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THE SHORTCOMING OF LOCALLY MOST POWERFUL TESTS IN
CURVED EXPONENTIAL FAMILIES

By WiLBERT C. M. KALLENBERG

Vrije Universiteit, Amsterdam

Comparison of tests with respect to contiguous alternatives is mostly
concerned with fixed levels. Properties of locally most powerful (LMP) tests
in this sense are well-known in statistical literature. In this note the behaviour
of LMP tests is studied for local (not necessarily contiguous) alternatives and
vanishing levels of significance. It turns out that the shortcoming of the LMP
test tends to zero at the rate n™' |log a. |2

.

1. Introduction. Let X;, X5, - - be iid. A-dimensional random variables (rv’s) with
density
(1.1) exp {ysx — ¥ (va)}, fe o,

with respect to a o-finite measure p on R*. Here © is an interval in R, y, a three times
differentiable bijection from © onto v(0) CT' = {y € R* [ exp(y'x) du(x) < o} and y(y)
= log [ exp(y'x) du(x). So the distribution of X; belongs to a curved exponential family in
the terminology of Efron (1975). This means that our one-parameter family is smooth in
the sense that it can be embedded in an exponential family in a suitable way. We consider
the testing problem H: 8 = 6, against K: § > 6, with level of significance a, € (0, 1), where
n denotes the number of available observations and 6, € O is given.

In Efron (1975) and Pfanzagl (1975) some properties of locally most powerful (LMP)
tests are mentioned for this kind of testing problems. If a, = « is fixed, asymptotic
expansions of the power function of LMP tests for § — 6, are obtained e.g., by Pfanzagl
(1973, 1975), Chibisov (1973) and Albers (1974). The LMP tests turn out to be nonoptimal
even under contiguous alternatives. According to Pfanzagl (1975) the shortcoming of the
LMP test tends to zero at the rate n™* for contiguous alternatives if a, = a is fixed. For
nonlocal alternatives the performance of LMP tests can be expressed by its Bahadur slope.
Intuitively it is obvious that LMP tests are not optimal from this nonlocal point of view.
Indeed, indicating differentiation with respect to 8 by a dot, the slope is not optimal at §
unless the vectors ys — yg, and y4, have the same direction.

Nonlocal comparison of tests in the sense of Bahadur requires levels of significance
tending to zero at an exponential rate. Comparison of tests with respect to contiguous
alternatives is mostly concerned with fixed levels. This note attempts to fill in the gap: the
behaviour of LMP tests is studied for local (not necessarily contiguous) alternatives and
vanishing levels of significance. It turns out that the shortcoming of the LMP test tends to
zero at the rate n™"' |log a, | *2. This agrees with the well-known results for fixed a.

2. Main results. Consider the probability space (R*, #*, P,), where #* is the o-field
of Borel sets in R* and dP, = exp{y'x — ¥(y)} du(x) for all y € T, and suppose X, has
distribution P,,, i = 1, - -, n. Since with n observations Xi, ---, X, the sample mean
X, =n"'Y%, X;is sufficient, LMP tests and most powerful (MP) tests only depend on X,.
IfY, ---, Y, are iid. rv’s each distributed according to P,, the distribution of Y, is

denoted by PZ, and the expectation and covariance matrix of Y; by A(y) and Z,, respec-
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674 WILBERT C. M. KALLENBERG

tively.
The size-a, LMP test of H against K based on n observations is given by
1 >
2.1 or (%) = 1 8n if yokn = da,
0 <

where the constants d,, and 6, satisfy Eg¢=(X,) = an, cf. Efron (1975). Let 8, be the level-
an, envelope power function. Then the shortcoming R, of the LMP test is defined by

Rn(o) = B;(o) - Ep(f)rli, 6> 6.

To obtain the required asymptotic expansions we present condition (C), which is of the
same kind as Cramér’s condition (C), cf. Cramér (1962). For some ¢ > 0

: it(Yo,+79)'X
im0 SUPJt=alplize | Evy+vi @< 1,

where || - || denotes the Euclidean norm. This effectively rules out discrete random variables.

THEOREM 2.1. Assume that v, € int I', condition (C) holds and that the Fisher
information of X; at 6, is positive. Let {a.} be a sequence of levels satisfying o, = a < 1,
then

(2.2) 0, — 0 implies Rn(6,) = O(n"'|log a,|¥?)  as n— .
Note that a positive Fisher information at 6, impliesys, # 0.

REMARK 2.1. If a, = a € (0, 1) is fixed the well-known order O(n™}) is obtained. For
sequences of alternatives {6} tending to 6 at a rather slow or a rather fast rate we have
R.(6,) = O(n™?) even if a, is not fixed, cf. Lemma 3.6.

The following example indicates that the order term O(n™"|log & |*?) is sharp.

ExampLE 2.1. Let X;, X, ... be iid. 2-dimensional rv’s with normal N(yg I2)
distributions, where y; = (8, % 6% (—o < § < ) and I, the 2 X 2 identity matrix. Let
6o =0, 8, = n"/’®7'(1 — an), where ay is such that lim, .« @, = 0 = lim, .. n™*|log a, | *?;
® denotes the standard normal distribution function, ¢ denotes the standard normal

density. Then lim, . 72 |log &, | **R.(8,) = Y4 7~ /%

Without condition (C) expansions can be made up to order O(n™/%). In that case we
obtain

THEOREM 2.2. Assume that vs, € int I and that the Fisher information of X; at 0, is
positive. Let {a,} be a sequence of levels satisfying a, = a < 1, then

(2.3) 0. — 6o implies R,.(6,) = O(n™? + n7'|log an|*? as n— o,

3. Proofs. In the sequel we assume yg, € int I', 4, # 0 (since the Fisher information
of X; at 6, is positive), a, < a < 1 and lim,.. n™" log &, = 0. Note that if n;" |loga,, |—
a € (0, ] for some subsequence {n,} with lims_. n. = o, then R, (0,,) <1= O(n;'|log
Qn, | ¥?) if B — oo. (In fact B,(6,,) and henceR.,,(6»,) tend to zero at an exponential rate in
this case.) Without loss of generality let 8, = yo = A(0) = 0 and let =, be nonsingular.

The size-a, LMP test of H against K is given by (2.1) with §, = 0. Since a, = a < 1it

holds that lim inf, .. n'2 d, > —. Moreover,

8.1) n'log a,— 0 implies d,— 0.
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We use the following notation

s = Varo y6X1 = v46 Zo Yo, A = Ey(y6X1)? and &=07'(),0<t<]1.
Relations between a, and d, are given in the following two lemmas.

LEMMA 3.1.
(32) n"’dus =1, + 674502 + O+ ¢, nY) as n— o,
Proor. Let a, = n'/? d,s7', then a, = 0(n"/?) as n — o« in view of (3.1). By Theorem
1 on page 218 in Petrov (1975) we have
3.3 log an = log(1 — ®(an)) + 67 'As°n™%al + O((| @ | + D% + apn™")

as n — . It easily follows that a, {12, — 1 as n — o. Taylor expansion of log(1 — ®(-))
at ., yields

log(l - q’(an)) = 10g An — (an - gl—a,,)d’ (51-0:,,)(1 - q’(gl—an))_l
+0(|an— 10, |?

(3.4)

as n— . In view of (3.3), (3.4) and 1 — ®(x) = x ¢ (x)(1 + O(x72)) as x — o the result is
established. 0O

LeMMA 3.2. If condition (C) holds
(3.5) nY? dps™ = &g, + 67As 0T (E] L, — 1) + O(n7'|log an|*?)

asn-— o,

PrOOF. Again let a, = n**d,s™, then a, = 0 (n"/?) as n — ® in view of (3.1). By Saulis
(1969) (cf. also Petrov (1975) chapter 8, Section 4, Number 3 on page 249; note that
P(S, = o(nx)"? has to be replaced there by P(S, = on'/*x)) we have

log an = log(1 — ®(a,)) + 67'As™°n (a2 — 1)¢ (a,)(1 — P (an)) ' + O((af + 1)n™Y)
as n — . By Taylor expansion of log(1 — ®(.)) at—,, the result is established. O

An expansion of the power of the LMP test is given in the following

LEmMmaA 3.3 If lim,—»x 6, =0
(3.6) Ejor=1—-®(b,) + O(nV? as n— o
if lim, .« 6, = 0 and condition (C) holds, then
3.7 Ej ok =1— ®(b,) — 6 0,07 2(1 — b2)$(bn) + O(n7Y) as n— o,
where
bn = n"[dus™" — 80, — % 0.5"°A dn — Y 76 Zo Yos T 02 + O(02 (6, + d))]
and

pn = (Y6 =y, 70) " *Eo,{v6 (X1 — A (ve,))}°.

PROOF. Since 76 A(ys,) = 5%, + %(v6 Zo o + A)6% + O(6%) and 76 =,, o = 8* + G2

+ O(#2), the Berry-Esseen theorem and Theorem 1 on page 159 in Petrov (1975) imply
(3.6) and (3.7), respectively. 0
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To study the envelope power function we introduce the critical function ¢ ~ of the size-
o, MP test of H against 8 = 6,, given by

1 >
¢: (x-:n) = {en if 0;1 Yé;. Xp = €p,
0 <

where the constants e, and ¢, satisfy Eg, ¢» (X,) = a,. By a similar argument as above we
obtain

LEMMA 34. Iflim, .. 6,=0
(38) nY%ensnt=tia, + 6 Aws V%L, +O(TA+EL, 0T as n—o o
if lim,_. 8, = 0 and condition (C) holds
(3.9) n"2e,s7' = f1q, + 67 Ans:°n (¢ ., — 1) + O(n 7" |log @ | ¥?)

as n — %, where

s2 = Varo 075 X1 = 07%y5, 2o vs, and A, = Eo(07" v, X1)°.

LEMMA 3.5. If limy.o 6, =0

(3.10) Eppn=1—®(cn) + O(n™?) as n— o

if lim,_« 6, = 0 and condition (C) holds, then

(3.11) Epér=1—®(ca) — 67'pin (1 — ch)o(cx) + O(n™") as n— oo,
where

en = n"[ensn — 56, — %05 A€, — (76 Zo Yo)s0n + OO (O + €2))]
and

pr = (0:%v5, Zy, 0) " Eo, {6y, (X1 — Mya, )}

In the next lemma the shortcoming is determined for sequences {#.} tending to zero.
Note that 8, ~ s7'n"%{—2 log a,} /* is the “contiguous” case.

LEMMA 3.6. Assume that condition (C) holds and lim,_... 6. = 0.

If lim, . s8,n"/*(—2log an} "> <1 then Ru(6,) = O(n™) as n— .

If limy o $6,n%{—2 log an} "% = 1 then Ru(6,) = O(n""|log a»|*?)  as n— oo
If limp e 58,n"/2(—2 log an} ~/* > 1 then Ra(6,) = O(n™") as n— .

ProOF. By lemma 3.3, 3.4 and 3.5 we have b, — ¢, = O(n"|log a|¥* + 63n") and
prn=pa + O().

Defining f(x) = 1 — ®(x) — 6™ p.n (1 — x*)¢(x) and hence f'(x) = —¢(x) —
6 pan 2(x® — 3x)¢ (x) it follows by (3.7) and (3.11) that

R.(6,) = Eo — Eg,0k = flcn) = f(ba) + 67'n72(1 = c2)¢ (ca) (pn — p) + O(n7).

If limye 86,12(—2 log &y} /2 =1 — ¢ <1 and a, — 0, then ¢, ~ e{—2 log a,} * and b, ~
e{—2 log a,} /% Hence 6 'n""*(1 — c%)¢(cn)(on — p) = 0(n™") and in view of the mean
value theorem f(ca) — f(bn) = (bn — ca)f' (1) = O(n7"|10g an|¥*f' () = O(n™" M2f’ (1))
= o(n""), where 1, lies between b, and c,. So in this case R.(f.) = O(n™"). Suppose 6, =
O(n"?|log a,| %) then b, — ¢, = O(n™"|log ax|*?) and hence f(c,) — f(b,) = O(n™" |log
an| ¥2). Moreover, 6'n*(1 — ch)¢(ca)(on — p2) = 0.n"? = O(n'|log a.|*?. This
completes the proof of the first and second statement.
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If lim,, . 86,n"%{—2 log a,} /% > 1 then lim, . b,570;'n"*% = lim,_.. c,s '8, 'n" "% <
0.
Hence 67'n74(1 — ¢2)¢ (cn) (0 — pn) = O(n™") and in view of the mean value theorem

flcn) — f(bn) = (bn — ca)f'(na) = O(85 n'/*f' () = O(n7'05% n®? ghy*n’ f'(na)) = O(n™),
where 7, lies between b, and c¢.. This completes the proof of the lemma. 0

THEOREM 2.1 is an immediate consequence of lemma 3.6. Similarly one obtains

LEMMA 3.7. If lim, . s6.n"*{—2 log a,} 7/ < 1 then R,(6,) = O(n"?) as n — . If
lim e 50,n"*(—2 log an} ™% = 1 then R.(6,) = O(n™"? + n™'|log ax|*?) as n — . If
lim, ... s8,n"*{—2 log a,} /% > 1 and lim, . 6, = 0 then R.(6,) = O(n"/?) as n — .

THEOREM 2.2 is an immediate consequence of lemma 3.7.
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