xi, Y Zl;:l 52>,Xi/)'
The ML estimates of y solve the equations
(n) (n)

u1=r‘1"'7n+r2 Ty + Iy ms

u, = ri"m + r{’ (1 — m),

where r{" =YL, 8, mr;, v =1, 2, 3. The test statistic @ is asymptotically normally
distributed with mean and variance respectively

Z?:] E(ﬁ,’], rz), Zin=l D(];ily rl) - C[Var:, (U 1 r)]_lc/>
where p,1 is defined by (4.1) with the estimated y’s and
C= (YL C(pa, 1), Y {85,,.(:(15:'1, r) + BQ,JC(I — P, 1) }).
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5. An application. We shall now return to the empirical data discussed in the
introduction. They will be analysed with the models treated in the previous section. First
we disregard the possible effects of the speed restriction and try to apply a simple
multiplicative Poisson model to the data. This results in

Qobs 1 m v? (Qobs — M) /v
8969.85 0.11 8940.75 44.65 4.36

The hypothesis that the model fits the data can thus be rejected.

The bad fit of the model might be the result of the fact that the speed limit has had a
real effect on the number of accidents or of some other deviation from the model. If we try
to apply a simple model to days with equal speed restrictions both years, we will get three
disjoint sets of days. Using a goodness-of-fit test on each of these sets we find:

(a) days with speed limit both years or free speed both years

Qobs i’l m U2 (Qobs - m)/U
2975.73 0.02 2979.46 15.42 —-0.95

(b) days with speed limit 1961 and free speed 1962

Qobs 1 m v? (Qobs — m) /v
1529.29 —0.14 1524.23 7.73 1.82

(c) days with free speed 1961 and speed limit 1962

Qobs n m v? (Qobs — m) /v
4464 .83 0.36 4463.82 21.08 0.22.

The fit of the model seems to be good in cases (a) and (c) but somewhat dubious in case
(b). It now seems reasonable to apply the model with one additional factor (cf. Section 4.2)
to the complete set of observations. This results in:

Qobs % e m v? (Qops — m)/v
8969.85 0.02 —0.29 8962.83 44 .44 1.05

The model can not be rejected by this test with the evidence from these data. The estimate
¥2 = —0.29 can be interpreted as saying that the speed limit has decreased the expected
number of accidents by a factor 1 — exp(—0.29) = 0.25.

6. Theoretical results. The proof of Theorem 3.1 is based on the following theorem.
(Z" is the k-dimensional lattice of integers.)

THEOREM 6.1. (Conditional limit theorem). Let (Z;,, Yin), i =1, - - -, n be a sequence
of independent random variables with Zi, € R and Y., € Z* + a.,, where a., are k-
dimensional real vectors. Assume that E Zi, = 0, E Yi, = Cov(Y, Zin, ¥: Yin) = 0,85 =
SiEZi, Ly=Y,E Y/, Y.,, and that there exist sequences c,, d., and e, which all tend
to0 asn— © and

@) Y. E|Zyn|*=<cps}

b)Y E|vYi, | ® < di(vLw)? for all v € R*

(c) there exist a positive definite matrix J such that e,L,)* = J,

(d) there exist a £ > 0 such that if

m, = #{i = n; inf, sup, Pr(Y,, = y)Pr(Yi, =y + e) = ¢}
(e. is the vth unit vector) then for all | p| <1 :
om,L,— 0 asn—ow,

then for any sequence y, contained in a compact set such that y, — Y, an € Z*

Pr(Zi Zin < XSy | Zi Yin = yn) — P(x)

asn— o,
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A proof of this conditional limit theorem is given in von Bahr and Svensson (1979). We
shall use it here to derive the asymptotic distribution of @ given R = r and U = u. If we
consider the conditions of the theorem it is easy to see that (a) and (b) are Liapounov
conditions which will guarantee the asymptotic normality of the sums ; Y., and Y, Z,,,.
Condition (c) implies that ) ; Y;, is asymptotically nonsingular. The fourth condition, (d),
has obviously to do with the arithmetic structure of the distributions.

The conditional limit theorem will be used to justify the heuristic argument in Section
3. The technical parts of the proof will be left out where they only use standard statistical
arguments or straight-forward derivations of inequalities.

The proof is divided into steps. We remind the reader that conditional on R = r the k-
dimensional vectors X, are independent random vectors with probabilities P\’ (x; | r;) (cf.
(3.1)). Conditional also on U = u the distribution of X does not depend on the value of y.
The same is true for @ since it is a function of X only. This fact allow us to work with ¥
(the solution of u = E,(U | r)) instead of y. The justification for this is the following
argument. If for any array X " of k-dimensional random vectors, i = 1, ..., n, with
probabilities P (£{" | r,) we can prove that

Pr(Y, mXM=m+vz|3, X0 =ri,i=1--,n %, X t,=u — &)

as n — o we have also proved the conditional convergence of Q.

In the following we will use the random vectors X . To simplify notation we will write
X; instead of X”. We have to bear in mind that the distribution of X, depends on n
(through ¥). Define

Yin={Xi— E;Xi | r)}T;
and
Zin=Y;,InX,! — E5(Y,;In X;;' | r) — Yu.B,
where
B.=Cov;(Q, U | r){Var;(U | r)} ™~

The idea is to verify that for any well-behaved (in a sense to be defined later) sequence r,
ra, - - - we can apply the conditional limit theorem to the variables (Z;,, Y.,) conditional on
R; = r;. In this way we can derive the asymptotic distributions of ¥; Z;, conditional on R
=rand ), Y, = 0 or equivalently U = u.

To prove the main theorem we have to verify:

(i) The sequence ry, s, - - - is well-behaved with probability 1,

(ii) the solution ¥ on which the construction is based does really exist, and

(iii) the conditions (a)-(d) are satisfied if the sequence is well-behaved.

Using Kolmogorov’s strong law of large numbers it is possible to prove the following
lemma about the well-behaviour of the sequence ry, r2, - - -

LEmMMA 1. If (a)-(c) of Theorem 3.1 hold then with probability 1 it is true that there
exist a finite number n, such that if n = n,
(A) ¥ ri/n, S ri/n, and Y&, r¥/n are bounded away from 0 and
B)#{i=n;ri=h,T,= V4}/n" and #{i < n, r; = h}/n are bounded away from 0 for
all integershandd =1, ---, c;
(C) there exist a positive definite matrix J, such thaty =y r.TT:./Y ri=,.

With arguments which are standard to prove the consistency of ML estimates we can
also verify (ii) with the following lemma.

LEMMA 2. If (a)-(c) of Theorem 3.1 hold then it is true with probability 1 that
(D) for any neighborhood I of y there exist a finite number n(T') such that the equation
(3.3) has a solution contained in T for all n = n(T).
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The remaining parts of the proof is given in the following lemma.

LEmMaA 3. If (A)-(D) hold then
PI‘(Z, Zin < 28, | Z,‘ Yin =0) - ®(2)

as n —», where si =Y, Var Z,.

Proor. We have to verify that conditions (a)-(d) of Theorem 6.1 are satisfied. Accord-
ing to Lemma 2 the variables Y, and Z;, are well-defined for large n-values. By construction
the moments satisfy the required restrictions. Now Var;(Z,. | R; = 2) is a positive
continuous function of ¥. It follows from Lemma 2 and (B) that s2/n is bounded away
from O for large n. Due to (C) the matrix L,/n is larger than a positive definite matrix for
large n. The two inequalities | X;,; | < r;and | ¥ ;In X,;! — In r;!| = const r; implies together
with (A) that the individual Y, and Z;, are small compared to their sums and that the
Liapounov conditions (a) and (b) are satisfied. Condition (c) is a consequence of (A) and
(B). It remains to verify (d).

Let us for the moment assume that the lattices Z*V,, d = 1, - --, ¢, span Z™. If this is
the case there will exist at least one { € Z* and a V, such that {V, = e.. Let {* be any
member of Z* such that all elements of both ¢{* and {* + { are nonnegative. If the T}’s are
chosen so that all elements of the last column equal 0, we can always obtain that A} =
Yi {F= Y. & + {F by varying the last element of {. If T; = Vy and r; =hJ then Y, can take
any of the values y = ({* — E;(X; | h%))Vaand y + e. = ({ + {* — E5(X: | h%)) Vs with
positive probability. If £ is chosen small enough we can obtain that m, = infs #{i < n; r;
= h¥%, T, = V,}. According to (b) m, ~ n". Since L, ~ Jn (d) is satisfied.

IfZ*V,;,d=1, -+, ¢, do not span Z™ we can find a nonsingular matrix C so that Z*V,C,
d=1,---,¢,span Z". (For a proof of this fact the reader is referred to van der Waerden
(1959, page 149).) We can show that Pr(Y, Z;, < zs, | Y.: YinC = 0) > ®(2) as n — . This
is equivalent to the statement of the lemma. Lemma 3 is thus proved.

By definition the event Y, Y, = 0 is the same as U = u. If this is the case it also follows
that ¥, Z,, = @ — E5(Q | r), and

sn=Var; (Y;Zn) = Var; (@ | r) — Cov; (@, U | r)[Var; (U | ]~ Cov; (@, U | r).

The theorem in Section 3 is thus a consequence of these three lemmata.
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