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ON THE PROJECTIONS OF ISOTROPIC DISTRIBUTIONS!

By Morris L. EATON

University of Minnesota

The class of distributions on R™, 1 < m < o which are the m-dimensional
marginal distributions of orthogonally invariant distributions on R™*" is
characterized. This result is then used to provide a partial answer to the
following question: given a symmetric distribution on R' and an integer n =
2, under what conditions will there exist a random vector X € R" such that
a’X has the given distribution (up to a positive scale factor) for all @ % 0, a
€R™

1. Introduction. The present version of this paper resulted from a set of unusual
circumstances. While teaching a course in distribution theory, the following question
arose:

Q1. Given a symmetric distribution on the line and an integer n = 2, when will there
exist a random vector X in R" such that a’X = ¥} a.X, has the given distribution (up to a
strictly positive scale factor) on R for each vector a € R, a # 0?

An answer to this question would allow one to define “n-dimensional versions” (as is
done in the normal case) of symmetric distributions on R'. This and some related questions
were partially answered in Eaton (1977) and the results were submitted for publication.
Shortly thereafter, Richard Olshen informed me that he had a set of handwritten notes of
Leonard J. Savage (1969) concerning “round” distributions (orthogonally invariant or
isotropic distributions) on R” and there was some overlap with my work.

After going through the Savage notes, it seemed appropriate to prepare a paper which
combined the work in Eaton (1977) and the results of Savage most directly related to Q1.
Round distributions were the main topic treated in Savage’s notes and one of the
motivating questions was:

Q2. Which distributions on R™ can arise as the m-dimensional marginal distribution of
an orthogonally invariant distribution on R™*"?

In Section 2, we set some notation and describe a few “well-known” results to be used
in the sequel. In Section 3, the basic representation result (Theorem 1) is established on
R™. This result was proved in Eaton (1977) for R’ in attempting to answer Q1 and was
proved by Savage (1969) for R™ enroute to his results in Section 4. The proof of Theorem
1 is a minor modification of the proof for R' given in Eaton (1977). Again, Theorem 2 in
Section 3 was proved for R' in Eaton (1977) and was established in Savage (1969) for R™.
It seems clear that the methods developed in Freedman (1963) (see page 1194) can also be
used to prove Theorem 2. The proof given here, which proceeds largely from first principles,
is modelled after that for R' in Eaton (1977). )

The results of Section 4, taken mainly from Savage (1969), give an analytic answer to
Q2. Savage was not aware of Williamson’s (1956) work and presented independent
arguments which lead to Propositions 1 and 2. However, some errors in Savage’s calcula-
tions necessitated that Propositions 1 and 2 be stated differently than the corresponding
assertions in Savage’s notes.
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The material of Section 5 is taken from Eaton (1977). The main result of this section
(Theorem 3) gives a complete description of all the n-dimensional versions of a finite
variance symmetric distribution on R'. The case of infinite variance is discussed briefly
and we close with a few remarks in Section 6.

2. Notation and background. Inwhat follows, R" denotes n-dimensional coordinate
space and 0, is the group of n X n orthogonal matrices acting on R”. Further let S, =
{x|[|x]|=1,x€ R"} and let B, = {x|| x| = 1, x € R"} where | - | is the usual Euclidean
norm on R". Of course, the following discussion can be given for any positive definite inner-
product and norm on R". The distribution of a random vector X € R" is denoted by #(X).

DEFINITION 1. For X € R”, the distribution #(X) is called isotropic if £ (I'X) =
Z(X) forallT' € 0, and if P{X = 0} = 0. The class of all isotropic distributions on R" is
D,.

The assumption that P{X = 0} = 0 in Definition 1 is simply to eliminate some
uninteresting technical complications in the material that follows. Other names for isotropic
distributions are orthogonally invariant distributions and Savage’s term—round distribu-
tions. A basic decomposition result for isotropic distributions is this. Let U € R”™ have the
uniform distribution, say o,, on S,. Thus o, is the unique @,-invariant probability measure
on S,. Consider a random variable R € (0, ) which is independent of U. It is clear that
the distribution of X = RU is isotropic. Conversely, if £(X) € D,, then U = X/|| X|| has
the distribution 6, on S, and U is independent of R = || X || € (0, ). This well-known result
is easily proved using the uniqueness of the (,-invariant probability measure o, on S,,.

For positive integers m and n, consider U € S,,+,, which has 6, as its distribution and
let Um) € B denote the vector of the first m coordinates of U. The density function of
Um) (with respect to Lebesgue measure on R™) at u € R™ is ¥ (|| u]|*| m, n) where

(1) Y(t|m, n) =c(m, n)(1 — )" I(¢), tER.

amor=r{232) ()2

and I(t) = 1if 0 < t < 1 and I(¢) = 0 otherwise. This result is easily proved by first
observing the £ (U)= £ (X/||X||) where X has coordinates Xi, --+, X+, which are
independent and identically distributed as N (0, 1). Thus, we may assume that U, has
coordinates X,/|| X | for i = 1, - - -, m. But, the joint distribution of XZ/|| X||%,i=1, -+, m
is Dirichlet D(%, ..., %; n/2) (see Wilks (1962), page 177). Since the distribution of U,
is invariant under sign changes of coordinates, the expression (1) for the density of U
follows by making the square root transformation on each coordinate in the expression for
the Dirichlet density and multiplying by the appropriate Jacobian. Also, this argument
shows that || U, ||> has a & (m/2, n/2) distribation—the beta distribution with parameters
m/2 and n/2. For some related results, see Kingman (1963).

In this formula,

3. Marginals of isotropic distributions. Consider a random vector X € R™*" and
let X(m) € R™ be the vector of the first m-coordinates of X. When #(X) € Dy+n, the
distribution of X, is in D,, and this distribution will be called the m-marginal of ¥ (X).
In this section, we will give necessary and sufficient conditions that a distribution be the
m-marginal of some distribution in D,, .

DerFINITION 2. The class of m-marginals of elements of D+, is denoted by D(m, n).

) REMARK. If xi, -+, Xpn+n is any orthonormal _basis for R™*" and Z(X) € Dmn, let
X(meR™have coordinates x; X,i=1, . . -, m. Then X,») and X, have the same distribution
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since the distribution of X is isotropic. The standard orthonormal basis for R™*" has been
used for convenience.

THEOREM 1. Let yu be a probability measure on R™. The following are equivalent:

(i) u € D(m, n);

(ii) p has a density with respect to Lebesgue measure, say f, given by f(x) = h(|| x 1
where

(2) h(t) = f ‘I’(E ’ m, n) 'i_/‘z G(dr).
A r r

Here, ¥ (- |m, n) is given by (1) and G is any right continuous distribution function on R*
with G(0) = 0.

Proor. First, assume p € D(m, n) so there exists an X € R™*" with ¥ (X) € D,.. and
ZL(Xm)) = p. Write Z(X) = L(RU) where R € (0, «) is independent of U which has a
uniform distribution on Sy.+,. Thus, £ (X(m)) = ZL(RU(m)) = p. To show fis a density for

i, let C C R™ be a Borel set and let H denote the distribution function of R. Now, compute
as follows:

w(C) = P{RU,) EC) = f J’ Ic(ru)¥ (|| u||?| m, n) du H(dr)
0 Rm

el 2
[ [Lon(t
0 Rm™ r

i 2
=f ,c(u)j q,(uuu
R™ 0 r

= f Ic(u)f(u) du
m

m, n) ri’" du H(dr)

m, n) s Gldr) du

where G is the distribution function of the random variable (R)2. Thus, fis the density of
I

Conversely, suppose a measure p on R™ has a density f(x) = A(|| x||%) where A is given
by (2). Let U, uniform on S,,+,, be independent of R > 0 and let (R)? have distribution G.
Set X = RU to see that #(X(m)) = 1, so p = € D(m, n). This completes the proof.

Theorem 1 has some interesting implications. For notational convenience, let ¢ be the
set of distributions on R with G(0) = 0. First, note that the representing distribution G in
(2) is unique—that is, if

3) j q’(é ‘ m, n) .riﬁ Gi(dr) = J’ ‘I'(é ‘ m, n) -r,,lw Gz(dr)
0 0

for all £ > 0, then G, = G.. To see this, the results in Williamson (1956) (see especially
Theorem 7) show that for a > 0 and ¢ > 0, there exists a nondecreasing function y. such
that

1/x
J’ (1 — ux)*'ye(du) = exp[—cx]
0

for x > 0. Williamson’s results are only stated for a = 1 but can be extended to the case «
> 0. Taking a = n/2 and integrating both sides of (3) with respect to y.(d¢) implies that

o

” 1 1
f exp[—c/r] 7 Gi(dr) = J’ exp[—c/r] P Gz (dr)
)

0

for all ¢ > 0. The uniqueness of Laplace transforms implies that G, = G..
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This uniqueness and Theorem 1 imply that the set of extreme points of the convex set
D(m, n) consists exactly of the probability measures p,, r > 0 where

2
.ur(B)=f ‘I’(@ m,n)idu
B

rm/2
for any Borel set B C R™. An alternative way to phrase Theorem 1 is that € D(m, n) if
and only if

n= f .urG(dr)
0

for some G € 9. This is a Choquet-type representation for the elements of D(m, n).

By definition, it is clear that D(m, n) D D(m, n + 1). Define D(m, ») by D(m, ) =
N;-1 D(m, n). Let N(0, I,,) denote the m-dimensional normal distribution with mean zero
and covariance I,. The density of N(0, I,,) will be denoted by

— 1 _l 2 m
(pm(u)—mexp< 2||u||), u€eR™

THEOREM 2. The following are equivalent for a probability measure y on R™:
(i) p € D(m, »);
(ii) p has a density f given by

! u
f(u)=J:) -—rm/zq)m(x)G(dr)
where G € 4.

ProoF. If (i) holds, then p = £ (RZ ) where £ (Zm)) = N(0, I,), £[(R)*] = G and
R is independent of Z,,,. Given n, let Z be independent of R with £ (Z) = N(0, L+»).
Obviously #(RZ) € Dy+n and p = L(RZ(m)) = L(RZ)(m)) so p € D(m, n) for all n.
Hence (i) holds.

Conversely, suppose u € D(m, n) for all n = 1 so u has a density f(z) = k(|| u]|?) where

R(t) =J' qf(ﬁ
o r

For each ¢, it is easy to show

m, n) % G.(dr).

1 t
limy o —7s V| —
Mhne o7 (n

1 —t/2
m,n)| = e 2,
) (V2m)™
By Scheffé’s theorem (see Billingsley (1968), page 224)

o1 z
J.(w) EJ’ it m/2‘1,<||u||
Rm n n

converges uniformly to exp[—% || w|*] for w € R™. Let G.(dr) = G.(dr/n). Then for each
wER™,

m, n) du

E(w) Ef e "“h(|ul®) du
R

RS | ull?
j j o m/zq,(n ||
e Jo (nr) nr

An(Gr) +f exp[—%r||w||2:|G,,(dr)

0

m, n)G,,(dr) du
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where

A,,(G,,)=J' [Jo(Vrw) — e V¥1°1"G, (dr).
0

Since J,(-) converges to e /2!1" uniformly, lim | A,(G)| = 0 for any sequence {G»}3-1.
Let G- be a weak limit point of the sequence {G,}. Since e /?"1*1” is a bounded continuous
function of r, we conclude that

E(w) =J’ e—1/2rllwII2Gm(dr)
0

for each w € R™. Since £(0) = 1, G is a proper distribution function and it is easy to show
G.(0) = 0. The uniqueness of characteristic functions implies that (ii) holds, so the proof
is complete.

When m = 1, the result of Theorem 2 is well known and has been proved in several
different, but equivalent, forms. For example, see Schoenberg (1938), Freedman (1963),
and Kingman (1973). Other results concerning scale mixtures of the univariate normal
distribution are given in Teichroew (1957), Kudo (1963), Kelker (1971), Andrews and
Mallows (1974), and Efron and Olshen (1978).

4. Aderivative condition. In thissection, we present an alternative characterization
of the functions A satisfying (2). This description is based on the similarity of (2) with
Abel’s integral equation, fractional derivatives and integrals (see Zygmund (1968), page
133), and the results given in Williamson (1956). Given a parameter a > 0, a function f
defined on (0, ) is a-times monotone (see Williamson (1956), Definition 3 where the case
of a = 1 is treated) if

f(t) = J’ (1 — ut)s 'y(du)
0

where y is nondecreasing with y(0) = 0. Here, (v)5* for v € R is defined to be v*~' if v >
0 and zero otherwise. In this notation, Theorem 1 shows that u € D(m, n) iff u has a
density A (|| x||?) which lies in the subclass of (1/2)-times monotone functions for which

h(t) = f (1 = ut) P 'y (du)
0

y(d(l)) =c(m, n) ‘372 G(dr)
r r

with G € . Note that y(®) < +o iff 2(0) < +. When n is even, n = 2, 4, - - - we have the
following

and

PROPOSITION 1. The measure u. is in D(m, n) iff u has a density h(| x||*) where:
(i) if n = 2, h is nonincreasing;
(i) ifn/2 =j=2, (—1)""2nY~2(t) is nonincreasing and convex.

Proor. This is an easy consequence of Theorem 4 in Williamson (1956) and the fact
that A (|| x||?) is a density on R™.

Whenn =27+ 1lisodd,j =0, 1, 2, ..., the situation is slightly different. For j = 0, u
€ D(m, 1) iff the density of u, say A(| x||?) for x € R™, exists and has the form

© ¢ -1/2 1 ]
A(t) = c(m, 1) f <1—;) 7 G(dr) = f (r — £)7/°% (dr)
0 + 0
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where

- 1

is nondecreasing with ¥ (+ ) = 0. An easy application of Tonelli’s theorem (see Dunford
and Schwartz (1958), page 194) shows that

Q(s) = J (t — $):2h(t) dt = —m¥ (s), §>0
0

is nonincreasing with @(+ ) = 0. Conversely, suppose we are given A defined on (0, ®) to
[0, ) such that A (|| x||?) is a density on R™ and

Q(s) = j“’ (t — 8)32h(¢) dt, §>0
0
is nonincreasing with @(+ ) = 0. Define A, by
ho(t) = fm (r— )72 (dr)
0
where ¥ (r) = —Q(r)/m. Applying Tonelli’s theorem again shows
Q(s) = jm (t — 8)7%ho(t) dt, §>0
0

and by the uniqueness of the above transform it follows that A = ho a.e. on (0, ). From
Theorem 1 we have that the measure u defined by 2 on R™ is in D(m, 1) iff Q(s) is
nonincreasing with @(+») = 0.

Now, consider the case whenn = 2j + 1is odd and j = 1.

PROPOSITION 2. Let h = 0 be defined on (0, ) such that k(|| x||*) is a density on R™
yielding the probability measure . Forn = 2j + 1,j=1,2, ---, u € D(m, n) iff the
function

Q(s)sf (t— $)3%h(t) dt
0

satisfies (—1)’7'QY"(s) is nonincreasing and convex with @(+x)= 0.

ProoF. This follows by applying Williamson’s Theorem 4 to the function . The
details are left to the reader.

5. n-dimensional versions. In this section we give a partial answer to Q1 described
earlier. Consider a real valued random variable Z with a symmetric distribution such that
P{Z = 0} = 0—that is, ¥(Z) € D;.

DEFINITION 3. Given an integer n > 1, the distribution of a random vector X € R" is
called an n-dimensional version of ¥ (Z) if there exists a function ¢ on R” to [0, ) such
that

(i) c(a) >0if a #0;

(i) L(a'X)= Z(c(a)Z),a E R".

In what follows, we will often call X an n-dimensional version of Z when ¥ (X) is an n-
dimensional version of #(Z). If X is an n-dimensional version of Z such that £ (I'X) =
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Z(X) for all ' € 0,, then X will be called an n-dimensional isotropic version of Z. In
Definition 3, the condition that c(a) > 0 for a # 0 is simply to guarantee that X be n-
dimensional—that is, P(X € M) = 0 for all proper subspaces M of R”. With m = 1 in
Theorem 1, we have a complete description of those distributions having n-dimensional
isotropic versions.

DEFINITION 4. The set of all distributions in D, which have n-dimensional versions
will be denoted by £#,, n = 2.

It is obvious that D(1,n — 1) C &, n =2, . . .. Our first result identifies those distributions
in &, which have a finite variance.

THEOREM 3. Suppose ¥(Z) € &, and Var(Z) < +». Then ¥(Z) € D(1, n — 1) and
every n-dimensional version of Z is given by AX, where X, is an n-dimensional isotropic
version of Z and A is an n X n nonsingular matrix.

Proor. Let X be an n-dimensional version of Z with c¢:R" — [0, ») satisfying
Definition 2. Since Var(Z) = ¢ < o, it follows that X has a covariance matrix, say = =
Cov(X). The relation £(a’X) = %(c(a)Z) implies c(a) = (a’=a)"?/s, a € R" which
shows that 2 is positive definite as c(a) > 0 for @ # 0. Set X, = 0= 2X where 3~/2
denotes the inverse of the positive definite square root of =. For @ € R",

Z(a'Xo) = L(6Za)X) = £(c(6=2a)Z) = Z(||a||Z)

which implies that X, is an n-dimensional isotropic version of Z. Thus #(Z) € D(1,n—-1)
and, of course, the distribution of X, is unique as #(Xo) € D, and £ (a'Xo) = Z(||a| Z).
Set A = (1/0)Z"* to complete the proof.

Theorem 3 identifies all those elements in %, with a finite variance and Theorem 1
gives a representation for the densities of such distributions. Further, every n-dimensional
version of finite variance distributions in D, is equivalent (up to a linear transformation)
to an isotropic n-dimensional version. However, the situation is more complicated in the
infinite variance case. Let Z, denote a symmetric stable law of order a with characteristic
function

na(¢) = exp[—|¢]°], t € R,
where 0 < a < 2. Given n and a probability measure 8 on S, such that 8(B) = §(—B) for
Borel sets B, let

ls(w) = J’ |w'w|* 8(du).
s,

n

For each fixed a, the function )
é(w) = exp[—Is(w)]

is a characteristic function of a symmetric n-dimensional stable law of order « (see Fristedt
(1972)). Further, if X € R" has characteristic function ¢, then

L(a’X) = L(cala)Z,)

1/a
cu(a)=[J’ |u’a|“8(du):| .
Sn

where
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Thus, X is an n-dimensional version of Z, for each § and X is isotropic iff § = ¢,. Further,
different §’s yield nonequivalent (up to linear transformations) n-dimensional versions of
Z,. Of course, ¥(Z,) € D(1, n — 1) for all n—see Andrews and Mallows (1974) for a
representation of .#(Z,) as a scale mixture of normals.

6. Remarks. It is clear that &, D %,+1 so % = lim,_. %, is well defined. The
obvious question is whether or not &%, = D(1, n — 1) and, in particular, whether or not
Z. = D(1, »). This latter equality would establish that the only symmetric distributions
which have n-dimensional versions for all n are scale mixtures of the normal distribution.

In the case when Var(Z) < +o, Theorem 3 shows that the only scale functions c¢: R"
— [0, ) are quadratic. More precisely, if X is any n-dimensional version of Z with Var(Z)
< +o, then the function c is c(a) = a’Za, a € R", for some positive definite . However,
in the infinite variance case, other scale functions can arise such as the ¢, discussed in the
previous section. One possible approach to the questions mentioned in the first paragraph
is to try to characterize the scale functions which can arise. This author has made no
significant progress in answering any of the questions raised above.

We close this section with a few comments about the distributions in D(1, «). If Z; and
Z, are independent with ¥ (Z;) € D(1, «), i = 1, 2, it is not difficult to show that £ (Z; +
Z:) € D(1, ), ¥(Z:2Z>) € D(1, ), and ¥(Z,/Z.) € D(1, ). However, £ (Z) € D(1, x)
does not imply that £ (1/Z) € D(1, »).

When fis a symmetric density on R which yields a distribution in D(1, «), Theorem 2
provides the representation

f(u)=J’m ! ex [—E}G(dr)
o V2mr P 2r '

If

1 (71
f0)=— | —

G(dr) < +x,
V2r J

&

r

it is not difficult to show that

ft) = Jr ) e““f(u) du
is nonnegative and

J’ " fiey de = 2mf(0).

From this it follows that the distribution determined by the density f/2xf(0) is in D(1,
). In particular, k(a)exp[—| «|*] is a density (for a proper choice of k(a)) which yields a
distribution in D(1, ) for 0 < a < 2.

7. Postscript to Section 2. The following, suggested by Persi Diaconis and David
Freeman, provides an alternative proof of Theorem 1 and the uniqueness of G in the
representation of the elements of D(m, n). Let o, , denote the uniform distribution on S, ,
={x| xER", || x|| =r} wherer>0. The discussion of Section 2 shows that a probability
measure p is in D, iff

4 p= j on, G(dr)
0
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for some G € 4. The representing G is unique since if #(X) = p and p is given by (3), then
Z(| X)) = G. This shows that the set of extreme points of D, is the set {0, | r > 0}. Given
positive integers m and n, define the affine transformation 7., on Dp+r to D(m, n) by

(Tm,n.u) (B) =u (B X Rn)

where B is a Borel subset of R™. Thus, if #(X) = p € Dy4n, then T, »p is the distribution
of the first m coordinates of X. By definition, D(m, n) is the image of D+, under
the mapping T ,.. Here is Theorem 1 in the present notation. The assertion is that
v € D(m, n) iff

() v= J T (Om+n,)G(dr)
0

for some G € %. To show this, if » € D(m, n), then v = T, ,u for some p € D, . Using the
representation (4) for u and the fact that T, is affine, we have

(6) v= Tm,n# = j Tm,n (0m+n,r)G(dr)~
0

Conversely, if v is given by (5), then v = T, ,u where u is given by (4) with the same G
which gives v in (5).

The uniqueness of G in (5) will follow once we show that T3, is a one-to-one function.
First consider T;x on Dux to D(LE). If #(X) = u € Dys, then Tjrp is the probability
distribution of the first coordinate of X-say X, Thus, from T,.u, we can calculate the
characteristic function of X,-say 5. However, the ,-invariance of p implies that the
characteristic function of X is given by

&) = n(|¢l)

for ¢t € R"**. Therefore, the measure y is determined by the measure T}.p so T is one-to-
one. That T, , is one-to-one is a consequence of the equation

Tl,m+n—1 = Tl,m°Tm,n

and the fact that 7' ,,+,—; is one-to-one. The uniqueness of G in (5) now follows from the
uniqueness of G in (4) and the observation that T, is one-to-one. This implies that
{T.r (Om+n,)| r > 0}, is exactly the set of extreme points of the convex set D(m, n).
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