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TAIL-BEHAVIOR OF LOCATION ESTIMATORS'

By JANA JURECKOVA

Charles University, Prague

Let Xy, -+ - , X, be a sample from a population with density f(x — 6) such
that fis symmetric and positive. It is proved that the tails of the distribution
of a translation-invariant estimator of 4 tend to 0 at most n times faster than
the tails of the basic distribution. The sample mean is shown to be good in
this sense for exponentially-tailed distributions while it becomes poor if there
is contamination by a heavy-tailed distribution. The rates of convergence of
the tails of robust estimators are shown to be bounded away from the lower
as well as from the upper bound.

N

1. Introduction. Let Xi, --., X, be a sequence of independent random variables
identically distributed according to an absolutely continuous distribution function
F(x — ) with the density f(x — 6) such that f(—x) = f(x) > 0, x € R’; otherwise f is
unspecified. The problem is that of estimating ¢ as a center of symmetry of an unknown
symmetric absolutely continuous distribution. For each fixed n let T, = Tn(X1, - - -, X.) be
an estimator of  based on Xj, - - -, X, .

Different measures of performance of T, have been suggested and investigated. Besides
the classical mean-square-error approach, the probability

(1.1) Py(|Tn— 0| > a)

of the absolute error not exceeding a fixed number a > 0 has been considered by several
authors. If the sequence {7} is consistent for 8, then the inaccuracy (1.1) tends to O as
n — oo, Bahadur [1], [2] proposed the limit

(1.2) lim,,_.m{—%lnPg(lTn—0|>a)} =e

for a fixed a > 0 as a measure of performance of T}, if the limit exists. Bahadur [2] and Fu
[4] gave an upper bound for e for consistent sequences of estimators. Sievers [6] evaluated
the limits e and their upper bounds for several estimators and several distribution shapes.
From this point of view he found the sample median less efficient than the sample mean
not only for normal but also for logistic distribution. He observed a similar feature even in
the case of double-exponential distribution unless the values of a were small.

We shall consider estimators based on a finite sample X, ---, X,. One intuitively
expects from a good estimator 7', that the inaccuracy (1.1) will tend to 0 as fast as possible
i.e., that the distribution of T, will have the least possible tails. The tails of an estimator
cannot be made arbitrarily small; for instance, if the sample comes from the Cauchy
distribution one cannot find an estimator with exponentially decreasing tails.

We shall prove that the tails of a translation-invariant estimator could decrease to 0 at
most 7 times faster than the tails of the basic distribution and that, on the other hand,
there are estimators which behave from this point of view in the same way as one single
observation (Theorem 2.1). Moreover, we shall show that both extreme cases may happen
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for the sample mean X,; X, attains the upper bound if the basic distribution has
exponentially decreasing tails of the type exp[—ba’], b > 0, r = 1 and X, attains only the
lower bound if the basic distribution is heavy-tailed with the tails of the type ba™™, b > 0,
m > 0.

Estimating the centre of symmetry of an unknown symmetric distribution, we want to
find an estimator which has small tails for as large a family of distributions as possible.
Since an exponentially-tailed distribution contaminated by a heavy-tailed distribution
becomes heavy-tailed, the sample mean X, is not too good for such families of distributions.
On the other hand, X,, remains good for such cases as a mixture of two normal distributions,
for the normal distributions contaminated by the double-exponential distribution, etc.

If we trim off some extreme observations, then the rate of convergence of the tails of
any resulting L-estimator attains neither the upper nor the lower bound (Theorem 3.1).
The situation is similar for the estimators based on the ranks, e.g., for Hodges-Lehmann’s
estimator (Theorem 3.4). The tails of the sample median decrease exactly (n + 1)/2 times
faster (for n odd) than the tails of the basic distribution, for both exponentially-tailed as
well as for heavy-tailed distributions. The same holds for the Huber M-estimator generated
by a bounded monotone odd function ¢ (Theorem 3.3).

2. Behavior of the sample mean. Let us consider the model satisfying the following
assumption:

AsSUMPTION A. Xj, ..., X, are random variables identically distributed according to
the distribution function F(x — 6) with the density f(x — 6) such that f(—x) = f(x) > 0,
x € RY; § € R is the parameter to be estimated.

All estimators we consider are translation-invariant, i.e., they satisfy the condition

2.1) T.Xi+c¢ -+, Xo+e)=T,(Xy, -+, Xs) + ¢

for any ¢ € R". If T, is translation-invariant, then Py(| T, — 8| > a) = Po(| T»| > a) for any
8 € R! and the inaccuracy (1.1) does not depend on 6.

The following theorem gives upper and lower bounds for the rate of convergence of the
tails of a translation-invariant estimator.

THEOREM 2.1. Let T, = Tw(Xy,...,X,) be a translation-invariant estimator of 8 such
that
(2.2) XV>0= To(Xy, -+, X) >0
X" <0= TuXy, --+,X,) <0
where XV = X? < ... = X™ are the order statistics corresponding to X, - -+ , X,.. Then,
under Assumption A,
2.3) 1 <lim inf, ., B(a, T,) < lim sup,- B(a, T») = n
where
=In Po(|T| > a
(2.4) B(a; T.) =— P‘(’)ill X Il = a;

and P, is the probability distribution corresponding to F.

Proor. We have
Py(|Tn| > a) = Po(Tn > a) + Po(T. < —a)
=P0(Tn(Xl_a7 e )Xn_a)>0) +P0(Tn(Xl +a7 e 7Xn+a)<0)
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= Py(XV > a) + Po(X™ < —a) = 2" [Po(| X1 | > @)
which implies the second inequality in (2.3). Similarly,
Po(| | > a) <= Po(X™ = a) + PoX" < —a)
=2{1 - [1 - %Po(| X:| > a)]"}

and this implies the first inequality in (2.3). 0

In the subsequent text, we shall investigate which estimators attain the upper bound in
(2.3), which estimators are so poor that they attain the lower bound only and generally,
what is the position of some well-known estimators from this point of view. We shall first
consider the sample mean X,. The next theorem shows that the X, attains the uper bound
if the basic distribution has exponentially decreasing tails while it is a poor estimator for
a heavy-tailed basic distribution.

THEOREM 22 Let X, = %2521 X; be the sample mean, let Xi, ---, X, satisfy
Assumption A.
G If
(2.5) lima_leb;fﬁ)-= 1 for some b>0,r=1
then
(2.6) limg. B(a; X,) = n.
(i) If
2.7 lim‘,_.m_—ln—(nltﬁ-l-;ﬂ =1, m=>0
then
(2.8) lim, , B(a; X,) = 1.

Proor. Part (i) was proved by the author in [5]. Considering part (ii), we have
Py(|X,| > @) = Py(X, > a) + P(X. < —a)
=P Xi>-a, -, Xn-1>—a,X,>(2n—1)a)
+ Py Xi<a, -, Xn<a,X,<—(2n-1)a)
= 2(F(a))"'[1 = F((2n - 1a)]

so that
—In[1 - F((2n — 1)a)] -1 0
m In[(2n — 1)a] ’

lim supe_« B(a; X,) < lim supa_«

Part (i) concerns not only the normal (r = 2) but also the logistic and double-exponential
distributions (r = 1); part (ii) covers Cauchy distribution (m = 1) and ¢-distribution with
m degrees of freedom (m > 1). Theorem 2.2 says that X, is a good estimator for the case
(i) while it is a poor estimator for the case (ii). Now, what is the situation for X.if Fis a
mixture of two distributions, one from each group?

The following lemma shows that if a distribution is contaminated by a heavy-tailed
distribution then the resulting distribution is heavy-tailed. The sample mean X, is a poor
estimator in such a case.
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LEMMA 2.1. Let F(x) = (1 —e)G(x) + eH (x) where G and H are absolutely continuous
distribution functions with the respective densities g and h such that g(—x) = g(x) > 0,
h(=x) =h(x) >0, x ER,0<e<l.If

. 1-Gx)
(2.9) lln'lx—ml_—I_I(x) =
and
. glx)
(2.10) llmx_.m m =0
then
. In(1 - F(x)) _
(2.11) hrnx_ml_l-l(l——lf—(;ﬁ— . ‘
ProOOF.
. In(1-F(x) _ .. (1 — H(x))f (x)
e = HG) - ™ A= Fa @
_ &k
) 4 (1 8) 'h—(x')' + €
= lim,_% =1. ]
(1 —_ 8) 1_—G(x) + ¢
1 - H(x)

3. Behavior of some robust estimators. If it is possible that the distribution of
X, ---, X, is contaminated by a heavy-tailed distribution we must look for some more
robust estimators of location. Let us consider what is the position of three basic types of
robust estimators: L-estimators, M-estimators and R-estimators.

We shall show that the rate of convergence of the tails of such estimators is more or less
bounded away from the lower as well as from the upper bound in (2.3). It means that the
estimators are not optimal but, on the other hand, they may not be very poor.

3.1. L-estimators
THEOREM 3.1. Let T, be an L-estimator of the form

(3.1) T,=3% a:X?

where XV < ... = X™ are the order statistics corresponding to X1, --- , X, and ¢; = 0,
i=1,--+,nand Y% ¢; = 1. Put co = Cn+1 = 0 and assume that ¢; = cp-iv1 =0 fori=20,
1, - -+, k where 0 = k < n/2. Then, under Assumption A,

3.2) k + 1 =<liminf, .. B(a; T,) < lim supe—. B(a; T,) = n — k.

ProoF. The theorem was proved by the author in [5]. 0

CoroLLARY. Let T, be the sample median corresponding to X1, « - - , X,.. Then, under
the Assumption A,
(3.3) g < lim inf, ... B(a; T,) < lim sup.. B(a; T») < g +1

for n even, and

n+1
2

(3.4) limg . B(a; Ty) =
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for n odd.

3.2. Trimmed mean. As a special case of L-estimators, consider the trimmed mean in
the form

1 ] n
5 T,=———Y0k, X9 —,n=3.
(3.5) n_2k2 o1 k<2,n_3

The following theorem shows that the behavior of the trimmed mean is similar to that of
the sample mean: while it is near to the upper bound in (3.2) in the case of an exponentially-
tailed distribution, it just attains the lower bound in the case of heavy-tailed distribution.

THEOREM 3.2. Let T, be the trimmed mean defined in (3.5), let X, --- , X, satisfy
assumption A.

Gy If

—-Inl1-F

3.6) 1imm—n(ba—,(“2= 1 forsomeb>0,rz1
then
3.7) n — 2k = lim inf, . B(T,, @) = lim supssew B(T,, a) = n — k.

Gi) If k<2 - ! and
(3.8) lima_m_:l_n(_lﬂ =1

mlna

then
(3.9) limg o B(Ty, @) =k + 1.

Proor. (i) According to Lemma 3.1 in [5], it suffices to show that
(3.10) Eoexp{(1 —e)(n —2R)D|T,|"} <
for any ¢ € (0, 1).
Put d, = (1 — ¢)(n — 2k). Then, using the Holder’s inequality, we get
Eofexp{dn-b| Tn|"}] < Edexp{(1 — )b Tick | X?|"}]
(3.11) =< Eolexp{(1 —e)b Y1 | X:|"}]
= (Eoexp{(1 ~ &)b| X1|"})" < o0

where the last inequality follows from (3.6). It then follows from Lemma 3.1 in [5] (which
is an immediate consequence of Markov’s inequality) that

(3.12) lim inf, . B(T», @) = (1 — €)(n — 2k)

and this implies the first inequality in (3.7). The second inequality follows from (3.2).
(i) We have

(3.13) Po{| T.| > a} = Po{T, > a} + Po{T, < —a}
and
Po{T, > a}
=P{X">—-a,i=k+1,---,n—k—1,X"" > 2(n — 2k) — 1)a}
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(3.14) =2Pf{Xi>—-a, -+, Xn-r-1>—-0a,Xor>2n—2k) — 1)
a, -, X,> 21— 2k) — 1)a}
= (F(a))"™* (1 = F((2n — 4k — 1)a))**.
An analogous proof gives the same inequality for Po{T, < —a}. Hence,
(3.15) —InPo{|T|>a}=-In2+ (k+ 1)In(1 — F((2n — 4k — 1)a))
—(n —k — 1)In F(a).
Thus,
(3.16) lim supew B(Th,a) =k + 1
and (3.9) follows from (3.2). 0

3.3. M-estimators. An M-estimator T, is defined as any solution of the equation
(3.17) Ymv(Xi—t) =0

with respect to ¢; ¢ is an appropriate nondecreasing odd function. We shall show that T,
behaves similarly as the sample median, at least for the distributions with exponentially
decreasing and slowly decreasing tails.

THEOREM 3.3. Let T, be an M-estimator corresponding to the nondecreasing odd
function  such that Y(x) = Y (k) for x = k, k > 0. Suppose that the common distribution

of Xy, - -, X, satisfies Assumption A and either of the following conditions:
(3.18) lim,.., 2 PUX >0 _ b>0,r>0,
ba
(3.19) C lim P> m>0.
mlna

Then T, satisfies (3.3) and (3.4).

Proor.

(a) Suppose that n is even and denote s =g . Then

Po(| T| > a) = Po(Tw > a) + Po(T, < —a)
=P ¢(Xi — a) > 0) + Po(Yim1 ¢(Xi + @) < 0)
= Po(X® — a > k) + Po(X® + a < —k)

> 2(3 * 1>(F(a + k)1 = F(a + k)™
thus

In(1 — Fa + k&) _

lim supe_« B(a; T) < (s + 1) lim supe—,e ma—F@) s+ 1

Analogously,
Py|Tu|>a) = PoXC*Vz=a—k) + P(X9 = -a+ k)

1
= 2n<" ; 1) J' t°(1 — &) 'dt= 4(" ; 1)(1 — F(a — k)

F(a—k)
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so that
(- Fla—h) _

lim inf, .. B(a; T») = s lim inf, . (1-F(a)

(b) The proof for n odd is analogous. 0

3.4. R-estimators. We shall consider in detail only the Hodges-Lehmann estimator
which has the form
X + .Xj

(3.20) T, = med; =isj=n 2 .

Other R-estimators could be investigated by the same method but it provides only the
numerical values of the lower and upper bounds for the rate of convergence of the tails; we
do not yet have an analytical formula expressing the bounds through the score-generating
function of the underlying signed-rank test.

THEOREM 3.4. Let T, be the Hodges-Lehmann estimator (3.20). Then, under As-
sumption A,

(3.21) k. + 1 <liminf, .. B(a; T,) < lim sups—o B(a; Tn) =<n — ka

where k., is the largest integer not exceeding 0.2n.
ProoF. We shall first prove a simple lemma.

LEMMA 3.1. Lety, -+ -, Y. be integers satisfying |yi| =i,i=1, --- , n. If at least 0.8n
of those numbers are negative, then Y-, y, <O0.

Proor oF LEMMA 3.1. If 0.8n is an integer, then
Z;Ll y=- Wi+ S rosnsl = —0.14n% — 0.3n. < 0;

Y%, y, is still less in the case that 0.8n is not an integer. [

ProoF oF THEOREM 3.4. For any ¢ € R', let R*(|X; — t|) be the rank of | X; — ¢|
among | X; — t|, --+, | X, — ¢|. Tx is an inversion of the Wilcoxon signed rank test, ie.,

T. =% (T* + Tr*) where

(3.22) T = sup{t: Y1 sign(X; — OR™(| X; — ¢t]|) > 0}
T¥* = inf(¢: Y21 sign(X; — OR*(X; — £) < 0},
Then
Po(| Tn| > a) = 2Po{T L sign(X; — a)R™(| X; — a|) = 0}
< 2P(X" ™ = a) < 2(” A 1) %,
thus
lim inf, . B(a; T») = k. + 1.
Similarly,

Po(| Tn| > a) = 2Py(T -1 sign(X; — a)R*(| Xi — a|) > 0)



TAIL-BEHAVIOR OF LOCATION ESTIMATORS 585

= 2Py(X %"V > q) = 2(,;:)(F(a))k"(1 — F(a))"™*=

so that
lim supe.. B(a; T,) = n — k,.
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