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ASYMPTOTIC INFERENCE IN LEVY PROCESSES OF THE
DISCONTINUOUS TYPE!

By MiIcHAEL G. AKRITAS? AND RICHARD A. JOHNSON

University of Wisconsin, Madison

We establish contiguity of certain families of probability measures indexed
by T, as T'— oo, for classes of stochastic processes with stationary, independent
increments whose sample paths are discontinuous. Many important conse-
quences pertaining to properties of tests and estimates then apply. A new
expression for the Radon-Nikodym derivative of these processes is obtained.

1. Introduction. We present a general treatment of parametric statistical procedures
for Lévy processes. This wide class of stochastic models with stationary independent
increments includes both compound Poisson processes and limits of jump processes. An
important example of latter type is the process whose increments have gamma distribu-
tions.

Compound Poisson process have been treated in the statistical literature (see Lewis,
1972) but the general Lévy process has not been considered. Frost (1972) was first to study
signal detection and estimation problems for independent increment processes (see also
Segall and Kailath, 1975). Rubin and Tucker (1959) consider nonparametric estimation of
quantities appearing in the characteristic function of Lévy processes. Recently, Basawa
and Brockwell (1978) considered inference for gamma and stable processes based on jumps
of size greater than e.

In Section 2 we present the Radon-Nikodym derivative and Section 3 contains the
major statistical implications. The derivation of the Radon-Nikodym derivative appears in
Section 4 and the technical details for the other results in Section 5. Two applications of
the theory to compound Poisson processes and a gamma process are given in Section 6.

2. The likelihood and the score functions. Let the process {X(2): ¢t € [0, )} have

probability measure P,. We consider stationary, independent increment processes having
characteristic function f,(u) =e"** where

(e"‘" -1- wx ) dps(x)
0}¢

1+ 2%

(2.1 Yo(u) = twp(6) + f

{
and for each 8 € O, py((—, —a] U [a, ®)) < , for all @ > 0, and [1; x°dus(x) < . We
suppose the process can be observed continuously from 0 < ¢ = 7. When it cannot, the
continuous case solution gives the limiting case. Let Pry be the restriction of P, that
pertains to {X(¢): 0 < t = T'}. The Radon-Nikodym derivative can be expressed in terms
of the measure g in (2.1), and the process

(2.2) X(B, t) = Y= AX(1)Ip(AX (7))
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where AX(7) = X (1) — X(7—) and B is any Borel set bounded away from zero. The
difficulties with small jumps in X (¢£) is surmounted by considering a sequence of jump sizes
determined from choices for B.

THEOREM 2.1. Let 6y, 6, € 0, and assume that Prg, = Prg,. Then for any sequence
{D.,} of neighborhoods of the origin such that D, | {0},

dPTel o =T 4, ' d""'el
Pra, X @) =l [ #0,7H0,) B )H, T (7m,)

where B, = D5, B,, = Dy—1 — D, m = 2, and N, denotes the total number of jumps Z,
of the process X (B, t), t € [0, T].

After obtaining Theorem 2.1, we received a preprint of Brockett, Hudson and Tucker
(1978) where they obtain the same expression for the Radon-Nikodym derivative. Their
proof employing Kakutani’s Theorem is much longer than ours; see Section 4 and Akritas
and Johnson (1978).

Statistical inferences would be based on the likelihood determined by evaluating dPr/
dPrg, at the sample path X(¢), 0 = ¢ = T. We are concerned with optimal statistical
procedures for the limiting case 7'— . The log-likelihood will be shown to be approxi-
mated by a score function whose terms are analogous tosaé In f5(x) = 24, say, in the case
of independent observations having pdf fy(x). In our development, we employ quadratic
mean derivatives, ¢, and the measure y, in (2.1) plays the primary role. For any 6,, 6: € 6
define

duse 1/2
(2.3) wnwm=@'u).
e,

Occasionally, when there is no danger of confusion, we will use the simpler notation
¢ (8o, 6:) instead of ¢ (x; 6o, 6). In the above notation we now formulate our assumptions.

(A1) The probability measures {Pry; § € 6} are mutually absolutely continuous for all
T=0.

(A2)‘ For each § € O, there exists a k-dimensional random vector 6(8) such that

(i) ¢(0) is RS %-measurable, where % is the o-field of Borel subsets of O.

(ii) [ (W'$(8))? dps is finite for all & € R*.

1 .
(lll) I(O)‘ "h" [¢(01 0+ h) -1- h’¢(0)]2 d‘U.g i O, ash—0
where || - | denotes the usual Euclidean norm.

(Mhm"nwwo+m—m (W$(8))?| dps— 0, as h — 0.

" h"2 f(o)‘ (4’(0 9+ h) - 1) dﬂﬂ—) f(O}c (h,¢(0))2 d[.l,g, ash— 0.

Let I'(8) be the covariance function

(2.4) r@ =4 [$6)9 (0] dus.
{0}

(A3) T (9) is positive definite for all § € ©.

REMARK 2.1. These assumptions, concerning the smoothness of ¢ (6, § + k), are similar
in spirit and form to the usual assumptions required to obtain contiguity; see Roussas
(1972) for the appropriate choice of ¢ in the discrete time Markov process case. Here,
however, the measure uy may be infinite and it is not clear that assumptions A2(iv), (v)
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follow from A2 (iii). The assumptions here are found to be satisfied in many examples
including those of Section 6.

3. The main results. Let the process be observed from zero to a positive time 7. We
develop the asymptotic theory, T'— oo, based on the log-likelihood ratios

dP
Ar(f) = logF:”: (X@), t€[0, T

(3.1)
=Y m=1 [Tf (1 = ¢*(x; 6o, 07)) dug,(x) + 2 Y7108 ¢ (Zm,; o, 0T):|
Bm
where
(3.2) O0r=0o+ T V?hy,hr > h, as T— oo, iy, hE R*

and ¢ is defined in (2.3). In section 5, we show that the likelihood is approximated by the
random vector
(3.3) Ar(fo) = 2772 ¥y [Zf’:{ &(Zpnj, 00) — Tf &(x; 8o) d,w;o(x)]

Bm
where B,,, N,.r are defined in Theorem 2.1 and ¢(x; 6,) in assumption (A2). In particular
(3.4) Ar(0o) — KAr(60) 510 — Y% HT(f0)h, in Prg, — probability.

Theorem 5.4 below gives the limiting distribution for the log likelihood ratios under both
0 and 67.

(3.5) Z[h'Ar(66) | Pre,] = N(0, K'T(6o) k)

and Theorem 5.4 gives the limiting distribution for the log likelihood ratios under 6, or
under 6.

(3.6) L[A1(00) | Pro,] = N(% W'T(6o)h, T (6o)h).

We then conclude directly that the families {Prg} and {Pr,,} are contiguous. More
importantly, several important conclusions pertaining to the properties of estimators and
tests follow directly from general contiguity results.

Under conditions of the form (3.4) — (3.5), Hajek (1970) established that for any family
Vr of estimators that belong in the class {{Vr}; L[TV*%(Vr — 01)| Py, ] = Lv(6,), a
probability measure, where 7 = 6, + AT /% we must have L(6o) = L1(6o)* L(6y) where
Li(6) = N(0, I'"'(60)) and Ls(6,) is a measure in R*. Using the above representation,
Ha4jek’s results, stated in continuous time, become

(a) lim supy Prg[T"*(Vr — §)EC] =< [¢ d®r for all convex symmetric sets C in R*,
®r is the cdf of N(0, I'"1(6,))

(b) lim inf &,[T"*h' (Vr — 60)]* = h'T "' (fo)h, all h € R*. If the limiting covariance D
exists, D — I"'"!(,) is nonnegative definitive.

Some important testing hypotheses conclusions, for a one-dimensional parameter, are
that the test which rejects Ho: 6 = 6, in favor of H;: 8 > 6, if Ar(6s) > cr, where cr is an
appropriately chosen constant, is asymptotically uniformly most powerful. The two sided
test which rejects Ho: 6 = 6, in favor of Hy: 6 % 6, if | A(6o) | > br, for appropriately chosen
br, is asymptotically uniformly most powerful unbiased. The conclusions regarding tests
of multidimensional parameters, in turn, use the admissibility of the class of tests based on

F which reject outside of convex sets.

The conclusions regarding asymptotically optimal tests of hypotheses follow from the
development in Johnson and Roussas (1969, 1970, 1971), since the relevant proofs there
use neither the Markovian character of the observations, nor the discreteness of time. To
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summarize; it may be shown from standard arguments (see Section 4 of Johnson and
Roussas, 1970) that a truncated version A% may be constructed in such a way th'eP(,v0 [A%
# Ar] — 0, as T — . Based on A%, an exponential family dRr; =e 2"™eh gp,, s
constructed, which approximates Prg,. As in Theorem 5.1 of Johnson and Roussas (1970),
it may be shown that sup{|| Rz — Prs,||, # € bounded set} — 0, as T — o, where || - || is
the total variation. That is A% is asymptotically sufficient. Also, it may be shown thatdp,
[Z7| Ar] has the same local power, asymptotically, as any test function Zr.

Two examples are given in Section 6 following the technical details in the next two
sections.

4. Derivation of the Radon-Nikodym derivative. The primary aim of the present
section is to present a proof of Theorem 2.1. For 6;, 6, € © and 0 < T < o, we derive the
Radon-Nikodym derivative of Pz with respect to Prg,, uhder the assumption that they
are mutually absolutely continuous (=). Here P14 denotes the restriction of P, on o{X(¢),
t € [0, T']}. In particular, let Q be the space D([0, »)) of all real valued, right continuous
functions X(t), ¢ € [0, »), that have finite left hand limits, and let .« be the o-field of
cylinder sets in ©. For each § € © C R*, open, let P, be a probability measure on (%, &)
and assume that, under Py, the coordinate process {X(¢), ¢ € [0, )} has stationary
independent increments and characteristic function exp(ty,(x)) with y4(x) given by (2.1).
It follows that the process X(¢) is continuous in probability (see Breiman, 1968, page 304)
and X(0) = 0 a.s. [Py]. The function y(«) is called the exponent function and p, the Lévy
measure of the process. If 4 is finite, X(¢) is called a jump process, or a compound Poisson
process and its sample paths are step functions with probability one. If y, is infinite, the
process is called a limit of jump processes and its sample paths have, with probability one,
infinitely many jumps over any finite interval of time. Necessary and sufficient conditions
for Pry, = Prg, are given in Theorem 4.1. Our derivation of the Radon-Nikodym derivative
is based on a method inspired by Striebel (1959). By a rather simple observation we obtain
Proposition 4.1 that shows that the log-likelihood has an infinitely divisible distribution
and specifies its Lévy measure. We first state

THEOREM 4.1. For each § € ©, let Pry be a probability measure on D([0, T']) such
that the coordinate process has exponent function given by (2.1). ThenPrg = Pryg, if and
only if

(L1)  po, = pe,
(L2)  fror (1 — (dpo,/dps,)*)? dug, < oo

(L3)  B(61) — B(Bo) — | [o]c‘Hsz d(ps, — pe)(x) =0

REMARK 2.1 Newman (1973) showed that condition (L2) implies

Ed
f 1+x2dll‘l‘91_l‘l‘90|(x)<°°’
[0)
so that, the integral appearing in (L3) is well defined. The proof of Theorem 2.1 composed
of three steps which we state as lemmas.

LEmMA 4.1.  Let P, 14 be the measure on %, = o{X(D;, t),0<t =< T} induced by P,.

dP, n,T,0,
Then th -
en the sequence {(dpan,oo

R QZ,,,T>, n= 1} is @ martingale in (R, <, Pyg,).
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ProoF. Let f, = dP,16,/dPn 14, and assume for the time being that m > n implies %, r
C Bmr. Then, for o, € B.1, [4, [ APn 16, = [, fm APm,14, and since f, is %, r-measurable,
it follows that &( f,. | Z».r) = f», which proves the lemma. It remains to show that %, C
Bmr. By the right continuity of X(DS, t), we may define the rv’s Z{”, p{”, £ =1, on
(Q, o) such that, if 0 st <p™, X(DS, t) = Z", and ifp{® + -+ +pi =t<p®™ + ...
+ o, X(D5, t) = Z{, k = 2. It follows that the sequence {(Zi"' pL”)) k = 1} determines,
for each w € @, the sample path induced by {X(Dy, ), ¢ € [0, T']}, and conversely. It is
easy to see that for m > n, o{(Z{", p”), & = 1} C o{(Z{™, ™), k = 1} so that, by the
equivalence of {(Z{”, p§), k= 1} and {X(D5, t), t €[0, T1}, Bu1r C Bumr. O

As a consequence of Lemma 4.1 we have that lim,, .«.(dPy, 1,6, /dPn,14,) exists a.s. [ Pg,].
However, it must still be verified that this limit equals dPr4 /dPr,,. From Skorohod
(1965, page 100) it follows that lim,—.. (dPn 1.6, /dPn, 14,) Will equal dPr,, /dPr,s, provided
that X (D5, t) — X (t) in P -probability, for all ¢ € [0, T']. But from Breiman (1968, page
313) it follows that [X (D5, t) + ¢,t] — X(t) in Pry-probability, for all ¢ € [0, T], where
{c.} is a sequence of constants. Thus we need

LEMMA 4.2. Let ¢ be any constant and P, 14 be the probability measure on %, =
o{X(Dy, t)+ ct,0 <t < T} induced by Py. Then

dP,,“;l APy 14
T (X(D5, t)+ ct) = DBora, (X(Dy, t)).

Proor. For A € %1,

P,
J Z T (X(Dg, t) + ct) dPrs,(X(D5, 1))
A— (ct,te[0, T} P"Teo

= Boro((X(D5, 1) + ct,t [0, T]) € A)

= P71, ({X(D5,t),t€[0, T) €A = {ct, t € [0, T]})

- f Pz, (X(D5, ¢t), t € [0, T]) dPrq,(X(D5, t)).
A—{ct,te[0,T1} dP”T"U

Since A was arbitrary, the proof of the lemma is complete. [

LEMMA 4.3. Let P, 1, be as defined in Lemma 4.1. Then,

dPnT0l
dPnTﬂo

-l
(X(D5, ) = exp[~T(us, — pa) (D) T "”' *(2)
where Z;,j =1, ..., N, are the jumps of the process X(Dy,, t), t € [0, T].

Proor. This follows from the fact that {X (D5, t), 0 < ¢ < T} is a jump process (see
Breiman, page 312) and the well-known expression for the Radon-Nikodym derivative of
measures corresponding to jump processes (Skorokhod, 1957). 00

The proof of Theorem 2.1 now follows by a simple synthesis of the results of the above
lemmas.

Before closing this section we present Proposition 4.1 which enables us to show that the
logarithm of the Radon Nikodym derivative has an infinitely divisible distribution. This
proposition, which generalizes Proposition 4.25 of Breiman (1968), is used repeatedly in
our derivations in Section 5.
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ProposiTION 4.1. Let {X(t), t = 0} be a process with stationary, independent
increments defined on (R, </, P) and let p. denote its Lévy measure. Let g be a Borel
measurable function such that [ | g(x) | du(x) < «. Define

Y(t) = Y.< 8(AX(1) 0« (AX (7)) = ¥V g(Z)

where, the index ¥ ' denotes the summation over all jumps of the process X(r), r € [0, t].
Then, Y(t) exists and is finite. Moreover {Y (t), t = 0} is a process with stationary,
independent increments and Lévy measure pog™'.

ProoF. Let {D,} be a sequence of neighborhoods of the origin such that D, | {0} and
let

¢ Yo (t) = Y=t [8(AX(7)) I, (AX (1)) = Y=t 82 (AX(7)).

It is easy to see that Y, (f) has an infinitely divisible distribution. Moreover, {Y,(7), r €
[0, ¢]}, is a jump process whose number of jumps obey a Poisson process with intensity
w(D3). Then, in order to find its Lévy measure, it suffices to find the distribution of the
size of its jumps. The measure that corresponds to this distribution is easily seen to be
G.(A) = pog;'(A)/u(DS), for any Borel set A C {0} °. Therefore, the Lévy measure of
Y, (t)is u(D5)- G, = pogr'. Next, Y(¢) is infinitely divisible since it is the almost sure limit
of the Y, (¢) which have this property. Further the Lévy measure of Y (¢) is given by lim,,
uegi'(A) =peg(A), for any Borel set A bounded away from zero. Here, the interchange
of limit and integration is guaranteed by the assumption [(g<|g(x) du(x) < . Finally,
Y (¢) is finite a.s. [P] by the assumption just mentioned and Breiman (1968, page 313). [0

COROLLARY 4.1 Let Y(T) be the logarithm of the Radon-Nikodym derivative of
Theorem 2.1. Then Y(T) has an infinitely divisible distribution with exponent function

; tux
<ewx — 1 — ) d'uaoog—l(x)
0} ¢

wkK(6:, 6) +f 1+ %2

{
d _
where g(x) = log-(—iM (x) and K (64, 6y) = Y- [IBMLQ dp,, o8 (x) — (o, — pg,)(Bm)]
e, 1+x
with B,, defined in Theorem 2.1.
See Akritas and Johnson (1978) for a proof.

5. The contiguity results. We now develop the proofs regarding contiguity through
a series of lemmas. Let the log-likelihood A7 be defined as in (3.1). In the remainder of the
paper, and when there is no danger of confusion, we use the nota}tion At =‘AT(00), Ty =
&1mj(80) = $(Znj; o, O7), 17 = ¢b1(60) = $(Z;; o, O7), dmj = Smi(6o) = &(Zmy; b0), ¢ =
&, (6o) = ¢(Z,; 6o), where Z,;, m=1,j =1, ..., Nur, denotes jumps belonging to B, and
the alternate notation Z,, j = 1, denotes the complete sequence of jumps of {X(¢),
t € [0, T']} without regard to their size groupings.

LEMMA 5.1. maXy,; | ¢7mi(6o) — 1| =7 0, in Prg, — probability.

PROOF. Set ¢rmj — 1 = T7V?H¢mj + T 2Ry, so that, by assumption (A2) (iii),
S R% dyps,— 0, as T — . Next,
Py, (maxm,; | ¢1m — 1| > €)
(5.1)

. Tl/2 T1/2
= Py, (maxm,jlh’¢,,.j| > 3 ) + Py, (maxm,, | Rrms| > £ 5 )
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eT"?
2

Define a set Air by Air = [ |h’q§(00) | > ] Then,

1/2

. T
(5.2) Py, (maxm,, | 2 bmsi| > 8—2-> = Py,(w € D([0, T']) = 1 — exp[—Tug,(A17)]:

(there is at least one jump whose size belongs to A;r)

But since, A7 | to a pg, — null set, as T'— oo, assumption (A2) (ii) implies

4 & 4
(5.3) Tl-loo(AlT) = ? f Z T d[.Lao = ? f | h’qb |2 d[-loo — 75w 0.
Air Air
1/2
Similarly, let Asr = [|RT| > 8T2 ] so that
1/2
(54) PT,GO (maxm,j | Rle > 2 ) =1- exp[—T,ugo(Agr)]
and
4 ([ & 4 .
5.5) Tue,(Azr) = z 7 T dug, = =z | Rr|* dug, =1 0.
Aor , JAor

The proof of the lemma then follows from relations (5.1)-(5.5). 0

Next, consider the expansion log x = (x — 1) — %(x — 1)* + c(x — 1)3, | ¢| = 3, which is
valid for |x — 1| = %. To replace x by ¢z, we use Lemma 5.1 to conclude that the set
Asr = [MaXn,, | drmy — 1| > €] satisfies Pr,q,(As7r) > 1 — ¢, for all sufficiently large 7. Thus,
on A$r, we may rewrite the log-likelihood of relation (3.1) as

Ar(bo) = Y m=1 [TJ (1 — ¢%(8o)) dpg, + 2Z;V=’”f (prmi — 1)]
(5.6) B
— Y=t Zyjf (¢1mi — 1P+ 2 ¥y 27;'? Crmi(pTmy — 1)%.

The fact that the above sums are well defined and finite follows from Proposition 4.1,
Lemma 5.1 and Theorem 2.1.

Let 3™ g(Z,) denote the summation Y-, Zjv:f g(Z,). Then,

LEMMA 5.2. E}T) cT,(¢T,(00) - 1)3 —75x 0, in P’I‘,g0 — probability.

ProoF. This follows from ¥ {7 | ez (¢pri — 1)%| < 3 maxm,; | ¢rmi — 1| 247 (¢77 — 1) and
Lemma 5.3.0

LEMMA 5.3. EJ(T) ((]57‘1(00) - 1)2 — T f(o}r (h’(ﬁ (00))2 d[.Lao, in P’I‘,g0 —probability.

ProoF. Set Y(T) =Y {" (h,q;j)2, so that from Proposition 4.1, assumption A2(ii) and
well known properties of Lévy processes,

1 :
(5.7) 7 V(D) =1 j (R’ $)? djug, in Pr,g, — probability.
{0}¢

Thus it suffices to show that | ¥ {7 (¢7; — 1)* —%, Yi(T) | =>7-« 0, in Pr;4 — probability.

Indeed it is easy to see that
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1 T f | T(¢r — 1)* = (W$)?| dus,
P”"[ |57 (6= D* = 5 Yu(T) | > e) = T,
€

and the expression on the right-hand side tends to zero, as T'— o, by assumption (A2)
(iv). O

LEMMA 54. As T — o,
D=1 [Tf (1 — ¢%(6o)) dpe, + 2Tj (1 (o) — 1) dueo] - —f (W'$(80))* dps,
B, B, {0}

ProoF. The conclusions follows, from the identity (1 — ¢T) +2(¢pr— 1) = —(¢pr—1)°
and assumption A2(v).

LEMMA 5.5.

2 Y- I:Zj.v:f (¢rmi(b0) — 1) — TJ’ (¢7(6o) — 1) dﬂeo]
BM

~ 21 g | 2 W00 = T [ W00 d, | 0
B,

as T — o, in Prg — probability.
Proor. We first note that Y1 [3)27 2'¢mi(60) — T [, W'é (6o) dus,] is a well defined

random variable having an infinitely divisible distribution with Lévy measure g, © [A'¢]™"
(see Akritas and Johnson, 1978 for details). Next, by Chebyshev’s inequality,

Pry, {
> }

- Tf (o7 — 1) dpg, + Tl/zf
Bm

B"l

2 Y- [Zf;’"f @rmj — 1 — TV W bmy)

h,¢; dp‘eo :l

4 .
== [T"($1; — 1) — W'$ T dpg, — O,
0}

by assumption A2(iii). 0O
We are now ready to establish the main results.
THEOREM 5.1. In the above notation

v Ar(60) — W A7(B6) =71 — Yo W'T (Bo)h, in Prg, — probability.

Proor. From relation (5.6) and Lemmas 5.2, 5.3, 5.4 it easily follows that
A1(6o)

=2 Y= [Z =1 (@7ms(00) —1) — J (¢7(60) —1) d,ltao]

T — 2 J (h,qg (00))2 d:u‘ao'
{0} ¢
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The proof of the theorem then follows by adding the result of Lemma 5.5 to the above
relation and by recalling the definition of I"(6,). O

THEOREM 5.2. For all h € R*,
ZIW Ar(8) | Prs,] = N (O, KT (Go)h).

PROOF. Since &, (Sr=1 [EV"" Wémj — T [5, Wé dus,])’, < [ (W$)* dps, < © by
assumption A2(ii), it follows that the random variables m=1 [Zj_\':"'lT Wémj—T [, W

due,]}", n = 1 are uniformly integrable for all r < 2 (see Loéve, 1963, page 184) so that

8 (R'Ar) = lim, 6‘700{2T'1/2 Ym-1 [Ejv——mlT Wem = Tf h'&dﬁan:l} -
Bm

To complete the proof of the theorem, note that for T large and some ¢, > 0, we may set
WAr = Y7 Y; + R, where n = [T/t] and, for T; = jt, Y; = h'Ar, — h’Ar,_,, and apply
Slutsky’s Theorem together with the classical Central Limit Theorem. 0

As a consequence of Theorems 5.1 and 5.2 one has
THEOREM 5.3. Z[Ar(8o) | Pre,] = N(— % WY (Go)h, WT (B0)R).

Theorem 5.3 and the fact that [ exp(x)d.#(x) = 1, where £= N(— % ¢, ¢?), imply that
the families {Prg} and {Pr,} are contiguous (see Proposition 3.1, page 11, in Roussas,
1972).

THEOREM 5.4. Let 01, Ar(6o) and Ar(6) be defined by (3.2), (3.1) and (3.3) respectively.
Then

(@) Ar(6o) — WA7(Go) — — Y2 A'T (Go)h, in Prg, — probability,

(ii)  Z[Ar(6o) | Pre,] = NI (Go)h, I (6o)),

(iii) L[Ar(6o) | Pro,]1=> N(% h'T (Go)h, h'T (6o)h).

Proor. Part (i) follows from Theorem 5.1 and the definition of contiguity (see Roussas,
1972, page 7). Part (ii) follows from Theorems 5.1, 5.2 and Theorem 7.2, page 38 in Roussas
(1972). Part (iii) follows from Theorem 5.3 and Corollaries 7.1, 7.2 pages 34, 35 in Roussas
(1972).0

6. Some examples. In this section, we illustrate the applicability of our assumptions by
two examples.

ExampPLE 6.1. Compound Poisson processes. For compound Poisson processes, the
Lévy measure is of the form A. F where, A is the intensity and F' denotes both the cdf of the
jumps and the corresponding measure. The cdf F may be taken to belong to almost any of
the standard parametric families. Condition (L1) of Theorem 4.1 and assumptions (A2),
(A3) have been checked for several distributions in Roussas (1972). Here, of course, the
intensity A may be an additional parameter. Further, conditions (L2) and (L3) are always
true for jump processes with exponent function given by (2.1) so that assumption (Al) is
also satisfied. Consequently our conclusions apply, quite generally, to compound Poisson
processes.

EXAMPLE 6.2. The Gamma process. The process X(¢) is said to be a gamma process
if its characteristic function is f;(z) = (1 — iu/6)~*, § > 0. The exponent function is given by
(2.1) with (see Feller (1971), page 567) 8(8) = [~ [e7%/(1 + x*)] dx and ps(A) = [an©m
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[e"*/x] dx, A € #. Conditions (L1), (L2) and (L3) are easily seen to be satisfied so that
gssumption (A1) is true. Next it is easily seen that ¢ (z; 6, 6:) = exp[—(6: — 6o) 2/2], so that,
¢(z; ) = —z/2. Assumptions (A2) (i), (ii) are clearly satisfied. Further, I'(6) = % [(o«)

ze %dz = 41312 so that (A3) holds. To show (A2) (iii) note that

f %[qb(e, 0+h)—1—h$OF du
{0} ¢

©,1)

=j +f %[¢(0,0+h)—1—h¢(0)]2dmshf ze % dz + L (h).
(0,1) 1

Then, h [« ze"*dz — 0 as h — 0, and I;(h) can be shown to converge to zero by Vitali’s
Theorem. To show (A2) (iv) we again split the integral f (o;czlz [ (@6, 8 + ) —=1)% —

(W$(0)?] duo = fou + [T = L(h) + I(h). But I(h) — 0, as h — 0 by the dominated
convergence theorem since | (¢7*¥? — 1)/h| = 2z and I;(h) — 0 by Vitali’s Theorem and
the fact that I;(h) — 0. To verify (A2) (v), we first note that by I;(A) — 0 and Vitali’s

1 . 1
Theorem,? IT @0, 0+ h) —1)>due— [T ($(0))* dpug, as h— 0. Next,h—z Joun (06,0 + h)
12 dus— o (¢(6))? dus, as b — 0, by the dominated convergence theorem. Finally, by
[& |6(z; 60)| dug,(2) = 5107 < o, and Proposition 4.1, it follows that the random vector
0

A7(6o), defined in (3.3), takes the form Ar(f) = =TV 2(X(T) -T 51-) Hence as it is
0

pointed out in Section 3, the test which rejects Hy: 8 = 6, in favor of H: 6 > 6, if Ar(6p) >
cr, is asymptotically uniformly most powerful and the test which rejects Ho: 8 = 6, in favor
of Hyi: 0 # 6, if Ar(6) < ar or Ar(6y) > ar, is asymptotically uniformly most powerful
unbiased, where cr and ar are appropriately chosen constants. These results provide a
rigorous justification for the rather curious limits in Basawa and Brockwell (1978).
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